继电保护静态特性监视及隐藏故障诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
继电保护系统的隐藏故障是造成大规模停电事故的罪魁祸首之一。此类事故一旦发生必将引起电网的连锁反应,给电网带来灾难性的后果。随着互联系统网络容量的增大和电压等级的提高,继电保护隐藏故障也更将危及到电网的安全,因此对隐藏故障进行评估和分析对于保证电网的安全运行具有重要的理论和现实意义。而从技术潮流来看,防止继电保护系统隐藏故障的有效途径是建立隐藏故障的监视和控制系统。
     随着通信和计算机技术的发展,继电保护信息系统和广域测量系统的建设正在快速进行。这些信息的集成,为继电保护隐藏故障的诊断提供了可用的信息源。由于扩展了信息来源,继电保护的隐藏故障监视和控制变得可行。基于此,本文对继电保护系统隐藏故障进行了研究,具体完成了以下研究工作:
     (1)介绍了隐藏故障的相关知识,对继电保护系统的工作特性按静态特性和动态特性进行了划分。
     (2)讨论了继电保护静态特性隐藏故障监视的原理。将继电保护装置的测量计算值与参考值进行比较,若二者之差超过预先设定的门槛值,则认为继电保护装置的静态特性出现了隐藏故障。
     (3)讨论了继电保护隐藏故障诊断系统的结构。以WAMS和继电保护信息系统为基础,建立隐藏故障监视系统,以实现广域范围内的继电保护系统隐藏故障诊断。
     (4)采用基于距离的异常数据检测方法,建立了继电保护静态特性隐藏故障诊断的基本判据。以输电线路光纤差动保护为例,对判据门槛进行了详细分析。分析表明,该判据是有效和实用的。
     (5)阐述了基于多Agent系统的继电保护隐藏故障诊断系统的基本原理、结构和诊断过程,实例测试表明了该系统的有效性。
Protection system hidden failures is one of the main causes of large-scale blackouts, which inevitably will lead to disastrous consequences of power grids from cascading failures. With the increment of interconnected system network capacity and enhancement of voltage level, power system security will be more and more endangered by protection system hidden failures so that it has important theoretical and realistic significance to evaluate and analyze hidden failures for ensuring safe operation of power grids. In terms of technologies trend, the effective way of preventing protection system hidden failures is to build monitoring and control system of hidden failures.
     With the development of communication and computer technology, the construction of relay protection information system and wide area measurement system is being implemented rapidly. The information integration provides available information sources for the diagnosis of protection system hidden failures, of which the monitoring and controlling becomes feasible due to the expanded information sources. Research on protection system hidden failures was studied in this paper and the following work has been finished:
     (1) Relevant knowledge on hidden failures is introduced and the operating characteristics of relay protection system is classified into static characteristics and dynamic characteristics.
     (2) The principle of monitoring hidden failures of static characteristics in relay protection system is discussed. Comparison between the surveying calculation value of protective devices and the reference value, it can be considered that hidden failures of protection static characteristics have arisen if the difference exceeds the preset threshold value.
     (3) The structure of protection system hidden failures diagnosis system is discussed. Based on relay protection information system and WAMS, hidden failures surveillance system is built to carry out the diagnosis of protection system hidden failures in large area.
     (4) Basic criterion for diagnosing hidden failures of static characteristics of power system is established by means of outlier examination method based on distance. The threshold value of the criterion is analyzed in detail taking the optical-fiber longitudinal differential protection of transmission lines for example. The analysis shows that the criterion is efficient and practical.
     (5) The basic principle, structure and diagnosis process of protection system hidden failures diagnosis system based on multi-agent system are represented. Systems’validity is proved by the example testing result.
引文
[1] D. C. Elizondo, J. de La Ree, A. G. Phadke, et al. Hidden failures in protection systems and their impact on wide-area disturbances[A]. de La Ree J. Power Engineering Society Winter Meeting, 2001 IEEE[C], 2001:710-714 vol.712.
    [2] D. C. Elizondo, J. De La Ree. Analysis of hidden failures of protection schemes in large interconnected power systems[A]. Power Engineering Society General Meeting, 2004 IEEE[C], 2004:107-114 Vol.101.
