牛8个基因的克隆、表达特征、原核表达、SNPs检测及其与部分性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛育种工作的最终目的是提高牛生产的经济效益。因此,在确定育种目标时,应该充分考虑长久影响牛群经济效益的所有性状。出于这点考虑,在牛育种中不仅要考虑直接作用牛生产经济效益的主生产性状,而且要考虑诸如繁殖力、使用年限、产犊行为、抗病力等间接作用牛生产经济效益的所谓次级性状。但次级性状本身受到环境、遗传以及营养条件等多种因素的影响,难于度量,且其遗传力较低,所以利用常规育种的方法选择次级性状的准确性低,遗传进展慢。为揭示次级性状的遗传规律提供方法论,本研究采用现代分子数量联合育种方法,针对影响牛只健康和生产效率性状中与使用年限关联的一些基因,应用EST拼接、RT-PCR、GenScan、直接测序、RFLP、荧光定量PCR、原核表达等技术以及生物信息学和关联分析方法,进行了基础的分子遗传学探索,获得如下结果:
     1.得到了牛AKAP10、MBL2、PON1、P53、PON2、SIRT2、SIRT3和WARS2共8个候选基因完整的CDS区序列并进行了生物信息学分析。向GenBank数据库提交了AKAP10、PON1、PON2和SIRT2等4个基因的cDNA序列,获取的登录号分别为:EU239246、EU289337、EF522785和EU562194。
     2.对所研究候选基因中的AKAP10、PON1、PON2、MBL2和WARS2等5个基因在卵巢、肝脏、肌肉、小肠、脂肪、子宫、肾脏、心脏、肺、淋巴、瘤胃、睾丸和乳腺共13个组织中的表达进行了表达特性研究,结果表明,除AKAP10基因是在睾丸中表达量最高外,其它4个基因均表现为肝脏中表达量最高。与NCBI数据库中的电子表达谱比较分析表明,两者之间有着很明显的差异。
     3.对牛的PON1和PON2两个新基因外显子进行SNPs的检测,发现在PON1基因第6外显子A147G和G162A;PON2基因第5外显子A73G和A110G、第6外显子T76C、第9外显子T98C共6个SNPs,并对其中的PON1基因的第6外显子A147G和G162A3,以及PON2基因的第9外显子T98C共3个位点进行了PCR-RFLP和PCR-SSCP多态性遗传特性分析。分析了它们在12个牛群体中的基因型频率,及等位基因的分布差异。
     4.对PON1和PON2基因的多态基因型与体尺体重及部分生长和胴体性状进行了关联分析,结果发现:(1)鲁西牛6种体尺体重性状间除体高与其它性状之间相关性不显著外,体重、体长、胸围、管围和腹围之间都表现出显著的相关(P<0.05);(2)PON1基因第6外显子多态性中,AA基因型个体可能为短期肥育类型;GG型个体则应在选择过程中加以淘汰;GA型个体有可能具有比较合理的体型结构和生长发育模式,A162G位点可尝试用于家畜生产年限的预测;(3)PON1基因双酶切位点分析表明,专门化的肉用品种比兼用牛品种有着更为明显的生长特性。胴体性状方面,西门塔尔牛除背膘厚、嫩度、总骨重、眼肌面积和肉色性状外,其它性状存在相对劣势。同时,牛实验期初始重的差异对于某种单体型个体可能源自潜在的生长势,并表明PON1基因的AeAeGaGa基因型可能直接影响牛的背膘厚(P<0.01);(4)在与7个品种关联分析中,PON1基因EcoRⅤ-RFLP位点BB基因型个体的眼肌面积显著高于AA和AB基因型(P=0.0302);(5)PON2基因第9外显子三种基因型频率在7个牛品种间存在极显著的差异(P < 0.01),而各品种中各种基因型间与各品种间差异不显著(P > 0.05),在鲁西牛不同年龄组间无显著差异(P > 0.05)。而三种基因型频率之间则存在极显著的差异(P < 0.01),且三种基因型频率均有随着年龄增加而降低的趋势,但AA型和BB型个体在一定的年龄之后,(约为7岁)又均有数量增加的现象。
     5.构建了牛PON1和PON2基因的pET28a+原核表达载体,并成功地在BL21表达菌种中实现了对氧磷酶1(PON1)和对氧磷酶2(PON2)两种蛋白的融合表达,为进一步纯化和应用提供依据。
Obtainning larger economic benefit is the final purpose in cattle breeding. So all the traits should be thought thoroughly, which may influence the economic benefit of cattle for a long time. Based on this idea, it is not only the major production traits, directly to the benefits, but also the secondary traits like productivity, lifespan, calf behavior and resistence of disease, which influences the benefits indirectly, should be taken attention on. For these traits are influenced by the conditions, heredity, and nutrition and so on, and difficult to measurement, the secondary traits selection plannings become so complecity and difficulty. And because the heritability of the secondary traits is very low, it results in slower progression of breeding with common methods. In order to provide certain methodology, what could it reveal the genetics roles of the secondary traits? This article focused on the molecule genetics of some lifespan traits genes, which influence the health and efficency, to provide elementary genetic information to cattle breeding by modern molecule and quantitative combination breeding methods, such as ESTs, RT-PCR, GenScan, direct sequencing, RFLP, Q-PCR, prokaryotic expression, bioinfermtics methods and association analysis. And the results were showed below:
     1. The complete CDS sequences of AKAP10、MBL2、PON1、P53、PON2、SIRT2、SIRT3 and WARS2 cDNA were cloned. And the cDNA sequences of AKAP10, PON1, PON2 and SIRT2 genes were submitted to GenBank, the accession numbers were EU239246, EU289337, EF522785 and EU562194, respectively.
