盐碱胁迫对白刺生理生化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白刺(Nitraria L.)为蒺藜科的小灌木,其适应性强,极耐盐碱,覆盖能力极强,是盐碱地治理和防风固沙的先锋树种。本试验通过盆栽试验方法,以唐古特白刺和西伯利亚白刺为材料,用四种单盐和不同配比的混合盐处理,对白刺在盐碱胁迫下生理适应性的变化进行深入研究,为研究白刺的耐盐适应性提供依据,为其在盐碱地区推广,丰富城市绿化树种提供依据。
     利用植物生理与生态学的技术手段,分析了在不同浓度、pH的盐碱胁迫对两种白刺生理学特性的影响,结果表明:
     1、盐碱胁迫对两种白刺生长特性的影响研究表明:一定的盐胁迫会促进白刺叶绿素的合成,同时提高白刺的根系活力,只有在混合盐碱胁迫下盐浓度大于300mmol/L,pH>10.59条件下,其叶片叶绿素含量略有下降,并伴随着根系活力的降低,开始影响白刺正常的同化作用;四种单盐胁迫下,两种白刺只有在400mmol/LNa2CO3、pH11.68处理下叶绿素含量才略低于对照,根系活力却依然高于对照,对两种白刺的正常生长影响不大。
     2、盐碱胁迫对两种白刺膜系统影响的研究表明:两种白刺叶片经混合盐碱胁迫和四种单盐胁迫后电解质外渗率加大,膜脂过氧化物MDA含量总体增加,表明盐碱胁迫对膜系统产生了一定的伤害。不同盐碱胁迫下,电解质外渗率虽然高,但叶片结构并没有发生明显变化,植株没有死亡,可见两种白刺均具有较强的耐盐碱性。
     3、盐碱胁迫对两种白刺渗透调节物质的影响研究表明:混合盐碱胁迫下,两种白刺在盐浓度300mmol/L,pH<10.59的混合盐碱胁迫下,叶片渗透调节物质可溶性糖含量、可溶性蛋白、脯氨酸含量均有所提高;,盐浓度低于400mmol/L、pH低于11.68的四种单盐胁迫下,两种白刺叶片内渗透调节物质同样有一定的升高,说明不同的盐碱胁迫下,两种白刺都通过提高体内渗透调节物质的含量来增加细胞液浓度,维持了白刺叶片的正常水势,以提高白刺抵抗盐碱胁迫的能力,渗透调节物质含量的提高对白刺的耐盐性的提高有着积极意义。
     4、盐碱胁迫对两种白刺保护酶系统的影响研究表明:两种白刺保护酶活性在混合盐碱胁迫下,随着盐度和pH的增加而先上升后下降,而在单盐胁迫下,随着盐度和pH的增大,SOD活性和CAT活性保持上升的变化趋势,POD活性呈现先升高后下降的变化,因此在不同的盐碱胁迫条件下,白刺细胞内保护酶系统使自由基维持在一个低水平上,从而防止自由基对细胞的伤害,是两种白刺都可以适应较高盐碱环境的盐碱胁迫。
     5、较单盐胁迫,混合盐碱胁迫对植物的危害更大,白刺生理变化不仅受到浓度度的影响, pH也是一个重要的影响因素。对白刺生长有重要影响的盐浓度、pH、[CO32-]和[HCO3-]四个胁迫因素进行线性回归分析,除白刺叶绿素含量和根系活力不与四胁迫因素呈显著线性关系外,其余生理生化指标均与4胁迫因素呈线性关系(相关系数均R2>0.75),对四胁迫因素进行排序,盐浓度是最重要的胁迫因素。
Nitraria L.is a shurb of zygophyllaceae, is the Tertiary Period relic plant. Nitraria L. is the fine cover plant anti saline-alkaline and the sand fixation pioneer plant which has strong adaptability, strong salt-tolerance, strong covering power.In this experiment testing,using Nitraria tangutorum and Nitraria sibirica as experiment materials,and it is using four single salt and different proportions complex saline-alkali stress, and it carries on deeply research of the changes of saline-alkali stress on physiological adaptability of Nitraria L., bases on combing predecessor’s research methods and results. It provides bases for researching salt-tolerant adaptability of Nitraria L.and popularizing Nitraria L. in saline-alkali area and riching urban greening tree species.