    [3]甘德强,胡江溢,韩祯祥. 2003年国际若干停电事故思考[J].电力系统自动化, 2004,28(03): 1-4.
    [4] J. De La Ree, Y. Liu, L. Mili, et al. Catastrophic failures in power systems: causes, analyses, and countermeasures[J]. Proceedings of the IEEE, 2005,93(5): 956-964.
    [5]鲁宗相.电网复杂性及大停电事故的可靠性研究[J].电力系统自动化, 2005,29(12): 93-97.
    [6] Surachet Tamronglak. Analysis of Power System Disturbances due to Relay Hidden Failures[D]. Blacksburg, Virginia: Virginia Polytechnic and State University, 1994.
    [7] A. G. Phadke, J. S. Thorp. Expose hidden failures to prevent cascading outages [in power systems][J]. Computer Applications in Power, IEEE, 1996,9(3): 20-23.
    [8] S. Tamronglak, S. H. Horowitz, A. G. Phadke, et al. Anatomy of power system blackouts: preventive relaying strategies[J]. Power Delivery, IEEE Transactions on, 1996,11(2): 708-715.
    [9]吕颖,孙宏斌,张伯明,等.在线继电保护智能预警系统的开发[J].电力系统自动化, 2006,30(04): 1-5.
    [10]曾耿晖,李银红,段献忠.电力系统继电保护定值的在线校核[J].继电器, 2002,30(01): 22-24.
    [11]朱永利,宋少群,朱国强,等.地区电网保护定值在线校验智能系统[J].电力系统自动化, 2005,29(06): 87-92.
    [12]张玮,潘贞存,李磊.一种基于线路相关集的大电网继电保护隐藏故障算法[J].继电器, 2007,35(22): 1-5.
    [13]周新风,施贵荣,赵刚.华北电网“4.28”事故分析[J].电力系统自动化, 2000,(12): 61-64
    [14]赵自刚,张洪,赵春雷.美加大停电后关于继电保护的一些思考[J].继电器, 2004,32(21): 76-79.
    [15]郭永基.加强电力系统可靠性的研究和应用——北美东部大停电的思考[J].电力系统自动化, 2003,27(019): 1-5.
    [16]李春艳,陈洲,肖孟金,等.西欧“11.4”大停电分析及对华中电网的启示[J].高电压技术,2008,(01): 163-167.
    [17]李再华,白晓民,丁剑,等.西欧大停电事故分析[J].电力系统自动化, 2007,(01): 1-3.
    [18] D. M. Hawkins. Identification of outliers[M]: Chapman & Hall, 1980.
    [19]张德然.可靠性统计与数据挖掘[J].西华师范大学学报:自然科学版, 2005,26(003): 334-337.
    [20]侯杰泰.结构方程模型及其应用[M]:教育科学出版社, 2004.
    [21]赵金保.单个指标异常数据检验方法浅谈[J].中州建设, 2006,(007): 52-52.
    [22]曲吉林,寇纪淞,李敏强,等.基于Voronoi图的异常检测算法[J].计算机工程, 2007,33(023): 35-36.
    [23]成邦文,石林芬.统计数据质量检查与异常点识别的模型与方法[J].系统工程, 2001,19(003): 85-89.
    [24] D. M. Rocke, D. L. Woodruff. Identification of Outliers in Multivariate Data[J]. Journal of the American Statistical Association, 1996,91(435): 179-183.
    [25] E. M. Knox, R. T. Ng. Algorithms for mining distance-based outliers in large datasets[A]. VLDB Conference Proceedings[C], 1998:392—403.
    [26]魏藜,宫学庆.高维空间中的离群点发现[J].软件学报, 2002,13(002): 280-290.
    [27]赵泽茂,何坤金,陈鹏,等. Web日志文件的异常数据挖掘算法及其应用[J].计算机工程, 2003,29(017): 195-196.
    [28] C. W. Taylor, B. P. Adm, O. R. Portland. The future in on-line security assessment and wide-area stabilitycontrol[A]. 2000.
    [29] A. G. Phadke. Synchronized phasor measurements-a historical overview[A]. 2002.
    [30] J. W. Ballance, B. Bhargava, G. D. Rodriguez. Monitoring power system dynamics using phasor measurement technology for power system dynamic security assessment[A]. 2003.