     2. Five candidate genes (AKAP10、PON1、PON2、MBL2 and WARS2) were detected in ovary, liver, skeleton muscle, small intestine, fat, uterus, kidney, heart, lung, lymph, rumen, testis and galactophore by RT-PCR and Real-time PCR, and the results showed that 4 candidate genes are higher expression in liver except that AKAP10 gene is highly expressed in testis specially. Comparing with the database of electron expression in NCBI website, there were obviously differences between the database and the results.
     3. PON1 and PON2 genes’exons sequences were detected for SNPs and 6 SNPs were identified: A147G and G162A in exon6 of PON1 gene; A73G and A110G in exon5, T76C in exon6, T98C in exon9 of PON2 gene. Among these SNPs, the hereditary capacities of A147G, G162A in PON1 gene and T98C in PON2 gene were analyzed by PCR-RFLP and PCR-SSCP in 12 bovine breeds, respectively.
     4. Association analysis between PON1 and PON2 genes SNPs and body size, growth and parts carcass traits were carried out. (1) It is significant difference between body size and stem length, and chest measurement, and circumference of cannon bone and abdomen circumference (P<0.05), except for height at withers. (2) Individuals of AA genotype at A162G in exon6 of PON1 gene may act as short term cram group, and GG type should be eliminated through selection or competition. Individuals of GA types possess line fitting follow the ages, this type may have reasonable three-dimensional structure, and growth and development pattern in reproduction group. So A162G locus should be tasted to predict cattle lifespan. (3) The results of two enzymes digesting analysis shown that the specialized beef breed grow fast than dual purpose breeds. Simmental is in inferior position in the carcass traits, except for backfat thickness, tendness, total bone weight, rib eye area and carnation traits. At the same time, the beginning weight difference of any haplotype individuals maybe from some growth potential. The AeAeGaGa genotype of PON1 gene may influence the backfat thickness directly (P<0.01). (4) The results of association anlysis in 7 breeds shown that the rib eye area is higher in the individuals of BB genotype than those in AA and AB types significantly (P=0.0302). (5) There were significant differences of three genotypes in exon9 of PON2 gene among 7 breeds (P<0.01), and no difference in or between breeds and in various age groups (P>0.05). However, there are significant differences among three genotypes (P<0.01). And three genotype frequencies present a kind of reducing tendency following ages, but AA and BB genotype frequencies emerge supernumerary phenomenon about at 7 years old.
     5. The prokaryotic expression vector of PON1 and PON2 genes were structured using RT-PCR and pET28a+ vector, and the PON1 and PON2 and 6 His fusion proteins were expressed in the BL21 strain. These results will provid the bases for the purifying and application of these two fusion proteins.
引文
1. 许尚忠, 高雪, 任红艳等, 中国黄牛遗传资源的保护与开发利用. 中国牧业通讯, 2005. 13: p. 16-18.
    2. Meuwissen, Optimizing pure line breeding strategies utilizing reproductive technologies. J. Dairy Sci, 1998. 81(2): p. 47-54.
    3. 张沅, 家畜育种规化. 中国农业大学出版社, 2002: p. 102.
    4. 李俊雅, 中国西门塔尔牛开放核心群优化育种规化的研究. 中国农业大学博士论文, 2002: p. 47.
    5. 张清峰, 鲁西黄牛核心群优化育种规化的研究. 山西农业大学硕士论文, 2004.
    6. Adams, M D, J M Kelley and J D Gocayne, Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 1991. 252: p. 1651-1656.
    7. 吕小东, 刘迎龙, 赵勇等, 2338条胎儿心脏cDNA文库的表达序列标签测序分析. 中华心血管病杂志, 2002. 30(3): p. 178-180.
