虾仁中副溶血弧菌杀菌技术的微生物预测模型与定量风险评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
副溶血性弧菌(Vibrio parahaemolyticus, VP)是革兰氏阴性菌,兼性厌氧,嗜盐,为多形态杆菌或稍弯曲弧菌,可引起肠胃炎,主要分布于海水及海产品中,是造成沿海地区海产品食源性疾病爆发的主要病原菌之一。目前,国内外学者已针对海产品中副溶血弧菌的杀菌技术开展了广泛研究,根据加工条件,海产品种类及各地区消费者饮食习惯等因素,各国使用的海产品杀菌方法有所差异,该领域的总体研究趋势为在保证杀菌效果的同时兼顾海产品风味、色泽、口感及营养成分。传统的热杀菌方法可在较短时间内取得良好的杀菌效果,但极易对海产品感官品质造成破坏。因此,近年来化学杀菌方法及低温杀菌法在海产品加工中较受欢迎。微生物定量风险评估(quantitative microbial risk assessment, QMRA)可通过数学模型对食品生产、加工、运输、零售和消费环节中的微生物污染水平进行定量估计,预测病原菌引发的疾病风险。通过风险评估的手段可确定食品生产至消费过程中重要的风险因子,并定量的评价各种风险控制措施。
     本课题综合利用农业与食品科学、微生物学、预测微生物学、化学、统计学、工程学等多领域知识,以虾仁中副溶血弧菌为研究对象,以可行性及消费者可接受为前提,研究三种可能应用于虾仁加工中清洗环节的灭菌方法,并以微生物预测模型为工具,评价各杀菌因素对杀菌效果的影响。同时,本研究对冷冻虾仁自原料捕获至消费环节的副溶血弧菌污染建立定量微生物风险评估模型,利用文献回顾、专家意见及合理假设的方法对模型中参数进行分布拟合,预测虾仁中副溶血弧菌污染引发疾病的风险概率,并以此为手段,定量的评价虾仁清洗环节中三种杀菌方法对风险控制的效果。
     本课题主要内容及结论如下:
     1、基于Box-Behnken实验设计,利用乳酸(1%,2%,3%,v/v)及壳聚糖(0.4%,1%,1.6%,w/v)的混合溶液对生鲜虾仁进行振荡(90,110,130rpm)清洗(10,20,30分钟),对杀菌结果进行数学建模。结果表明乳酸与壳聚糖的混合液清洗可有效减少虾仁中的副溶血弧菌(本实验中取得的细菌死亡量为2.17~4.32log CFU/g),且未对虾仁感官品质造成不利影响。基于响应曲面设计建立的预测模型回归系数(R2)为0.92,标准误差平方根(RMSE)为0.196,失拟检验结果不显著(p>0.05),此外,验证实验结果显示模型准确度(Bf)及精确度(Af)分别为1.01和1.05,表明该模型可用于清洗中细菌死亡量的预测。杀菌因素中乳酸、壳聚糖及二者的交互作用对灭菌效果影响显著(p<0.05),其中乳酸起主导作用。模型预测结果表明在最优因素组合条件下,即利用3%乳酸结合1.6%壳聚糖对虾仁进行振荡转速为110rpm的清洗10分钟,可减少副溶血弧菌4.5log CFU/g。
     2、本实验在温热的水浴(47,50,53℃)中结合超声波(96,150,204W)对人工接种了副溶血弧菌的生鲜虾仁进行清洗,对灭菌效果进行数学建模。利用Weibull模型作为一级模型拟合细菌致死量与时间的关系曲线,基于最小二乘法回归细菌死亡量数据,固定模型中形状因子(shape parameter)以降低参数间自相关性,然后以Weibull中尺度因子为响应量建立响应曲面方程(二级模型),研究其与温度及超声波功率间的定量关系。实验发现温热的水浴及超声波分别对虾仁进行清洗时副溶血弧菌死亡量十分有限,二者联合使用可显著提高杀菌效果,在温水中进行超声波清洗可在短时间内减少副溶血弧菌超过4log CFU/g。模型拟合结果发现固定曲线形状因子可以减小一级模型参数间的自相关性,并且不会对模型的回归系数(R2)造成太大影响。固定形状因子后,Weibull模型中的尺度因子(scale parameter)与灭菌温度和超声波功率间的关系可由响应曲面模型拟合,回归系数(R2)高达0.99,标准误差平方根(RMSE)为0.17。验证实验显示模型的准确度因子(Bf)及精确度因子(Af)分别为0.97和1.03,表明该二级模型可较准确的拟合一级模型参数。一级模型与二级模型结合可得到虾仁中副溶血弧菌死亡量与加热温度、超声波功率及清洗时间三因素间关系的预测方程。模型分析结果显示温度、超声波功率对细菌致死作用影响显著,且二者间交互作用显著。研究表明热超声杀菌技术有望应用于虾捕获后的清洗环节,有效减少副溶血弧菌的污染,本研究中建立的预测模型可用于虾仁清洗过程中副溶血弧菌致死量的预测。
     3、采用Box-Behnken实验设计方法,应用弱酸性电解水与乳酸的混合液对虾仁进行清洗,调查清洗液对虾仁中副溶血弧菌的杀灭效果,并以细菌死亡量为响应量建立预测模型。结果表明弱酸性电解水单独使用对虾仁中副溶血弧菌的杀灭作用十分有限,与适当浓度的乳酸结合,可以在保证虾仁感官品质的同时提高杀菌效率。FDA要求海产品加工企业应用的杀菌技术应至少杀灭副溶血弧菌3.52个对数单位,在本研究中发现,pH值为5.18,有效氯浓度为73.0mg/L,氧化还原电位为1018.4mV的弱酸性电解水与3%(v/v)的乳酸以130rpm的转速对虾仁清洗10分钟,副溶血弧菌死亡量达到4.36log CFU/g,符合FDA标准。响应曲面方程可用于细菌致死量与电解水比例、乳酸浓度及清洗转速等杀菌因子的数学拟合,预测模型的回归系数(R2)为0.98,均方根误差为0.104,失拟检验结果不显著(p>0.05),验证实验结果显示该模型的准确度因子(Bf)及精确度因子(Af)分别为1.01和1.09,表明该预测模型可用于此杀菌方法的杀菌效果预测。
     4、本研究对副溶血弧菌对人类健康的危害进行识别,并为虾自捕获至消费环节建立暴露评估模型,结合FDA颁布的剂量效应模型及校正因子,对冷冻虾仁引发的副溶血弧菌中毒风险进行预测。在大量文献调查、专家意见及科学假设的基础上,本研究以随机分布函数作为风险评估模型的输入参数,以蒙特卡洛分析方法进行模型拟合。预测结果显示冷冻虾仁中副溶血弧菌污染引发疾病的风险概率平均值为2.5×10-9/人/餐,我国因冷冻虾仁中副溶血弧菌污染造成的年致病人数约为344.7人。敏感性分析结果表明暴露途径中重要的风险因子依次为捕获期温度、家庭贮藏温度和时间、初始污染浓度、捕获期未冷藏时间及未充分烹饪概率。烹饪为最有效的风险缓解因子,充分加热对减小风险具有重要意义。此外,情景分析结果表明本研究中采用的乳酸结合壳聚糖清洗、超声波结合温热处理及弱酸性电解水结合乳酸清洗方法可使年发病率减小至基线模型的2.5%,24.0%及2.6%,由此可见,虾仁加工中采取适当的清洗方法可有效缓解食源性疾病的发生风险。
Vibrio parahaemolyticus is a natural inhabitant in estuarine marine water and seafood has been recognized as the most frequent vehicle for this pathogenic bacterium. Along with the increase of supply and consumption of seafood worldwide, the illnesses outbreaks associated with V. parahaemolyticus have aroused concerns over the public health. Various intervention methods for reducing the bacteria in seafood products have been investigated and practiced. Each method has distinct advantages and disadvantages depending on the properties of products, the conditions of processing, and the preference of consumers. The successful application of appropriate intervention strategies could effectively reduce the contamination of V. parahaemolyticus in seafood, and consequently contribute to the reduction of public health risk. The principal aim of quantitative microbial risk assessment (QMRA) is to quantify the level of risk in order to prevent unacceptable exposures and to design improved production, processing, distribution, and preparation systems that would help in reducing exposures to acceptable limits. The risk assessment process helps to identify any of those stages from production to consumption that contribute to an increased risk of foodborne illnesses. QMRA has been recognized as a predictive and decision-making tool in organizing available data, and assessing the impact resulting from exposure to different pathogens.
     The main contents and resultsof this study are summarized as follows.