    [31] I. Kamwa, R. Grondin. PMU configuration for system dynamic performance measurement inlarge, multiarea power systems[J]. IEEE Transactions on Power systems, 2002,17(2): 385-394.
    [32]辛耀中,卢长燕.电力系统数据网络技术体制分析[J].电力系统自动化, 2000,24(021): 1-6.
    [33] E. Vazquez M, O. L. Chacon M, H. J. Altuve F. An on-line expert system for fault section diagnosis in power systems[J]. IEEE Transactions on Power systems, 1997,12(1): 357-362.
    [34]张学军,陈佩琳.基于正反向推理的电力系统故障诊断[J].电力系统自动化, 1998,22(005): 30-32.
    [35]杜一,张沛超,郁惟镛.基于事例和规则混合推理的变电站故障诊断系统[J].电网技术, 2004,28(001): 34-37.
    [36] F. S. Wen, C. S. Chang. Possibilistic-diagnosis theory for fault-section estimation andstateidentification of unobserved protective relays using tabu-searchmethod[J]. IEE Proceedings-Generation, Transmission and Distribution, 1998,145(6): 722-730.
    [37] H. Monsef, A. M. Ranjbar, S. Jadid. Fuzzy rule-based expert system for power system fault diagnosis[J]. IEE Proceedings-Generation, Transmission and Distribution, 1997,144(2): 186-192.
    [38] G. Deschrijver, E. E. Kerre. On the position of intuitionistic fuzzy set theory in the framework of theories modelling imprecision[J]. Information Sciences, 2007,177(8): 1860-1866.
    [39]熊信银,吴耀武.遗传算法及其在电力系统中的应用[M]:华中科技大学出版社, 2002.
    [40] D. J. Zwickl. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion[D]: The University of Texas at Austin, 2006.
    [41]孙静,秦世引,宋永华.一种基于Petri网和概率信息的电力系统故障诊断方法[J].电力系统自动化, 2003,27(013): 10-14.
    [42] D. Ouelhadj, C. Hanach, B. Bouzouia. Multi-agent system for dynamic scheduling and control inmanufacturing cells[A]. 1998.
    [43] S. D. J. McArthur, E. M. Davidson, J. A. Hossack, et al. Automating power system fault diagnosis through multi-agent system technology[A]. 2004:8.
    [44]董海鹰,常弘.一基种基于Web的多Agent变电站故障诊断方法研究[J].西安交通大学学报, 2003,37(002): 196-200.
    [45]陈艳霞,尹项根.基于多Agent技术的继电保护系统[J].电力系统自动化, 2002,26(012): 48-53
    [46]束洪春,唐岚,董俊.多Agent技术在电力系统中的应用展望[J].电网技术, 2005,29(006): 27-31.
    [47] G. P. Azevedo, B. Feijo, M. Costa, et al. Control centers evolve with agent technology[J]. IEEE Computer Applications in power, 2000,13(3): 48-53.
    [48] S. K. Wong, A. Kalam. An agent approach to designing protection systems[A]. 1997:373-376.
    [49] T. Yan, J. Ota, A. Nakamura, et al. Concept design of remote fault diagnosis system for autonomousmobile robots[A]. 2000.
    [50] R. Khosla, T. Dillon. Intelligent hybrid multi-agent architecture for engineering complexsystems[A]. 1997.
    [51]吴晓梅,邹森元.电力系统继电保护典型故障分析[D]:北京:中国电力出版社2001.
    [52]高厚磊,江世芳,贺家李.数字电流差动保护中几种采样同步方法[J].电力系统自动化, 1996,20(09): 46-49.
    [53]许正亚.变压器及中低压网络数字式保护[M]:中国水利水电出版社, 2004.
    [54]高厚磊,江世芳,贺家李.基于GPS的电流纵差保护设计及试验[J].电力系统自动化, 2001,25(21): 61-65.
    [55]杨贵玉,江道灼,邱家驹.相角测量装置的同步测量精度问题[J].电力系统自动化, 2003,27(14): 57-61.
    [56]王健,张胜,贺春,等.国内外PMU装置性能对比[J].继电器, 2007,35(06): 74-76.
    [57]凌子恕.高压互感器技术手册[M]:中国电力出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700