    8. Gilpin, B JT A Mccallum and T J Frew, A Linkage map of the pea (pisum stativum L) genome containing cloned sequences of known function and expressed sequence tags ( ESTs). Theor. Appl. Genet, 1997. 95(8): p. 1289-1299.
    9. Hatey, F, K G Tosser and M C Clouscard, Expressed sequenced tags for genes: a review. Genet. Sel Evol, 1998. 30(5): p. 521-541.
    10. Collins, F S, Positional cloning moves from perditional to traditional. Nat Genet, 1995. 9: p.
    347-350.
    11. Joansson, M M, R.Chaudhary, E Hellmen, et al., Pigs with the dominant white coat color phenotype carry a duplication of the KIT gene encoding the mast/stem cell growth factor receptor. Mamm Genome, 1996. 7(11): p. 822-830.
    12. Suchi, M, H Sano, H Mizuno, et al., Molecular cloning and structural characterization of the human histidase gene(HAL). Genomics, 1995. 29: p. 98-104.
    13. Orita, M, Y Suzuki, T Sekiya, et al., Rapid and sensitive detection of point mutation and DNA polymorphisms using polymerase chain reaction. Genomics, 1989. 5: p. 874-879.
    14. Sugano, K, A Kyogoku, N Fukayama, et al., Methods in laboratory investigation. Rapid and simple detection of c-Ki-ras2 gene codon 12 mutations by nonradioisotopic single-strand conformation polymorphism analysis. Lab Invest, 1993. 68(3): p. 361-366.
    15. Yap, A S, B.R.Stevenson, J R Keast, et al., Cadherin-mediated adhesion and apical membrane assembly define distinct steps during thyroid epithelial polarization and lumen formation. Endocrinology, 1995. 136: p. 4672-4680.
    16. Bostein, D, R L White, M Skolnick, et al., Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am. J. Hum. Genet, 1980. 32: p. 314-331.
    17. Donis-Keller, H, P Green, C Helms, et al., A genetic linkage map of the human genome. Cell, 1987. 51: p. 319-337.
    18. Slocum, M KS S Figdore and W C Kennard, Linkage arrangement of restriction fragment length polymorphism loci in Brassica oleracea. TAG, 1990. 80: p. 46-57.
    19. 卢钢, 曹家树和陈杭, 芸薹属植物分子标记技术和基因组研究进展. 园艺学报, 1999. 26(6): p. 384-390.
    20. Efstathios, S G, Genetics of aging: lessons from centenarians. Experimental Gerontology, 2000. 35:p. 15-21.
    21. Takata, H, M Suzuki, T. Ishii, et al., Influence of major histocompatibility complex region genes on human longevity among Okinawan-Japanese centenarians and nonagenarians. Lancet, 1987. 8563: p. 824-826.
    22. Burklea, A, S Beneke, C Brabeck, et al., Poly (ADP-ribose) polymerase-1, DNA repair and mammalian longevity. Experimental Gerontology, 2002. 37: p. 1203-1205.
    23. Jazwinski, M S and A Conzelmann, LAG1 puts the focus on ceramide signaling. The International Journal of Biochemistry & Cell Biology, 2002. 34: p. 1491-1495.
    24. Bodnar, A G, M Ouelette, M Frolkis, et al., Extension of life-span by introduction of telomerase into normal human cells. Science 1998. 279: p. 349-352.
    25. Joeng, J S, E J Song, K J Lee, et al., Long lifespan in worms with long telomeric DNA. Nat. Genet, 2004. 36: p. 607-611.
    26. Blasco, M A, H W Lee, M P Hande, et al., Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell, 1997. 9(1): p. 1-3.
    27. Jennings, B J, S E Ozanne, M W Dorling, et al., Early growth determines longevity in male rats and may be related to telomere shortening in the kidney. FEBS Letters, 1999. 448: p. 4-8.
    28. Cawthon, R M, Association between telomere length in blood and mortality in people aged 60 years or older. The Lancet 2003. 361: p. 393.
    29. Chang, S and R A DePinho, Telomerase extracurricular activities PNAS, 2004. 99(20): p. 12520-12522.
    30. Barsyte, DD A Lovejoy and G J Lithgow, Longevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans. FASEB J, 2001. 15: p. 627-634.
    31. Honda, YS Honda, The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. . FASEB J, 1999. 13: p. 1385-1393.
    32. Vanfleteren, J RA D Vreese, The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. FASEB J, 1995. 9(1355-1361).
    33. Sun, J and J Tower, FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol. Cell. Biol, 1999. 19: p. 216-228.
    34. Sun, R, H Zhang, Q Si, et al., Protective effect of Ginkgo biloba extract on acute lung injury induced by lipopolysaccharide in D-galactose aging rats. Zhonghua Jie He He Hu Xi Za Zhi, 2002. 25(6): p. 352-355.