     (1) Lactic acid and chitosan are natural antimicrobials for food decontamination in the washing process of seafood. In this research, a4-factor response surface model based on the Box-Behnken experimental design was developed to evaluate the effects of lactic acid (1%,2%, and3%, v/v), chitosan (0.4%,1%, and1.6%, w/v), rotational rate (90,110, and130rpm) and washing time (10,20, and30min) on reduction of V. parahaemolyticus inoculated in raw peeled shrimps. These treatments achieved2.2to4.3log10CFU/g reduction of V. parahaemolyticus in shrimps. Stepwise stratification led to a simplified model that has satisfactory performance as evidenced by statistical indices (R2=0.92; p<0.0001; RMSE=0.196) and external validation parameters [bias factor (Bf)=1.01; accuracy factor (Af)=1.05]. The model generated an optimum treatment combination (3%lactic acid,1.6%chitosan, and rotational rate at110rpm) that could achieve greatest bacterial reduction of4.5log10CFU/g. Among the four factors, lactic acid and chitosan were the major contributors for bacterial decontamination. Analysis of variances showed a significant interactive inactivation effect (p<0.05) from combined use of lactic acid and chitosan. The treatments did not have adverse effects on the quality attributes such as color and pH of the shrimps.
     (2) The effect of thermo-ultrsound treatment on the survival of V. parahaemolyticus in raw peeled shrimps was investigated in this study as an alternative inactivation method in seafood postharvest washing process. Raw peeled shrimps inoculated with V. parahaemolyticus were treated with mild heat (47,50, and53℃) combined with ultrasound (0.96,150, and204W) based on a3×4full factorial design and the bacterial survival curves were fitted with a Weibull model. Due to the high correlations of the shape parameter "n" and the scale parameter "n" in the Weibull model, an overall n-value was estimated from the whole set of bacterial inactivation data and n-values were estimated for each set of inactivation curve accordingly. A response surface model was generated to describe the scale parameter as a function of temperature and ultrasonic power. The results indicated that the Weibull model with the overall n-value could be used to describe the bacterial reduction with the time of exposure to the thermo-ultrasound treatments, which is well evidenced by the small values of root mean square errors (RMSE) and the high values of correlation of determination (R2). The quadratic model was validated with independent experiments within the prediction range. Statistical indices (R2=0.99; p<0.0001; RMSE=0.17) and validation parameters (Bf=0.97; Af-1.03) showed a satisfied performance of the quadratic model. The results indicated that the thermo-ultrasound treatment was effective, simple, and cost effective for inactivation of V. parahaemolyticus in shrimps during postharvest washing process.
     (3) Weakly acidic electrolyzed water (AEW) was used in combined with lactic aicd to reduce V. parahaemolyticus in raw peeled shrimps. A3-factor response surface model based on the Box-Behnken experimental design was developed to evaluate the antimicrobial effects of AEW (1/3,2/3and3/3, ratio, v/v), lactic acid (1%,2%, and3%, v/v), and rotational rate (90,110, and130rpm). The investigation results showed that the treatments achieved1.36~4.02log10CFU/g reduction of V. parahaemolyticus in shrimps. The developed model proved a satisfied prediction performance as evidenced by statistical indices (R2=0.99; p<0.0001; RMSEO.104) and external validation parameters (Bf=1.01; Af=1.09). The model generated an optimum treatment combination (100%AEW,3%chitosan, and rotational rate at130rpm) that could achieve greatest bacterial reduction of4.36log10CFU/g, which met the guideline value (3.52log10CFU/g) suggested by FDA for industrial invention method to remove Ⅴ. parahaemolyticus from seafood. Among the four factors, lactic acid and AEW were the major contributors for bacterial decontamination. Analysis of variances showed a significant interactive inactivation effect (p<0.05) from combined use of AEW and lactic acid.
     (4) In this study, a quantitative risk assessment model comprising initial bacterial contamination, post-harvest washing, transport to market, retail storage, transport to household, home storage and consumption was developed to evaluate the relative effectiveness of different post-harvest washing treatments on reducing the risk reduction by Ⅴ. parahaemolyticus in frozen peeled shrmps. Three treatments were lactic acid combined with chitosan (LA+CH), thermo-ultrasound treatment (TH+UL), and weak acid electrolyzed water combined with lactic acid (AEW+LA). Data obtained from laboratory experiment, scientific literatures, professional suggestion and assumption were used to parameterize the input variables and the growth/survival kinetics of Ⅴ. parahaemolyticus at different processing stages. The model was run using Monte Carlo simulation with100,000iterations. The simulated results showed that the risk of illness was2.5×10-9/year/person the number of illnesses per year should be344.7in China. The result of our study is reasonable as compared with the epidemiological data and results of previous risk assessment reports. Sensitivity analysis identified that the temperature and time of harvest were the most significant risk factors. Scenario analysis showed that LA+CH, TH+UL AEW+LA treatments reduced the risk of illness to2.5%,24.0%and2.6%as compared with the baseline model, respectively, suggesting the intervention method could potentially reduce the risk of Ⅴ. parahaemolyticus in frozen peeled raw shrimps. The risk model can assist seafood industry in adopting appropriate risk mitigation strategies to reduce seafood-borne illness caused by Ⅴ. parahaemolyticus.
引文
1. Alakomi H.L., Skytta E., Saarela M., Sandholm T.M., Kala K.L., Helander I.M.,2000. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Applied and Environmental Microbiology 66.2001-2005.
    2. Alishanhi A., Aider M.,2012. Applications of chitosan in the seafood industry and aquaculture:A review. Food and Bioprocess Technology 5.817-830.
    3. Andrews L.S., Anna M.K., Roy L.M., Robert G., Park D.L.,2002. Chlorine dioxide wash of shrimp and crawfish an alternative to aqueous chlorine. Food Microbiology 19,261-267.
    4. Andrews L.S., DeBlanc S., Veal C.D., Park D.L.,2003. Response of Vibrio parahaemolyticus 03:K6 to a hot water/cold shock pasteurization process. Food Additives and Contaminants 20. 333-334.
    5. Andrews L.S., Park D.L., Chen Y.P.,2000. Low temperature pasteurization to reduce the risk of vibrio infections from raw shell-stock oysters. Food Additives and Contaminants 19,787-791.
    6. Anonymous.2009. Available at:http://www.ifr.ac.uk/Safety/GrowthPredictor/.
    7. Arvanitoyannis I.S., Stratakos A., Mente E.,2009. Impact of irradiation on fish and seafood shelf life:A comprehensive review of applications and irradiation detection. Critical Reviews in Food Science and Nutrition 49,68-112.
    8. Awuah G.B., Ramaswamy H.S., Economides A.,2007. Thermal processing and quality:Principles and overview. Chemical Engineering and Processing 46.584-602.
    9. Baker D.A.,1995. Application of modeling in HACCP plan development. International Journal of Food Microbiology 25.251-261.
    10. Bandekar J.R., Chandler K., Nerkan D.P.,1987. Radiation control of Vibrio parahaemolyticus in Shrimp. Journal of Food Safety 8,83-88.
    11. Baranyi J., Roberts T. A.,1994. A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology 23:277-294.
    12. Baranyi J., Tamplin M.,2004. ComBase:A common database on microbial responses to food environments. Journal of Food Protection 67,1967-1971.
    13. Barraj L.M., Petersen B.J.,2004. Food consumption data in microbiological risk assessment. Journal of Food Protection 67,1972-1976.
    14. Bas D., Boyaci I.H.,2007. Modeling and optimization I:Usability of response surface methodology. Journal of Food Engineering 78.836-845.
    15. Baumann P., Schubert R.H.W.,1984. Family Ⅱ. Vibrionaceae. In:Krieg, N.R.. Holt. J.G. (Eds.). Bergey's Manual of Systematic Bacteriology. Williams & Wilkins Co.. Baltimore, MD. pp. 516-550.
    16. Berlin D.L., Herson D.S., Hicks D.T., Hoover D.G.,1999. Response of pathogenic Vibrio species to high hydrostatic pressure. Applied and Environmental Microbiology 65.2776-2780.
    17. Bermudez-Aguirre D., Corradini M.G., Mawson R., and Barbosa-Canovas G.V.,2009. Modeling the inactivation of Listeria innocua in raw whole milk treated under thermo-sonication. Innovative food science & emerging technologies 10,172-178.
    18. Beuchat L.R.,1993. Antimicrobial properties of spices and their essential oils. In:Dillon, Y.M., Board, R.G. editor. Natural antimicrobial systems and food preservation. CAB International, Oxon, 167-179.
    19. Bevilacqua A., Sinigaglia M., Corbo M. R.,2012. Ultrasoun and antimicrobial compounds:a suitable way to control Fusarium oxysporum in juices. Food Bioprocess Technology (in press); available on-line, DOI 10.1007/s 11947-012-0782-0.1
    20. Boonyawantang A., Mahakarnchanakul W., Rachtanapun C., Boonsupthip W.,2012. Behavior of pathogenic Vibrio parahaemolyticus in prawn in response to temperature in laboratory and factory. Food Control 26,479-485.
    21. Bover-Cid S., Belletti N., Garriga M., Aymerich T.,2012. Response surface methodology to investigate the effect of high pressure processing on Salmonella inactivation on dry-cured ham. Food Research International 45,1111-1117.
    22. Brogden K.A.,2005. Antimicrobial peptides:pore formers or metabolic inhibitors in bacteria. Nature Reviews Microbiology 3,238-250.
    23. Brookmire L., Mallikarjunan P., Jahncke M., Grisso R..2013. Optimum cooking conditions for shrimp and Atlantic salmon. Journal of Food Science,78,303-313.
    24. Buchanan R. L., Whiting R. C., Damert W. C.1997. When is simple good enough:a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiology 14,313-326.
    25. Buchanan R.L., Smith J.L., Long W..2000. Microbial risk assessment:dose-response relations and risk characterization. International Journal of Food Microbiology 58,159-172.
    26. Burt S.,2004. Essential oils:their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology 94,223-253.
    27. Buzrul S., Alpas H.,2004. Modeling the synergistic effect of high pressure and heat on inactivation kinetics of Listeria innocua:a preliminary study. FEMS Microbiology Letter 238,29-36.
    28. Cabanillas-Beltran H., Lausas-Magafla E., Romero R., Espinoza A., Garcia-Gasca A., Nishibuchi M., Ishibashi M., Gomez-Gil B.,2006. Outbreak of gastroenteritis caused by the pandemic Vibrio parahaemolyticus O3:K6 in Mexico. FEMS Microbiology Letter 265,76-80.
    29. Cabeza M.C., Garcia M.L., de la Hoz L., Cambero I., Ordonez J.A.,2005. Destruction of Salmonella Senftenberg on the shells of intact eggs by thermoultrasonication. Journal of Food Protection 68,841-844.
    30. Calik H., Morrissry M.T., Reno P.W., An H.,2002. Effect of high-pressure processing on Vibrio parahaemolyticus strains in pure culture and Pacific oysters. Journal of Food Science 67, 1506-1510.
    31. Cao R., Xue C.H.. Liu Q..2009. Change in microbial flora of pacific oysters (Crassostera gigas) during refrigerated storage and its shelf life extension by chitosan. International Journal of Food Microbiology 131.272-276.
    32. Cassin M.H., Lammerding A.M., Todd E.C.D.. Ross W., McColl R.S.,1998a. Quantitative risk assessment for Escherichia coli 0157:H7 in ground beef hamburgers. International Journal of Food Microbiology 41.21-44.
    33. Chae M.J., Cheney D., Su Y.C.,2009. Temperature effects on the depuration of Vibrio parahaemolyticus and Vibrio vulnificus from the American Oyster (Crassostrea virginica). Journal of Food Science 74,62-65.
    34. Chaiyakosa S., Charernjiratragul W., Umsakul K., Vuddhakul V..2007. Comparing the efficiency of chitosan with chlorine for reducing Vibrio parahaemolyticus in shrimp. Food Control 18, 1031-1035
    35. Chang H.C., Chen M.L., Su Y.C., Pai J.Y., Chiu T.H.,2011. Molecular characterizations of pathogenic Vibrio parahaemolyticus isolated from Southern Taiwan oyster-growing environment. Food Control 22,245-251.
    36. Cheftel J.C.,1995. Review:High pressure, microbial inactivation and food preservation. Food Science and Technology International 1,75-90.
    37. Chen H. Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk. Food Microbiology 24.197-204.
    38. Chen H., Guan D., Hoover D.G.,2006. Sensitivities of foodborne pathogens to pressure changes. Journal of Food Protection 69,130-136.
    39. Chen H., Hoover. D.G.,2003a. Modeling the combined effect of high hydrostatic pressure and mild heat on the inactivation kinetics of Listeria monocytogenes Scott A in whole milk. Innovative food science & emerging technologies 4,25-34.
    40. Chen H., Hoover D.G.,2003b. Pressure inactivation kinetics of Yersinia enterocolitica ATCC 35669. International Journal of Food Microbiology 87,161-171.
    41. Chen H., Hoover D.G.,2004. Use of Weibull model to describe and predict pressure inactivation of Listeria monocytogenes Scott A in whole milk. Innovative food science & emerging technologies 5, 269-276.
    42. Chilton P., Isaacs N.S., Mackey B., Stenning R.,1997. The effects of high hydrostatic pressure on bacteria. In K. Heremans (Ed.), High pressure research in the biosciences and biotechnology. Belgium'Leuven University Press,225-228.
    43. Codex Alimentaius Commission.1998. Draft principles and guidelines for the conduct of microbiological risk assessment[OL].http://www.who.int..
    44. Coleman M., Marks H.,1998. Topics in dose-response modeling. Journal of Food Protection 61, 1550-1559.
    45. Cook D.W.,2003. Sensitivity of Vibrio species in phosphate-buffered saline and in oysters to high-pressure processing. Journal of Food Protection 66,2276-2282.
    46. Cosentino S., Tuberoso C.I.G., Pisano B., Satta M., Mascia V., Arzedi E., Palmas F.,1999. In vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Letters in Applied Microbiology 29,130-135.
    47. Couvert O., Gaillard S., Savy N., Mafart P., Leguerinel I.,2005. Survival curves of heated bacterial spores:effect of environmental factors on Weibull parameters. International Journal of Food Microbiology 101,73-81.
    48. Croci L., Suffredini E., Cozzi L., Toti L.,2002. Effects of depuration of molluscs experimentally contaminated with E. coli, Vibrio cholerae O1 and Vibrio parahaemolyticus. Journal of Applied Microbiology 92,460-465.
    49. Cruz-Romero M., Smiddy M., Hill C., Kerry J.P., Kelly A.L.,2004. Effects of high pressure treatment on physicochemical characteristics of fresh oysters(Crassostrea gigas). Innovative food science & emerging technologies 5,161-169.
    50. CSPI (Center for Science in the Public Interest),2007. Outbreak Alert. http://www.cspinet.o rg/foodsafety/outbreak_alert.pdf.
    51. Dalgaard P., Buch P., Silberg S.,2002. Seafood spoilage predictor-development and distribution of a product specific application software. International Journal of Food Microbiology 73:343-349.
    52. Daniels N. A., MacKinnon L., Bishop R., Altekruse S., Ray B., Hammond R. M.,Thompson S., Wilson S., Bean N. H., Griffin P. M., Slutsker L.,2000. Vibrio parahaemolyticus infections in the United States,1973-1998. Journal of Infectious Disease 181,1661-1666.
    53. Davidson V.J., Ryks J.,2003. Comparison of Monte Carlo and Fuzzy math simulation models for quantitative microbial risk assessment. Journal of Food Protection 66,1900-1910.
    54. DePaola A., Ulaszek J., Kaysner C.A., Tenge B.J., Nordstrom J.L., Wells J., Puhr N., Gendel S.M., 2003. Molecular,serological, and virulence characteristics of Vibrio parahaemolyticus isolated from environmental, food, and clinical sources. Applied and EnvironmentalMicrobiology 69,3999-4005
    55. Devlieghere F., Vermeulen A., Debevere J.,2004. Chitosan:antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiology 21, 703-714.
    56. Diehl J.F.,2002. Food irradiation-past, present and future. Radiation Physics and chemistry 63, 211-215.
    57. EI-Khateib T., Yousef A., Ockerman H.W.,1993. Inactivation and attachment of Listeria monocytogenes on beef muscle treated with lactic acid and selected bacteriocins. Journal of Food Protection 56,29-33.
    58. EU (European Union).2004. Regulation (EC) No 852/2004 of the European Parliament and of the Council of 29 April 2004 on the hygiene of foodstuffs (including HACCP principles).
    59. FAO.2012. FAOSTAT-Food supply. (http://faostat.fao.org/site/610/default.aspx#ancor)
    60. FAO/WHO.,2003. Risk assessment of Vibrio spp. in seafood, (http://www.fao.org/docrep/00 8/y8145e/y8145e08.htm#bm08)
    61. Farber J., Ross W., Harwig J.,1996a. Health risk assessment of Listeria monocytogenes in Canada. International Journal of Food Microbiology 30,145-156.
    62. Farkas J.,1998. Irradiation as a method for decontaminating food:A review. International Journal of Food Microbiology 44,189-204.
    63. FDA.,2005. Quantitative risk assessment on the public health impact of pathogenic Vibrio parahaemolyticus in raw oysters. Silver Spring, MD
    64. FDA.2008. Code of Federal Regulations 21 CFR 173.300:Secondary direct food additives permitted in food for human consumption:Chlorine dioxide.
    65. FDA,2011. Chapter Ⅱ Risk Assessment & Risk Management. National Shellfish Sanitation Program (NSSP) Guide for the Control of Molluscan Shellfish.31pp. http://www.fda.gov/d ownloads/Food/GuidanceRegulation/FederalStateFoodPrograms/UCM350344.pdf
    66. FDA,2011. Code of Federal Regulations 21 CFR 184.1061:Lactic acid. http://www.accessd ata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cirsearch.cfm
    67. Fernandez, A., J. Collado, L. M. Cunha, M. J. Ocio, and A. Martinez.2002., Empirical model building based on Weibull distribution to describe the joint effect of pH and temperature on the thermal resistance of Bacillus cereus in vegetable substrate. International Journal of Food Microbiology 77:147-153.