    35. Walker, G A and G J Lithgow, Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell, 2003. 2: p. 131-140.
    36. Wang, H D, P.Kazemi-Esfarjani and S.Benzer, Multiplestress analysis for isolation of Drosophila longevity genes. Proc.Natl. Acad. Sci. USA, 2004. 101: p. 12610-12615.
    37. Atzmona, G, M Rinconb, P Rabizadeha, et al., Biological evidence for inheritance of exceptional longevity. Mechanisms of Ageing and Development, 2005. 126: p. 341-345.
    38. Barzilai, N, G.Atzmon, C.Schechter, et al., Unique lipoprotein phenotype and genotype associated with exceptional longevity. JAMA, 2003. 290: p. 2030-2040.
    39. Geesaman, B J, Haplotype-based identification of a microsomal transfer protein marker associated with the human lifespan. . Proc. Natl. Acad. Sci. USA, 2003. 100: p. 14115-14120.
    40. Garigan, D, A L Hsu, A G Fraser, et al., Genetic analysis of tissue aging in Caenorhab Cell. Mol. Life Sci., 2002. 59: p. 1649-1657.
    41. Gems, DD L Riddle, Genetic, behavioral and environmental determinants of male longevity in Caenorhabditis elegans. Genetics, 2000. 154: p. 1597-1610.
    42. Garsin, D A, J.M.Villanueva, J Begun, et al., Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science, 2003. 330: p. 1921.
    43. Melendez, A, Z.Talloczy, M.Seaman, et al., Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 2003. 301: p. 1387-1391.
    44. Fabrizio, P, L L Liou, V N Moy, et al., SOD2 functions down-stream of Sch9 to extend longevity in yeast. Genetics 2003. 163: p. 35-46.
    45. Kops, G J, T.B Dansen, P.E. Polderman, et al., Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature, 2002. 419: p. 316-321.
    46. Nemoto, ST Finkel, Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science, 2002. 295: p. 2450-2452.
    47. Tran, H, A Brunet, J M Grenier, et al., DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science, 2002. 296: p. 530-534.
    48. Stessmana, J, Y Maaravia, R Hammerman-Rozenberga, et al., Candidate genes associated with ageing and life expectancy in the Jerusalem longitudinal study. Mechanisms of Ageing and Development, 2005. 126: p. 333-339.
    49. Kenyon, C, The Plasticity of Aging: Insights from Long-Lived Mutants (Review). Cell, 2005. 120: p. 449-460.
    50. Wang, L, R. K. Sunahara, A Krumins, et al., Cloning and mitochondrial localization of full-length D-AKAP2, a protein kinase A anchoring protein. Proc. Nat. Acad. Sci, 2001. 98: p. 3220-3225.
    51. Huang, L J, K Durick, J A Weiner, et al., D-AKAP2, a novel protein kinase A anchoring protein with a putative RGS domain. Proc. Nat. Acad. Sci, 1997. 94: p. 11184-11189.
    52. Carr, D W, R E Cutler, J E Cottom, et al., Identification of cAMP-dependent protein kinase holoenzymes in preantraland preovulatory-follicle-enriched ovaries, and their association with A-kinase-anchoring proteins. Biochem. J., 1999. 344: p. 613-623.
    53. Kammerer, S, L. L. Burns-Hamuro, Y Ma, et al., Amino acid variant in the kinase binding domain of dual- specific A kinase-anchoring protein 2: a disease susceptibility polymorphism. Proc. Nat. Acad. Sci. , 2003. 100: p. 4066-4071.
    54. Sastry, K, K Zahedi, J M Lelias, et al., Molecular characterization of the mouse mannose-binding proteins. The mannose-binding protein A but not C is an acute phase reactant. J Immunol, 1991. 147(2): p. 692-7.
    55. Matsushita, M, A Takahashi, H Hatsuse, et al., Human mannose-binding protein is identical to a component of Ra-reactive factor. Biochem Biophys Res Commun, 1992. 183(2): p. 645-51.
    56. Sastry, R, J S Wang, D C Brown, et al., Characterization of murine mannose-binding protein genes Mbl1 and Mbl2 reveals features common to other collectin genes. Mamm Genome, 1995. 6(2): p. 103-10.
    57. Mogues, T, T Ota, A I Tauber, et al., Characterization of two mannose-binding protein cDNAs from rhesus monkey (Macaca mulatta): structure and evolutionary implications. Glycobiology, 1996. 6(5): p. 543-50.
    58. Kawai T, S Y, Eda S, Ohtani K, Kase T, Fujinaga Y, Sakamoto T, Kurimura T, Wakamiya N.,Cloning and characterization of a cDNA encoding bovine mannan-binding protein. Gene, 1997. 2(Feb 28): p. 161-5.