    68. Fitzgerald GA., Conway W.S.,1937. Sanitation and quality control in the fishery industry. American Journal of Public Health and the Nations Health 27,1094-1101.
    69. Fujino T., Okuno Y., Nakada D. Aoyama A., Fukai K.,1953. On the bacteriological examination of shirasu-food poisoning. Med J Osaka Univ 4,299-304.
    70. Gao Y.L., Ju X.R.,2007. Statistical prediction of effects of food composition on reduction of Bacillus subtilis As 1.1731 spores suspended in food matrices treated with high pressure. Journal of Food Engineering 82,68-76.
    71. Geysen S., Geeraerd A.H., Verlinden E.B., Michiels W.C., Impe V.J.F., Nicolai M.B.,2005. Predictive modelling and validation of Pseudomonas fluorescens growth at superatmospheric oxygen and carbon dioxide concentrations. Food Microbiology 22,149-158.
    72. Gibson A. M., Bratchell N., Roberts T. A.,1987. The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. Journal of Applied Microbiology 62,479-490.
    73. Gonzalez M., Hanninen M.L.,2012. Effect of temperature and antimicrobial resistance on survival of Campylobacter jejuni in well water:application of the Weibull model. Journal of Applied Microbiology 113,284-293.
    74. Gooch J.A., DePaola A., Bowers J.,2002. Growth and survival of Vibrio parahaemolyticus in postharvest American oysters. Journal of Food Protection 65,970-974.
    75. Gould G.W.,1996. Methods for preservation and extension of shelf life. International Journal of Food Microbiology 33,51-64.
    76. Grijspeerdta K., Vanrolleghem P.,1999. Estimating the parameters of the Baranyi model for bacterial growth. Food Microbiology 16,593-605.
    77. Grove S.F., Lee A., Lewis T., Stewart C.M., Chen H.Q., Hoover D.G.,2006. Inactivation of foodborne viruses of significance by high pressure and other processes. Journal of Food Protection 69,957-968.
    78. Guentzel J.L., Lam K.L., Callan M.A., Emmons S.A., Dunham V.L.,2008. Reduction of bacteria on spinach, lettuce, and surfaces in food service areas using neutral electrolyzed oxidizing water. Food Microbiology 25,36-41
    79. Guevara L., Martinez A., Fernandez P.S., Munoz-Cuevas M.,2011. Comparison of probabilistic and deterministic predictions of time to growth of Listeria monocytogenes as affected by pH and temperatures in food. Foodborne Pathogens and Disease 8,141-148.
    80. Haas C.N.1983. Estimation of risk due to low doses of microorganisms:a comparison of alternative methodologies. American Journal of Epidemiology 118,573-582.
    81. Haas C.N., Rose J.B., Gerba C.P., Crockett C.S.,1997. What predictive food microbiology can learn from water microbiology? Food Technology 51,91-94.
    82. Han Y., Linton R.H., Nielsen S.S., Nelson P.E.,2001. Reduction of Listeria monocytogenes on green peppers (Capsicum annuum L.) by gaseous and aqueous chlorine dioxide and water washing and its growth at 7℃. Journal of Food Protection 64,1730-1738.
    83. Hao J., Liu H., Liu R., Dalai W., Zhao R., Chen T., Li L.,2011. Efficacy of slightly acidic electrolyzed water (SAEW) for reducing microbial contamination on fresh-cut cilantro. Journal of Food Safety 31,28-34.
    84. Hara-Kudo Y., Sugiyama K., Nishibuchi M., Chowdhury A., Yatsuyanagi J., Ohtomo Y., Saito A., Nagano H., Nishina T., Nakagawa H., Konuma H., Miyahara M., Kumagai S., 2003. Prevalence of pandemic thermostable direct hemolysin-producing Vibrio parahaemolyticus O3:K6 in seafood and the coastal environment in Japan. Applied and Enviromental Microbiology 69,3883-3891.
    85. Honda T., Shimizu M., Takeda Y., Minatani T.,1976. Isolation of a factor causing morphological changes of chinese hamster ovary cells from the culture filtrate of Vibrio parahaemolyticus. Infection and immunity 14,1028-1033
    86. Hong Y., Ku K., Kim M., Won M., Chung K., Song K.B.,2008. Survival of Escherichia coli O157.H7 and Salmonella typhimurium inoculated on chicken by aqueous chlorine dioxide treatment. Journal of Microbiology and Biotechnology 18,742-745.
    87. Hotta K.,2001. The use of acidic electrolyzed water for sanitary or hygienic measure in food and medical field. Food Processing & Ingredients 36,10-12.
    88. Hsiao C.P., Siebert K.J.,1999. Modeling the inhibitory effects of organic acids on bacteria. International Journal of Food Microbiology 47.189-201.
    89. Hu X., Mallikarjunan P., Koo J., Andrews L.S., Jahncke M.L.,2005. Comparison of kinetic models to describe high pressure and gamma irradiation used to inactivate Vibrio vulnificus and Vibrio parahaemolyticus prepared in buffer solution and in whole oysters. Journal of Food Protection 68. 292-295.
    90. Huang Y.R., Hung Y.C., Hsu S.Y., Huang Y.W., Hwang D.F.,2008. Application of electrolyzed water in the food industry. Food Control 19.329-345.
    91. Issa-Zacharia A., Kamitani Y. Miwa N., Muhimbula H., Iwasaki K.,2011. Application of slightly acidic electrolyzed water as a potential non-thermal food sanitizer for decontamination of fresh ready-to-eat vegetables and sprouts. Food Control 22.601-607
    92. Iwahori J., Yamamoto A., Suzuki H., Yamamoto T., Tsutsui T., Motoyama K.M., Sawada. T.M., Hasegawa A., Osaka K., Toyofuku H., Kasuga F.,2010. Quantitative risk assessment of Vibrio parahaemolyticus in finfish:A model of raw horse mackerel consumption in Japan. Risk Analysis 30,1817-1832.
    93. Jakabi M., Gelli D.S., Torre J.C.M.D., Rodas M.A.B., Franco B.D.G.M., Destro M.T., Landgraf M., 2003. Inactivation by ionizing radiation of Salmonella Enteritidis, Salmonella Infantis. and Vibrio parahaemolyticus in oysters (Crassostrea brasiliana). Journal of food protection 66,1025-1029.
    94. Jaykus L.A.1996. The application of quantitative risk assessment to microbial food safety risks. Critical reviews in microbiology 22,279-293.
    95. Ji H., Zhang L., Liu S., Qu X., Zhang C., Gao J.,2012. Optimization of microbial inactivation of shrimp by dense phase carbon dioxide. International Journal of Food Microbiology 156,44-49.
    96. Jiang S.C., Paul J.H.,1994. Seasonal and diel abundance of phages and occurrence of lysogeny/bacteriocinogeny in the marine environment. Marine Ecology Progress Series 104, 163-72.
    97. Jimenez-Villarreal J.R., Pohlman F.W., Johnson Z.B., Brown J.A.H., Baublits, R.T.,2003. The impact of single antimicrobial intervention treatment with cetylpyridinium chloride, trisodium phosphate, chlorine dioxide or lactic acid on ground beef lipid, instrumental color and sensory characteristics. Meat Science 65,977-984.
    98. Kaneko T, Colwell R.R.,1973. Ecology of Vibrio parahaemolyticus in Chesapeake Bay. Joural of Bacteriology 13,24-32.
    99. Kaur B.P., Kaushik N., Rao P.S., Chauhan O.P.,2012. Effect of high-pressure processing on physical, biochemical, and microbiological characteristics of black tiger shrimp (Penaeus monodon). Food and Bioprocess Technology (in press); available on-line, DOI 10.1007/s 11947-012-0870-1.
    100. Kim H.J., Ha J.H., Kim S.W., Jo C., Park J.Y., Ha S.D.,2011. Effects of combined treatment of sodium hypochlorite/ionizing radiation and addition of Vitamin B1 on microbial flora of oyster and short-necked clam. Foodborne Pathogens and Disease 8.825-830.
    101. Kim J.M., Huang T.S., Marshall M.R., Wei C.I.,1999. Chlorine dioxide treatment of seafoods to reduce bacterial loads. Journal of Food Science 64,1089-1093.
    102. Kim M.M.,2002. Food irradiation-US regulatory considerations. Radiation Physics and Chemistry 63,281-284.
    103. Kitiyodom S., Khemtong S., Wongtavatchai J., Chuanchuen R.,2010. Characterization of antibiotic resistance in Vibrio spp. isolated from farmedmarine shrimps (Penaeus monodon). FEMS Microbiology Ecology 72,219-227.
    104. Kiura H., Sano K., Morimatsu S., Nakano T., Morita C., Yamaguchi M.,2002. Bactericidal activity of electrolyzed acid water from solution containing sodium chloride at low concentration, in comparison with that at high concentration. International Journal of Microbiological Methods 49, 285-293.
    105. Kong M., Guang X., Chen K.X., Hyun J.P.,2010. Antimicrobial properties of chitosan and mode of action:A state of the art review. International Journal of Food Microbiology 144,51-63.
    106. Koseki S., Yamamoto K.,2007. A novel approach to predicting microbial inactivation kinetics during high pressure processing. International Journal of Food Microbiology 116,275-282.
    107. Koseki S., Yoshida K., Isobe S., Itoh K.,2001. Decontamination of lettuce using acidic electrolyzed water. Journal of Food Protection 64,652-658.
    108. Kumar M.N.V.,2000. A review of chitin and chitosan applications. Reactive & Functional Polymers 46,1-27.
    109. Kumirska J., Weinhold M.X., ThOming J., Stepnowski P.,2011. Biomedical activity of chitin/chitosan based materials-Influence of physicochemical properties apart from molecular weight and degree of N-acetylation. Polymers 3,1875-1901.
    110. Kural A.G., Adrienne E.H. S., David H.K., Chen H.Q.,2008. Conditions for high pressure inactivation of Vibrio parahaemolyticus in oysters. International Journal of Food Microbiology 127, 1-5.
    111. Kusumaningrum H.D., Van Asselt E.D., Beumer R.R., Zwietering M.H.,2004. A quantitative analysis of cross-contamination of Salmonella and Campylobacter spp. via domestic kitchen surfaces. Journal of Food Protection 67,1892-1903.
    112. Kwak T.Y., Kim N.H., Rhee M.S.,2011. Response surface methodology-based optimization of decontamination conditions for Escherichia coli O157:H7 and Salmonella Typhimurium on fresh-cut celery using thermoultrasound and calcium propionate. International Journal of Food Microbiology 150,128-135.
    113. Lahlali R., Massart S., Serrhini M.N., Jijakli M.H.,2008. A Box-Behnken design for predicting the combined effects of relative humidity and temperature on antagonistic yeast population density at the surface of apples. International Journal of Food Microbiology 122,100-108.
    114. Laohaprertthisan V., Chowdhury A., Kongmuang U., Kalnauwakul S., Ishibashi M., Matsumoto C., Nishibuchi M.,2003. Prevalence and serodiversity of the pandemic clone among the clinical strains of Vibrio parahaemolyticus isolated in southern Thailand. Epidemiology and Infection 130. 395-406.
    115. Lee H., Zhou B., Liang W., Feng H., Martin S.E.,2009. Inactivation of Escherichia coli cells with sonication. manosonication. thermosonication. and manothermosonication:microbial responses and kinetics modeling. Journal of Food Engineering 93.354-364.
    116. Len S.V., Hung Y.C., Erickson M., Kim C.2000. Ultraviolet spectrophotometric characterization and bactericidal properties of electrolyzed oxidizing water as influenced by amperage and pH. Journal of Food Protection 63.1534-1537.
    117.LeOn LA. Torres J, Osorio RC. Urtaza JM.2003. Identifcation of tdh-positive Vibrio parahaemolyticus from an outbreak associated with raw oyster consumption in Spain. FEMS Microbiology Letters 223.281-284.
    118. Li M., Pradhan K.A., Cooney L., Mauromoustakos A., Crandall P.. Slavik M., Li Y.,2011. A predictive mdoel for the inactivation of Listeria innocua in cooked poultry products during postpackage pasteurization. Journal of Food Protection 74,1261-1267.
    119. Liao L.B., Chen W.M., Xiao X.M..2007. The generation and inactivation mechanism of oxidation-reduction potential of electrolyzed oxidizing water. Journal of Food Engineering 78, 1326-1332.
    120. Lin C-M., Moon, S.S., Doyle M.P.. McWatters K.H.2002. Inactivation of Escherichia coli O157:H7, Salmonella enterica Serotype Enteritidis, and Listeria monocytogenes on lettuce by hydrogen peroxide and lactic acid and by hydrogen peroxide with mild heat. Journal of Food Protection 65,1215-1220.
    121. Lin Y.T., Labbe R.G., Shetty K.,2005. Inhibition of Vibrio parahaemolyticus in seafood systems using oregano and cranberry phytochemical synergies and lactic acid. Innovative Food Science and Emerging Technologies 6,453-458.
    122. Linton R. H., Carter W. H., Pierson M. D., Hackney C. R.,1995. Use of a modified Gompertz equation to model nonlinear survival curves for Listeria monocytogenes Scott A. Journal of Food Protection 58,946-954.
    123. Liu W.W., Shen X.S., Liu C.C., Su Y.C.,2010. Vibrio parahaemolyticus in granulated ark shell clam(Tegillarca granosas):accumulation from water and survival during cold storage and thermal process. International Journal of Food Science and Technology 45,670-675.
    124. Long B.L., Wei M.C., Xian M.X.,2007. The generation and inactivaiotn mechanism of oxidation-reduction potential of electrolyzed oxidizing water. Journal of Food Engineering 78, 1326-1332.
    125. Lopez-Caballero M.E., Gomez-Guillen M.C., Perez-Mateos M.. Montero P.,2005. A functional chitosan-enriched fish sausage treated by high pressure. Journal of Food Science 70,166-171.
    126. Loretz M., Stephan R., Zweifel C,2010. Antimicrobial activity of decontamination treatments for poultry carcasses:A literature survey. Food Control 21,791-804.
    127. Ma L., Su Y.C.,2011. Validation of high pressure processing for inactivating Vibrio parahaemolyticus in Pacific oysters (Crassostrea gigas). International Journal of Food Microbiology 144,469-474.
    128. Mafart P., Couvert O., Gaillard S., Leguerinel I.,2002. On calculating sterility in thermal preservation methods:application of the Weibull frequency distribution model. International Journal of Food Microbiology 72:107-113.
    129. Mahmou B.S.M., Burrage D.D.,2009a. Inactivation of Vibrio parahaemolyticus in pure culture, whole live and half shell oysters (Crassostrea virginica) by X-ray. Letters in Applied Microbiology 48,572-578.
    130. Mahmoud B.S.M.,2009b. Effect of X-ray treatments on inoculated Escherichia coli 0157:H7, Salmonella enterica, Shigella flexneri and Vibrio parahaemolyticus in ready-to-eat shrimp. Food Microbiology 26,860-864.
    131.Mahony J., Auliffe O.M., Ross R.P., Sinderen D.V.,2011. Bacteriophages as biocontrol agents of food pathogens. Current Opinion in Biotechnology 22,157-163.
    132. Mani-Lopez E., Garciaa H.S., L6pez-Malo A.,2012. Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Research International 45,713-721.
    133. Marshall D.L., Kim R.C.,1995. Microbiological and sensory analysis of refrigerated catfish fillets treated acetic and lactic acids. Journal of Food Quality 19,317-329.
    134. Martin M.F.S., Canovas G.V.B., Swanson B.G.,2002. Food processing by high hydrostatic pressure. Critical Reviews in Food Science and Nutrition 42,627-645.
    135. Mason T. J. (ed.).1999. Advances in sonochemistry. Fifth Edition. JAI Press. Stamford, CT.
    136. Matthew E., Levison M.D.,2004. Pharmacodynamics of antimicrobial drugs. Infectious Disease Clinics of North America 18,451-465.
    137. McClements D.J.,1995. Advances in the application of ultrasound in food analysis and processing. Trends in food science & technology 6,293-299.
    138. McClure P.J., de Blackburn C. W., Cole M. B., Curtis P. S., Jones J. E., Legan J. D., Ogden I. D., Peck M. W., Roberts T. A., Sutherland J. P., Walker S. J.,1994. Modelling the growth, survival and death of microorganisms in foods:the UK Food micromodel approach. International Journal of Food Microbiology 23,265-275.
    139. McDonald K., Sun D.W.,1999. Predictive food microbiology for the meat industry:a review. International Journal of Food Microbiology 52,1-27.
    140. McKellar R.C., and Lu, X. (ed.).2004. Modeling Microbial Responses in Food, CRC Press, Boca Raton, FL.
    141. McMeekin T.A., Brown J., Krist K., Miles D., Neumeyer K., Nichols D.S., Olley J., Presser K., Ratkowsky D.A., Ross T., Salter M., Soontranon S.,1997. Quantitative microbiology:a basis for food safety. Emerging Infection Disease 3,541-550.
    142. Mejlholm O,, Tina D.D., Paw D.,2012. Effect of brine marination on survival and growth of spoilage and pathogenic bacteria during processing and subsequent storage of ready-to-eat shrimp (Pandalus borealis). International Journal of Food Microbiology 157.16-27.