    59. Lillie, B N, J D Hammermueller, J I Macinnes, et al., Porcine mannan-binding lectin A binds to Actinobacillus suis and Haemophilus parasuis. Dev Comp Immunol, 2006. 30(10): p. 954-65.
    60. van de Geijn, F E, R J Dolhain, W van Rijs, et al., Mannose-binding lectin genotypes are associated with shorter gestational age An evolutionary advantage of low MBL production genotypes? Mol Immunol, 2008. 45(5): p. 1514-1518.
    61. Ameglio, F, G Vento, C Romagnoli, et al., Association of MBL2 variants with early preterm delivery. Genet Med, 2007. 9(2): p. 136-7.
    62. Bokodi, G, A Treszl, L Kovacs, et al., Dysplasia: a review. Pediatr Pulmonol, 2007. 42(10): p. 952-61.
    63. Koturoglu, G, H Onay, R Midilli, et al., Evidence of an association between mannose binding lectin codon 54 polymorphism and adenoidectomy and/or tonsillectomy in children. Int J Pediatr Otorhinolaryngol, 2007. 71(8): p. 1157-61.
    64. Onay, H, M Pehlivan, S Alper, et al., Might there be a link between mannose binding lectin and vitiligo? Eur J Dermatol, 2007. 17(2): p. 146-8.
    65. Soborg, C, A B Andersen, N Range, et al., Influence of candidate susceptibility genes on tuberculosis in a high endemic region. Mol Immunol, 2007. 44(9): p. 2213-20.
    66. Babula, O, I M Linhares, A M Bongiovanni, et al., Association between primary vulvar vestibulitis syndrome, defective induction of tumor necrosis factor-alpha, and carriage of the mannose-binding lectin codon 54 gene polymorphism. Am J Obstet Gynecol, 2008. 198(1): p. 101 e1-4.
    67. Dorfman, R, A Sandford, C Taylor, et al., Complex two-gene modulation of lung disease severity in children with cystic fibrosis. J Clin Invest, 2008.
    68. Hilgendorff, A, K Heidinger, A Pfeiffer, et al., Association of polymorphisms in the mannose-binding lectin gene and pulmonary morbidity in preterm infants. Genes Immun, 2007. 8(8): p. 671-7.
    69. Wang, X, J Saito, Y Tanino, et al., Mannose binding lectin gene polymorphisms and asthma. Clin Exp Allergy, 2007. 37(9): p. 1334-9.
    70. Gong, M N, W Zhou, P L Williams, et al., Polymorphisms in the mannose binding lectin-2 gene and acute respiratory distress syndrome. Crit Care Med, 2007. 35(1): p. 48-56.
    71. Milanese, M, L Segat, F De Seta, et al., MBL2 Genetic Screening in Patients with Recurrent Vaginal Infections. Am J Reprod Immunol, 2008. 59(2): p. 146-51.
    72. Saevarsdottir, S, K Steinsson, G Grondal, et al., Patients with rheumatoid arthritis have higher levels of mannan-binding lectin than their first-degree relatives and unrelated controls. J Rheumatol, 2007. 34(8): p. 1692-5.
    73. Maury, C P, J Aittoniemi, S Tiitinen, et al., Variant mannose-binding lectin 2 genotype is a risk factor for reactive systemic amyloidosis in rheumatoid arthritis. J Intern Med, 2007. 262(4): p. 466-9.
    74. Jakab, L, J Laki, K Sallai, et al., Association between early onset and organ manifestations of systemic lupus erythematosus (SLE) and a down-regulating promoter polymorphism in the MBL2 gene. Clin Immunol, 2007. 125(3): p. 230-6.
    75. Strausberg, R L, F E Grouse, L H Derge, et al., Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A, 2002. 99(26): p.16899-903.
    76. Giraldo, P C, O Babula, A K Goncalves, et al., Mannose-binding lectin gene polymorphism, vulvovaginal candidiasis, and bacterial vaginosis. Obstet Gynecol, 2007. 109(5): p. 1123-8.
    77. McBride, O W, D E Merry, M Oren, et al., Human p53 cellular tumor antigen is on chromosome 17p13. Cytogenet. Cell Genet., 1985. 40: p. 694-695.
    78. McBride, O WD Merry and D.Givol, The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc. Nat. Acad. Sci., 1986. 83: p. 130-134.
    79. Benchimol, S, P Lamb, L V Crawford, et al., Transformation associated p53 protein is encoded by a gene on human chromosome 17. Somat. Cell Molec. Genet., 1985. 11: p. 505-509.