    143. Miles D.W. Ross T.. Olley J..1997. Development and evaluation of a predictive model for the effect of temperature and water activity on the growth rate of Vibrio parahaemolyticus. International Journal of Food Microbiology 16.133-142.
    144. Minami A., Chaicumpa W.. Manas C.N.. Samosornsuk S.. Monden S., Takeshi K.. Makino S.. Kawamoto K.,2010. Prevalence of foodborne pathogens in open markets and supermarkets in Thailand. Food Control 21.221-226.
    145. Miyamoto Y., Kato T., Obara Y.,Akiyama S., Takizawa K., Yamai S., In vitro hemolytic characteristic of Vibrio parahaemolyticus:Its close correlation with human pathogenicity. Journal of Bacteriology 100,1147-1149.
    146. Monod J.,1949. The growth of bacterial growth. Annual review of microbiology 3.371-394.
    147. Montville R., Schaffner D.,2005. Monte Carlo simulation of pathogen behavior during the sprout production process. Applied Enviromental Microbiology 71,746-753.
    148. Murchie L.W.. Malco C.R., Joseph P.K.. Mark L., Margaret F.P., Mary S., Alan L.K..2005. High pressure processing of shellfish:A review of microbiological and other quality aspects. Innovative Food Science and Emerging Technologies 6,257-270.
    149.Niamnuy C. Devahastin S., Soponronnarit S..2007. Quality changes of shrimp during boiling in salt solution. Journal of Food Science 72,289-297.
    150. No H.K., Meyers S.P., Prinyawiwatkul W., Xu Z.,2007. Applications of chitosan for improvement of quality and shelf life of foods:A review. Journal of Food Science 72,87-100.
    151.Norhana W.M.N., Poole E.S., Deeth C.H., Dykes A.G.,2010. Prevalence, persistence and control of Salmonella and Listeria in shrimp and shrimp products:A review. Food Control 21,343-361.
    152. Notermans S., Mead G.C.,1996. Incorporation of elements of quantitative risk analysis in the HACCP system. International Journal of Food Microbiology 30,157-173.
    153. Oomori T., Oka T., Inuta T.,2000. The efficiency of disinfection of acidic electrolyzed water in the presence of organic materials. Analytical Science 16,365-369.
    154. Owusu Y.J., Toth J.P., Wheeler W.B., Wei C.I.,1990. Mutagenicity and identification of the reaction products of aqueous chlorine or chlorine dioxide with L-tryptophan. Journal of Food Science 55.1714-1719.
    155. Pao S., Kelsey D.F., Khalid M.F., Ettinger M.R.,2007. Using aqueous chlorine dioxide to prevent contamination of tomatoes with Salmonella enterica and Erwinia carotovora during fruit washing. Journal of Food Protection 70,629-634.
    156. Papineau A.M., Hoover D.G., Knorr D., Farkas D.F.,1991. Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure. Food Biotechnology 5,45-57.
    157. Park C.M.. Hung Y.C., Doyle M.P., Ezeike G.O.I., Kim C.,2001. Pathogen reduction and quality of lettuce treated with electrolyzed oxidizing and acidified chlorinated water. Journal of Food Science 66,1368-1372.
    158. Peleg, M.1997. Modeling microbial populations with the original and modified versions of the ontinuous and discrete logistic equations. Critical Reviews in Food Science and Nutrition 37, 471-490.
    159. Peleg M., Cole M. B.,1998. Reinterpretation of microbial survival curves. Critical Reviews in Food Science and Nutrition 38,353-380.
    160. Pina-Perez M.C., Garcia-Fernandez M.M., Rodrigo D., Martinez-Lopez A.,2010. Monte Carlo simulation as a method to determine the critical factors affecting two strains of Escherichia coli inactivation kinetics by high hydrostatic pressure. Foodborne Pathogen and Disease 7,459-466.
    161. Piyasena P., Mohareb E., McKellar R.C.,2003. Inactivation of microbes using ultrasound:a review. International Journal of Food Microbiology 87,207-216.
    162. Prakash A., Inthajak P., Huibregtse F., Caporaso F., Foley D.M.,2000. Effects of low-dose gamma irradiation and conventional treatments on shelf life and quality characteristics of diced celery. Journal of Food Science 65,1070-1075.
    163. Pruitt K. M., Kamau D. N.,1993. Mathematical models of bacterial growth, inhibition and death under combined stress conditions. Journal of Industrial Microbiology 12,221-231.
    164. Puente M.E., Villasante V.F., Holguin G., Bashan Y.,1992. Susceptibility of the brine shrimp Artemia and its pathogen Vibrio parahaemolyticus to chlorine dioxide in contaminated sea-water. Journal of Applied Microbiology 73,465-471
    165. Quan Y., Choi K.D., Chung D., Shin I.S.,2010. Evaluation of bactericidal activity of weakly acidic electrolyzed water (WAEW) against Vibrio vulnificus and Vibrio parahaemolyticus. International Journal of Food Microbiology 136:255-260.
    166. Rabea E.I., Mohamed E.T.B., Christian V.S., Guy S., Walter S.,2003. Chitosan as antimicrobial agent:applications and mode of action. Biomacromolecules 4,1457-1465.
    167. Ray B., Hawkins S.M., Hackney C.R.,1978. Method for the detection of injured Vibrio parahaemolyticus in seafoods. Applied Environmental Microbiology 35,1121-1127.
    168. Ren T., Su Y.C.,2006. Effects of electrolyzed oxidizing water treatment on reducing Vibrio parahaemolyticus and Vibrio vulnificus in raw oysters. Journal of Food Protection 69:1829-1834.
    169. Ricke S.C.,2003. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Science 82,632-639.
    170. Rodriguez-Castro A., Ansede-Bermejo J., Blanco-Abad V., Varela-Pet J., Garcia-Martin O., Martinez-Urtaza J.,2010. Prevalence and genetic diversity of pathogenic populations of Vibrio parahaemolyticus in coastal waters of Galicia, Spain. Environmental Microbiology Reports 2, 58-66.
    171. Roller S., Corvill N.,2000. The antimicrobial properties of chitosan in mayonnaise and mayonnaise-based shrimp salads. Journal of Food Protection 63,202-209.
    172. Romero M.C., Smiddy M., Hill C., Kerry J.P., Kelly A.L.,2004. Effects of high pressure treatment on physicochemical characteristics of fresh oysters (Crassostrea gigas). Innovative Food Science and Emerging Technologies 5.161-169.
    173. Rose J.B., Haas C.N.,1999. A risk assessment framework for the evaluation of skin infections and the potential impact of antibacterial soap washing. American journal of infection control.27. 26-33.
    174. Ross T.,1996. Indices for performance evaluation of predictive models in food microbiology. Journal Applied of Bacteriology 81.501-508.
    175. Ross T., McMeekin T. A.,2003. Modeling microbial growth within food safety risk assessments. Risk Analysis 23.179-197.
    176.Russo M., Galletti C.G., Bocchini P., Carnacini A.,1998. Essential oil chemical composition of wild populations of Italian oregano spice (Origanum vulgare ssp. hirtum (Link) letswaart):A preliminary evaluation of their use in chemotaxonomy by cluster analysis:1. Inflorescences. Journal of Agricultural and Food Chemistry 46,3741-3746.
    177. Sakurai Y., Nakatsu M., Sato Y., Sato K,2003. Endoscope contamination from HBV-and HCV-positive patients and evaluation of a cleaning/disinfecting method using strongly acidic electrolyzed water. Digestive Endoscopy 15,19-24.
    178.Sala F.J., Burgos J., Condon S., Lopez P., Raso J.,1995. Effect of heat and ultrasound on microorganisms and enzymes, p.176-204. In G. W. Gould (ed.), New Methods of Food Preservation. St Edmunsbury Press, London.
    179. Sampedro F., Rodrigo D., Martinez A.,2011. Modelling the effect of pH and pectin concentration on the PEF inactivation of Salmonella enterica serovar Typhimurium by using the Monte Carlo simulation. Food Control 22,420-425.
    180. Senatore F.,1996. Influence of harvesting time on yield and composition of the essential oil of a thyme (Thymus pulegioides L.) growing wild in Campania (Southern Italy). Journal of Agricultural and Food Chemistry 44,1327-1332.
    181. Shams A.M., Connell H.O., Arduino M.J., Rose L.J.,2011. Chlorine dioxide inactivation of bacterial threat agents. Letters in Applied Microbiology 53,225-230.
    182. Shen X.S., Cai Y.Q., Liu C.C., Liu W.W., Hui Y.H., Su Y.C.,2009. Effect of temperature on uptake and survival of Vibrio parahaemolyticus in oysters (Crassostrea plicatula). International Journal of Food Microbiology 136,129-132.
    183. Shigehisa T., Ohmori T., Saito A., Taji S., Hayashi R.,1991. Effects of high pressure on the characteristics of pork slurries and inactivation of microorganisms associated with meat and meat products. International Journal of Food Microbiology 12,207-216.
    184. Shimizu Y., Hurusawa T.,1992. Antiviral, antibacterial, and antifungal actions of electrolyzed oxidizing water through electrolysis. Dental Journal 37,1055-1062.
    185. Shirazinejad A., Ismail N., Bhat R.,2010. Lactic acid as a potential decontaminant of selected foodborne pathogenic bacteria in shrimp (Penaeus merguiensis de Man). Foodborne Pathogens and Disease 7,1531-1536.
    186. Silva L.V.A.D.,2005. Control of Vibrio vulnificus and Vibrio parahaemolyticus in Oysters. M.S., Louisiana State University.
    187. Singh N., Singh R.K., Bhunia A.K., Stroshine R.L.,2002. Effect of inoculation and washing methods on the efficacy of different sanitizers against Escherichia coli O157:H7 on lettuce. Food Microbiology 19,183-193.
    188. Skandamis P., Nychas E.G.,2000. Development and evaluation of a model predicting the survival of Escherichia coli O157:H7 NCTC 12900 in homemade eggplant salad at various temperatures, pHs, and oregano essential oil concentrations. Applied and Environmental Microbiology 66, 1646-1653.
    189. Son N.T., Fleet G.H.,1980. Behavior of pathogenic bacteria in the oyster, Crassostrea commercialis, during depuration, relaying, and storage. Applied and Environmental Microbiology 40,994-1002.
    190. Song H.P., Kim B., Jung S., Choe J.H., Yun H., Kim Y.J., Jo C.,2009a. Effect of gamma and electron beam irradiation on the survival of pathogens inoculated into salted, seasoned, and fermented oyster. Food Science and Technology 42,1320-1324.
    191. Song H.P., Kim B., Yun H., Kim D.H., Kim Y.J., Jo C.,2009b. Inactivation of 3-strain cocktail pathogens inoculated into Bajirak jeotkal, salted, seasoned, and fermented short-necked clam (Tapes pilippinarum), by gamma and electron beam irradiation. Food Control 20,580-584
    192. Stewart C.M., Cole M.B., Schaffner D.W.,2003. Managing the risk of staphylococcal food poisoning from cream-filled baked goods to met a food safety objective. Journal of Food Protection 66,1310-1325
    193. Styles M.F., Hoover D.G, Farkas D.F.,1991. Response of Listeria monocytogenes and Vibrio parahaemolyticus to high hydrostatic pressure. Journal of Food Science 56,1404-1407.
    194. Su Y. C., Liu C.,2007. Vibrio parahaemolyticus:A concern of seafood safety. Food Microbiology 24,549-558.
    195. Su Y.C., Yang Q.R., Hase C.,2010. Refrigerated seawater depuration for reducing Vibrio parahaemolyticus contamination in pacific oyster(Crassostrea gigas). Journal of Food Protection 73,1111-1115.
    196. Sudarshan N.R., Hoover D.G., Knorr D.,1992. Antibacterial action of chitosan. Food Biotechnology 6,257-272.
    197. Tangkanakul W., Tharmaphornpilas P., Datapon D., Sutantayawalee S.,2000. Food poisoning outbreak from contaminated fish-balls. Journal of the Medical Association of Thailand 83, 1289-1295.
    198. Tauxe R.V.,2001. Food safety and irradiation:Protecting the public from foodborne infections. Emerging Infectious Disease 7,516-521.
    199. Teplitski M., Wright A.C., Lorca G.,2009. Biological approaches for controlling shellfish-associated pathogens. Current Opinion in Biotechnology 20.185-190.
    200. Terzi G., Gucukoglu A..2010. Effects of lactic acid and chitosan on the survival of V. parahaemolyticus in mussel samples. Journal of Animal Veterinary Advances 9.990-994.
    201. Teunis P.F.M., Havelaar A.,2000. The Beta Poisson dose-response model is not a single-hit model. Risk Analysis 20.513-520.
    202. Ugarte-Romero E., Feng H., Martin S.,2007. Inactivation of Shigellaboydii 18IDPH and Listeria monocytogenes Scott A with power ultrasound at different acoustic energy densities and temperatures. Journal of Food Science 72,103-107.
    203. Ugarte-Romero E., Feng H., Martin S.E., Cadwallader K.R.. Robinson S.J.,2006. Inactivation of Escherichia coli with power ultrasound in apple cider. Journal of Food Science 71.102-108.
    204. US Environmental Protection Agency.2000. Toxicological review of chlorine dioxide and chlorite. EPA/635/R-00/007.
    205. US FDA,2011.21 CFR Part 179.26. Ionizing radiation for the treatment of food.
    206. Van Boekel M.A.J.S.,2002. On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. International Journal of Food Microbiology 74:139-159.
    207. Van Gerwen, S. J. C., and M. H. Zwietering.1998. Growth and inactivation models to be used in quantitative risk assessments. Journal of Food Protection 61,1541-1549.
    208. Van Impe J. F., Poschet F., Geeraerd A. H., Vereecken K. M.,2005. Towards a novel class of predictive microbial growth models. International Journal of Food Microbiology 100,97-105.
    209. Vasudevan P., Marek P., Daigle S., Hoagland T., Venkitanarayanan K.S.,2002. Effect of chilling and freezing on survival of Vibrio parahaemolyticus on fish fillets. Journal of Food Safety 22, 209-217.
    210. Venkitanarayanan K.S., Lin C-M., Bailey H., Doyle M.P.,2002. Inactivation of Escherichia coli O157:H7, Salmonella Enteritidis, and Listeria monocytogenes on apples, oranges, and tomatoes by lactic acid with hydrogen peroxide. Journal of Food Protection 65,100-105.
    211. Vuddhakul V., Bhoopong P., Hayeebilan F., Subhadhirasakul S.,2007. Inhibitory activity of Thai condiments on pandemic strain of Vibrio parahaemolyticus. Food Microbiology 24,413-418.
    212. Wang A.B., Li J.R., Lin J.D.,2008. Probiotics in aquaculture:Challenges and outlook. Aquaculture 281,1-4.
    213. Wang D.P., Zhang D.D., Chen W.Y., Yu S.J., Shi X.M.,2010. Retention of Vibrio parahaemolyticus in oyster tissues after chlorine dioxide treatment. Journal of Food Microbiology 137,76-80.
    214. Wang J., Hu X., Wang Z.,2010. Kinetics models for the inactivation of Alicyclobacillus acidiphilus DSM14558T and Alicyclobacillus acidoterrestris DSM 3922T in apple juice by ultrasound. International Journal of Food Microbiology 139:177-181.
    215. Whiting, R. C.1995. Microbial modeling in foods. Critical Reviews in Food Science and Nutrition 35,467-494.
    216. Whiting R. C., Buchanan R.L.,1994. Microbial modeling. Food Technology 48,113-120.
    217. Whiting R.C., Buchanan R.L.,2001. Predictive modeling and risk assessment, in Doyle, M. P. Food Microbiology:Fundamentals and frontiers. ASM press, Washington, DC,813-831.
    218. WHO/FAO,2007. Report of the thirty-eighth session of the Codex Committee on food hygiene. Joint FAO/WHO Food Standards Programme. Rome, Italy.21pp. http://www.codexalimentarius.net/input/download/report/671/a130_13e.pdf
    219. Wu V.C.H., Kim B.,2007. Effect of a simple chlorine dioxide method for controlling five foodborne pathogens, yeast and molds blueberries. Food Microbiology 24,794-800.
    220. Xi D.,2011. Application of probiotics and green tea extract in post-harvest processes of Pacific oysters(Crassostrea gigas) for reducing Vibrio parahaemolyticus and extending shelf life. M.S. Theses. Oregon State Unversity.
    221. Xie J.2011. Physicochemical properties and bactericidal activities of acidic electrolyzed water used or stored at different temperatures on shrimp, Food Research International 47:331-336.
    222. Xiong R., Xie G., Edmondson A. S., Sheard M. A.,1999. A mathematical model for bacterial inactivation. International Journal of Food Microbiology 46:45-55.
    223. Xiong R., Xie G., Edmondson A.S., Linton R.H., Sheard M.A..1999. Comparison of the Baranyi model with the modified Gompertz equation for modelling thermal inactivation of Listeria monocytogenes Scott A. Food Microbiology 16.269-279.
    224. Yamamoto A., Iwahori J., Vuddhakul V., Charenijiratragul W., Vose D., Osaka K., Shigematsu M., Toyofuku H., Yamamoto S., Nishibuch M., Kasuga F.,2008. Quantitative modeling for risk assessment of Vibrio parahaemolyticus in bloody clams in southern Thailand. International Journal of Food Microbiology,124,70-78.