    80. Beau, M M L, C A Westbrook, M O Diaz, et al., Translocation of the p53 gene in t(15;17) in acute promyelocytic leukaemia. Nature, 1985. 316: p. 826-828.
    81. Rowley, J D, Personal Communication. Chicago, Ill, 1986. 3.
    82. Miller, C, T Mohandas, D Wolf, et al., Human p53 gene localized to short arm of chromosome 17. Nature, 1986. 319: p. 783-784.
    83. Isobe, M, B S Emanuel, D Givol, et al., Localization of gene for human p53 tumour antigen to band 17p13. Nature, 1986. 320: p. 84-85.
    84. VanTuinen, P and D H Ledbetter, Construction and utilization of a detailed somatic cell hybrid mapping panel for human chromosome 17: localization of an anonymous clone to the critical region of Miller-Dieker syndrome, deletion 17p13. Cytogenet. Cell Genet., 1987. 46: p. 708-709.
    85. Clendenning, J B, R.Humbert, E.D.Green, et al., Structural organization of the human PON1 gene. Genomics, 1996. 35(3): p. 586-9.
    86. Sorenson, R C, S L Primo-Parmo, S Camper, et al., The genetic mapping and gene structure of mouse paraoxonase/arylesterase. Genomics, 1995. 30: p. 431-438.
    87. Eiberg, H and J Mohr, Linkage relations of the paraoxonase polymorphism with 43 marker systems. Cytogenet. Cell Genet, 1979. 25: p. 150.
    88. Eiberg, H, J Mohr, K Schmiegelow, et al., Linkage relationships of paraoxonase (PON) with other markers: indication of PON-cystic fibrosis synteny. Clin. Genet, 1985. 28: p. 265-271.
    89. Tsui, L C, M Buchwald, D Barker, et al., Cystic fibrosis locus defined by a genetically linked polymorphic DNA marker. Science, 1985. 230: p. 1054-1057.
    90. Schmiegelow, K, H Eiberg, L.C.Tsui, et al., Linkage between the loci for cystic fibrosis and paraoxonase. Clin. Genet, 1986. 29: p. 374-377.
    91. Humbert, R, D A Adler, C M Disteche, et al., The molecular basis of the human serum paraoxonase activity polymorphism. Nature Genet, 1993. 3: p. 73-76.
    92. Li, W F, C Matthews, C M Disteche, et al., Paraoxonase (Pon1) gene in mice: sequencing, chromosomal localization and developmental expression. Pharmacogenetics, 1997. 7: p. 137-144.
    93. Coates, P M, M A Mestriner and D A Hopkinson, A preliminary interpretation of the esterase isozymes of human tissues. Ann. Hum. Genet, 1975. 39(1-20).
    94. Tashian, R E, Genetic variation and evolution of the carboxylic esterases and carbonic anhydrases of primate erythrocytes. Am. J. Hum. Genet, 1965. 17: p. 257-272.
    95. Tashian, R E and M W Shaw, Inheritance of an erythrocyte acetylesterase variant of man. Am. J. Hum. Genet, 1962. 14: p. 295-300.
    96. Eckerson, H W, J Romson, C Wyte, et al., The human serum paraoxonase polymorphism: identification of phenotypes by their response to salts. Am. J. Hum. Genet, 1983. 35: p. 214-227.
    97. Roy, A F, Phylogenetic Classification of Prokaryotic and Eukaryotic Sir2-like Proteins Biochemical and Biophysical Research Communications 2000. 273(2): p. 793-798
    98. Nancy, S B, J Mark, Swanson, et al., Human Histone Deacetylase SIRT2 Interacts with the Homeobox Transcription Factor HOXA10 J. Biochem, 2004. 135(6): p. 695-700.
    99. Vaziri, H, S K Dessain, E N Eaton, et al., hSIR2-SIRT1 functions as an NAD-dependent p53 deacetylase. Cell, 2001. 107: p. 149-159.
    100. Luo J., A Y Nikolaev, Imai S., Chen D., Su F., Shiloh A., Guarente L., Gu W., Negative control of p53 by Sir2-alpha promotes cell survival under stress. Cell, 2001. 107: p. 149-159.
    101. Onyango, P, I Celic, J M McCaffery, et al., SIRT3, a human SIR2 homologue, is an NAD- dependent deacetylase localized to mitochondria PNAS, 2002. 99(21): p. 13653-13658.
    102. Frye, R A, Characterization of five human c DNAs with homology to the yeast SIR2 gene: Sir2-like proteins sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem.Bio-phys.Res.Commun, 1999. 260: p. 273-279.
    103. Wakasugi, K, T Nakano and I Morishima, Oxidative stress-responsive intracellular regulation specific for the angiostatic form of human tryptophanyl-tRNA synthetase. Biochemistry, 2005. 44(1): p. 225-32.