    225. Yang Z., Jiao X., Zhou X., Cao G., Fang W., Gu R.,2008. Isolation and molecular characterization of Vibrio parahaemolyticus from fresh, low-temperature preserved, dried, and salted seafood products in two coastal areas of eastern China. International Journal of Food Microbiology 125, 279-285.
    226. Yang Z., Jin C., Gao L., Fang W., Gu R., Qian J., Jiao X.,2013. Alleviating effects of Lactobacillus strains on pathogenic Vibrio parahaemolyticus-induced intestinal fluid accumulation in the mouse model. International FEMS Microbiology Letters 339,30-38.
    227. Yang Z.Q., Jiao X.A., Li P., Pan Z.M., Huang J.L., Gu R.X., Fang W.M., Chao G.X.,2009. Predictive model of Vibrio parahaemolyticus growth and survival on salmon meat as a function of temperature. Food Microbiology 26,606-614.
    228. Yano Y., Satomi M., Oikawa H.,2006. Antimicrobial effect of spices and herbs on Vibrio parahaemolyticus. International Journal of Food Microbiology 111,6-11.
    229. Ye M., Neetao H., Chen H.,2008. Effectiveness of chitosan coated plastic films incorporating antimicrobials in inhibition of Listeria monocytogens on cold-smoked salmon. International Journal of Food Microbiology 127,235-240.
    230. Yoon K.S., Min K.J., Jung Y.J., Kwon K.Y., Lee J.K., Oh S.W.,2010. A model of the effect of temperature on the growth of pathogenic and nonpathogenic Vibrio parahaemolyticus isolated from oysters in Korea. Food Microbiology 25,635-641.
    231. Young D.H. Kohle H., Kauss H.,1982. Effect of chitosan on membrane permeability of suspension cultured Glycine max and Phaseolus vulgaris cells. Plant Physiology 70,1449-1454.
    232. Young K.M., Foegeding P.M.,1993. Acetic, lactic and citric acids and pH inhibition of Listeria monocytogenes Scott A and the effect on intracellular pH. The Journal of Applied Bacteriology 74, 515-520.
    233. Zarei M., Borujeni M.P., Jamnejad A., Khezrzadeh M.,2012. Seasonal prevalence of Vibrio species in retail shrimps-with an emphasis on Vibrio parahaemolyticus. Food Control 25,107-109.
    234. Zhang C., Lu Z., Li Y, Shang Y. Zhang G., Cao W., 2010. Reduction of Escherichia coli O157:H7 and Salmonella enteritidis on mung bean seeds and sprouts by slightly acidic electrolyzed water. Food Control 22,792-796
    235. Zhang J.Y., Mei L.L., Zhu M., Zhang Y.J., Pan X.X., Shi Y.S., Zheng G.Z.,2007. Quantitative inspection and analysis of Vibrio parahaemolyticus contamination in 301 seafoods. Chinese Journal of Health Laboratory Technology 17,509-510.
    236. Zwietering M. H., Jongenburger I., Rombouts F. M., Van't Riet K.,1990. Modeling of bacterial growth curve. Applied Environmental Microbiology 56.1875-1881.
    237.鲍善芬,赵霖,李珍,丛涛,郑子新,陈贵堂,邹海明.2007.2004年北京地区居民膳食调查.中国食品学报,7(3),9-17.
    238.陈艳,刘秀梅.2006.福建省零售生食牡蛎中副溶血性弧菌的定量危险性评估.中国食品卫生杂志,18(2),103-109.
    239.何晖,邓庆丽,李秀珍.2007.检测水产品食物中副溶血性弧菌基因分型方法的建立.热带医学杂志,7(11),1085-1087
    240.胡连花,王雅玲,刘阳,孙力军.2011.海产品中副溶血性弧菌防控技术研究进展.食品工业科技,32,424-430.
    241.黄和,蒋志红,雷晓凌等,2009.冻熟虾中副溶血性弧菌生长模型.广东海洋大学学报,29(1),95-99.
    242.姬华,2012.对虾中食源性弧菌预测模型建立及风险评估.博士论文,江南大学。
    243.姬华,韩海红,王洪新,刘秀梅.2009.副溶血弧菌预测模型与风险评估的研究进展.食品工业科技,30(5),346-352
    244.金培婕,吴蓓蓓,王淑娜,俞盈,钱永华,方维焕.2009.浙江沿海地区海产品及环境中副溶血弧菌的分离与主要毒力基因分析.微生物学报,36(7),962-967.
    245.赖晓华,肖新才,刘文祥,蒋卓勤.2010.广州珠江河口地区水体中副溶血弧菌定量研究.华南预防医学.36(3),5-8.
    246.雷林,周海滨,熊静帆,徐健,彭绩,刘小立.2011.深圳居民膳食结构与膳食营养素摄入状况研究.华南预防医学,37(1),25-28.
    247.刘弘,郭常义,高围,施爱珍,姜培珍,宓铭,宋峻,陈敏,邹淑蓉,程旻娜.2006.2002年上海市居民营养与健康状况调查,23(6),457-465.
    248.刘秀梅,程苏云,陈艳,袁宝君,戴建华,马群飞,戴昌芳,严纪文.2005.2003年中国部分沿海地区零售贝类中副溶血性弧菌污染状况的主动监测.第一届ICMSF—中国国际食品安全会议论文选登,97-99.
    249.刘媛,方春,程昌勇,方维焕.2013.虾仁中副溶血弧菌灭活动力学模型的建立.微生物学报53(1),31-37
    250.卢晓凤,张培正,李远钊.2006.2% NaCl TSB及单冻煮蛤肉中副溶血性弧菌生长模型的建立及应用.中国食物与营养,9,24-27.
    251.陆承平.兽医微生物学.北京:中国农业出版社2002.
    252.毛雪丹,胡俊峰,刘秀梅.2010.2003-2007年中国1060起细菌性食源性疾病流行病学特征分析.中国食品卫生杂志,22(3),224-228.
    253.宁芊,李寿菘,陈守平.2010.文蛤中副溶血性弧菌的风险评估.现代食品科技,26(11),1259-1263.
    254.邵玉芳,汪雯,章荣华,姚仙珍,应义斌.2010.浙江省生食牡蛎中副溶血性弧菌的风险评估.中国食品学报,10(3),193-199.
    255.石阶平,史贤明,岳田利(译).食品中微生物风险评估.北京:中国农业大学出版社,2007年。
    256.田金玲,黄和,励建荣,2010.模拟蟹肉中副溶血性弧菌预测生长预测模型的建立.食品工业科技,9,150-152.
    257.田明胜,郑雷军,彭少杰,李洁,张磊,戚柳彬,赵宇翔.2008.2000-2007年上海市副溶血性弧菌致集体性食物中毒分析及对策.中国食品卫生杂志,20(6),514-517.
    258.王玲芬,赵素莲,梁京辉.2006.全国2000-2005年重大食物中毒情况分析.中国卫生监督杂志,13(4),280-284.
    259.王璐华,宁喜斌.2009.副溶血性弧菌的温度预测模型.食品与生物技术学报,28,262-266.
    260.王世杰,杨杰,谌志强,张伟,李君文.2006.1994-2003年我国766起细菌性食物中毒分析。中国预防医学杂志,7(3),180-184.
    261.王文清,陈红梅,张选明,等.2008.酸性氧化电位水制备和杀菌机理的研究进展.现代化工,28,24-28.
    262.杨斌,潘先海,李永忠,陈燕秋,翟凤英.2009.海南省居民膳食结构与膳食营养素摄入状况研究.中国热带医学,9(9),1673-1692.
    263.杨振泉,焦新安.2008.不同副溶血性弧菌的分子鉴别与生长动力学模型比较.中国人兽共患 病学报,24(3).210-215.
    264.俞汀.2005.浙江省1992-2004年食物中毒分析.浙江预防医学,9(17),26-27.
    265.翟凤英,何字纳.马冠生.李艳平.王志宏.胡以松,赵丽云,崔朝辉,李园,杨晓光.2005.中国城乡居民食物消费现状及变化趋势.中华流行病学杂志,26(7),485-488.
    266.张俊彦,梅玲玲,朱敏,张严峻,潘雪霞,石雅素,郑官增.2007.301份海水产品副溶血性弧菌定量检测分析.中国卫生检验杂志,17(3),509-510.
    267.张学辉,马军,邓桦.2010.酸性氧化电位水技术研究现状与展望.医疗卫生装备,31(8),45-52
    268.赵艳荣,王臻,刘碧瑶,曾蓓蓓,陈慧萍,蒋庭魁.2012.2006-2011年浙江省食物中毒事流行病学特征和趋势分析.疾病监测,27(4),307-310.
    269.周向阳,王淑娜,周秀锦,方维焕.2011.沿海地区副溶血弧菌的表型及其主要毒力基因分布特征.华北农学报,26(1),192-195.
    270.朱志伟,李保明,李永玉,尚宇超,王朝元,曹薇.2010.中性电解水对鸡蛋表面的清洗灭菌效果.农业工程学报,26(3),358-362.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700