    104. Martinez-Dominguez, M T, J Justesen, T A Kruse, et al., Assignment of the human mitochondrial tryptophanyl-tRNA synthetase (WARS2) to 1p13.3-->p13.1 by radiation hybrid mapping. Cytogenet Cell Genet, 1998. 83(3-4): p. 249-50.
    105. Buddha, M R and B R Crane, Structures of tryptophanyl-tRNA synthetase II from Deinococcus radiodurans bound to ATP and tryptophan. Insight into subunit cooperativity and domain motions linked to catalysis. J Biol Chem, 2005. 280(36): p. 31965-73.
    106. Buddha, M R and K M Keery and B R Crane, An unusual tryptophanyl tRNA synthetase interacts with nitric oxide synthase in Deinococcus radiodurans. Proc Natl Acad Sci U S A, 2004. 101(45): p. 15881-6.
    107. Garcia, L T, N R Leite, J D Alfonzo, et al., Effects of Trypanosoma brucei tryptophanyl-tRNA synthetases silencing by RNA interference. Mem Inst Oswaldo Cruz, 2007. 102(6): p. 757-62.
    108. Jia, J, F Xu, X Chen, et al., Two essential regions for tRNA recognition in Bacillus subtilis tryptophanyl-tRNA synthetase. Biochem J, 2002. 365(Pt 3): p. 749-56.
    109. Anisimova, V N, K G Arbeevb, I G Popovich, et al., Body weight is not always a good predictor of longevity in mice. Experimental Gerontology, 2004b. 39: p. 305-319.
    110. Wakasugi, K, Human tryptophanyl-tRNA synthetase binds with heme to enhance its aminoacylation activity. Biochemistry, 2007. 46(40): p. 11291-8.
    111. Buddha, M R and B R Crane, Structure and activity of an aminoacyl-tRNA synthetase that charges tRNA with nitro-tryptophan. Nat Struct Mol Biol, 2005. 12(3): p. 274-5.
    112. 影响衰老的内环境研究. 健康报, 1999.
    113. 赵长安, 刘素彩, 李恩, Klotho 基因及其生物学效应. 国外医学生理病理科学与临床分册, 2001. 215: p. 329-331.
    114. 余伍忠, Klotho 基因及其与衰老相关的研究现状. 中国优生与遗传杂志, 2003. 116: p. 8-10.
    115. 张建刚和贺林, 长寿和衰老基因及相关基因研究进展. 生命科学, 1999. 112: p. 85-87.
    116. 王春花, 刘克明, 张明月等, SOD 基因表达与衰老的相关性. 中国公共卫生, 2004. 208: p. 953-954.
    117. 王新玲, 李月彩和候颖春, 自由基、细胞凋亡与衰老关系的研究进展. 中国老年学杂志, 1999.19: p. 252-253.
    118. 陈定文, 席进华和刘书梅, 延长奶牛利用年限的技术措施. 河南畜牧兽医, 2005. 26(11): p. 38.
    119. Yang J H, M A, Pinchas Cohen, Control of aging and longevity by IGF-I signaling. Experimental Gerontology, 2005. 40: p. 867-872.
    120. Franceschi, C, F Olivieri, F Marchegiani, et al., Genes involved in immune response/in?ammation, IGF1/insulin pathway and response to oxidative stress play a major role in the genetics of human longevity: the lesson of centenarians. Mechanisms of Ageing and Development, 2005. 16(4): p. 185-189.
    121. Bartke, A, V Chandrashekar, B Bailey, et al., Consequences of growth hormone (GH) overexpression and GH resistance. Neuropeptides, 2002. 36(23): p. 201-208.
    122. Laron, Z, Childhood-onset growth harmone deficiency, cognitive function and brain N-acetylaspartate Psychoneuroendocrinology 2005. 31(5): p. 680.
    123. Brown-Borg., H M, Hormonal regulation of aging and life span. TRENDS in Endocrinology and Metabolism, 2003. 14(4): p. 151-153.
    124. Andreas, B and S Dieter, Novel concepts in insulin regulation of hepatic gluconeogenesis Am J Physiol Endocrinol Metab 2003. 285: p. e658-e692.
    125. Andreas, B, S Dieter and G U Terry, FoxO proteins in insulin action and metabolism Trends in Endocrinology and Metabolism 2005. 16(4): p. 183-189.
    126. Anisimova, V N, M B Lev, A E Peter, et al., Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice Experimental Gerontology 2005. 40(8-9): p. 685-693.
    127. Sogawa, H and C Kubo, Influence of short-term repeated fasting on the longevity of female (NZB×NZW) F1 mice. Mechanisms of Ageing and Development, 2000. 115: p. 61-71.
    128. Lorenzini, A, M Tresini, S N Austad, et al., Cellular replicative capacity correlates primarily with species body mass not longevity. Mechanisms of Ageing and Development, 2005. 126: p. 1130-1133.
    129. Susan, E, C Ozanne and H Nicholas, Poor fetal growth followed by rapid postnatal catch-up growth leads to premature death Mechanisms of Ageing and Development, 2005. 126: p. 825-854.
    130. Vladimir, P S, Mitochondria, reactive oxygen species and longevity: some lessons from the Barja group. Aging Cell 2004. 3(1): p. 17–19.
    131. Vladimir, M S and A Evgueni, Life span and disability in Sweden and Russia Paper highlights poor health among Russian women BMJ, 2004. 329(7477): p. 1288.
    132. Francis, C Y and Y Rong-cai, POPGENE VERSION 1.31--Microsoft Window-based Freeware for Population Genetic Analysis. University of Alberta and Tim Boyle, Centre for International Forestry Research., 1999. August
    133. Cary, N C, SAS,Statistical Analysis System, System for Windows. SAS Instit. Inc., 2002-2003.
    134. 马腾壑, 许尚忠, 王兴平等, 奶牛 TLR2 基因遗传变异与乳房炎体细胞评分的相关研究. 畜牧兽医学报, 2007. 38(4): p. 332-336.
    135. 张路培, 张小辉, 许尚忠等, 牛 GDF9 和 BMP15 基因遗传变异与双胎性状的关系研究. 畜牧兽医学报, 2007. 38(8): p. 800-805.
    136. Siniscalco, M, R Robledo, P K Bender, et al., Population genomics in Sardinia: a novel approach to hunt for genomic combinations underlying complex traits and diseases. Cytogenet Cell Genet, 1999. 86(2): p. 148-52.
    137. Chakravarti, A, Population genetics--making sense out of sequence. Nat Genet, 1999. 21((1 Suppl)): p. 56-60.
    138. Jack, S, D R Call and F J Brockman, Direct detection of 16s rRNA in soil extracts by using oligonucleotide microarrays. Applied and Enviromental Microbiology, 2001. 67(10): p. 4708 - 47161.
    139. Busch, C P, D D Ramdath, S Ramsewak, et al., Association of PON2 variation with birth weight in Trinidadian neonates of South Asian ancestry. Pharmacogenetics, 1999. 9(3): p. 351-356.
    140. Liang, H Y, B Y Wu, D F Chen, et al., Association of CYP2E1 and PON2311 Polymorphisms in Neonates with Preterm. Acta Genetica Sinica, 2002. 29(10): p. 847-853.
    141. Wolff, M S, S Engel, G Berkowitz, et al., Prenatal pesticide and PCB exposures and birth outcomes. Pediatr Res, 2007. 61(2): p. 243-250.
    142. Harel, M, A Aharoni and L Gaidukov, Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat Struct Mol Bio, 2004. 11: p. 412-419.
    143. Khersonsky, O and D S Tawfik, Structure-reactivity studies of serum paraoxonase PON1 suggest that its native activity is lactonase. Biochemistry, 2005. 44: p. 6371-82.
    144. Winnier, D A, Sex-specific qtl effects on variation in paraoxonase 1 (pon1) activity in mexican americans. Genet Epidemiol, 2007. 31: p. 66-74.
    145. Busch, C P, D D.Ramdath and S Ramsewak, Association of PON2 variation with birth weight in Trinidadian neonates of South Asian ancestry. Pharmacogenetics, 1999. 9(3): p. 351-356.
    146. Cheong, H S, D Yoon and L H Kim, Titin-cap (TCAP) polymorphisms associated with marbling score of beef. Meat Science, 2007. 77: p. 257-263.
    147. Curia, R A, H N d Oliveirab and A C Silveira, Association between IGF-I, IGF-IR and GHRH gene polymorphisms and growth and carcass traits in beef cattle. Livestock Production Science, 2005. 94: p. 159-167.
    148. Jonathan, Q P, S W David and B Patricia, Ghrelin Levels Correlate with Insulin Levels, Insulin Resistance, and High-Density Lipoprotein Cholestero But Not with Gender, Menopausal Status, or Cortiso Levels in Humans. J Clin Endocrinol Metab, 2003. 88(12): p. 5747~5752.
    149. Paul, H B, The inflammatory consequences of psychologic stress: Relationship to insulin resistance, obesity, atherosclerosis and diabetes mellitus, type II. Medical Hypotheses, 2006. 67: p. 879-891.
    150. Teng, X, S Yang, Q Li, et al., Expression of Q-Type Human Paraoxonase in Escherichia.coli. Letters in Biotechnology, 2007. 1(18): p. 015-018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700