     This article utilized the plant physiological ecological research methods to analyze the physiology characteristic’s responds of two species of Nitraria L. under saline-alkali stress with different salinity and alkalinity. The results indicated that:
     1. The research of saline-alkali stress on growth characteristics of two species of Nitraria L. showed that: A certain saline-alkali stress would promote chlorophyll synthesis of Nitraria L., and at the same time increase their root vitality. Just only when salinity was higher than 300mmol/L, pH>10.59, the chlorophyll contents decreased slightly and along with the root vitality decline, it began to affect Nitraria’s normal anabolism; For four single salt stress, only under 400mmol/LNa2CO3, pH11.68 treatments , chlorophyll content of Nitraria L is slightly lower than the control, and the root activity is still higher than the control, the two species of Nitraria L prickly little effect on normal growth..
     2. The research of saline-alkali stress on membrane systems of two species of Nitraria L. showed that: Under complex saline-alkali and four sigle salt stress, the electrolyte leakage rates in leaves of two species of Nitraria L. increased, resulted in membrane lipid peroxidation produce - MDA contents increased, it showed that saline-alkali stress made certain damage to membrane systems. Under saline-alkali stess, the electrolyte leakage rates were high, but the structure of leaves didn’t change obviously, the plants were alive, it could clearly be seen, the two species of Nitraria L. had strong salt tolerance.
     3. The research of saline-alkali stress on osmoregulation substances of two species of Nitraria L. showed that: Under the complex saline-alkali stress of salinity 300mmol/L, pH<10.59, the contents of soluble sugar, soluble protein and proline increased in leaves of two species of Nitraria L.; Under the four salt stress of salinity 400mmol/L, pH<11.69, the contents of Osmotic adjustment increased in leaves of two species of Nitraria L.also, it shows: under the different salt stress, two species of Nitraria L. are increasing the content of osmolytes adjustment for increasing cell concentration,and provided leaves’normal water potential to enhance Nitraria’s saline-alkali resistance ability. The increase of osmoregulation substance content has a positive significance to improve Nitraria’s salt tolerance.
     4. The research of saline-alkali stress on protective enzyme systems of two species of Nitraria L. showed that: Under the complex saline-alkali stress, two species Nitraria L. of protective enzymes decreased with the increase of salinity and pH increased ,and then while in single-salt stress, with the increase of salinity and pH, SOD activity and CAT activity maintain the upward trend, POD activity increased firstly and then decreased to a change in the different salt stress conditions, the Nitraria L. cells to free radical protective enzyme system remains at a low level in order to prevent free radical cellinjury, are Nitraria L. thorn can be adapted to high saline environment salinity stress.
     5. Than the single-salt stress, alkaline stress on plants more dangerous, not only by physiological changes of Nitraria L degree of concentration, pH is also an important factors. Carried on linear regression analysis to salinity, pH, [CO32-] and [HCO3-] four stress factors which heavily influenced Nitraria’s growth, the chlorophyll content and root vitality in Nitraria weren’t remarkable linear with four stress factors, and the other physiological biological indices with the four stress factors all showed a linear relationship (correlation coefficient R2>0.75), sorting to four stress factors, salinity was the most important stress factor.
引文
常艳旭,苏格尔,王迎春.2005.白刺属野生植物的开发利用价值[J].内蒙古科技与经济, (14):21~23.
    陈坚,周木虎.2002.盐胁迫对不同苦瓜品种萌发及幼苗生长的影响[J].湘潭师范学院学报, 24(4):44~48.
    陈建勋,王晓峰.2002.植物生理学实验指导[M].广州:华南理工大学出版社.
    陈沁,刘友良.2000.谷胱甘肽对盐胁迫大麦叶片活性氧清除系统的保护作用[J].作物学报, 26(3):365~371.
    陈少良,李金克,毕望富等.2001.盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化[J].植物学通报, 18(5):587~596.
    陈月艳,孙国荣,阎秀峰.1998. Na2CO3胁迫下对螺旋藻生长及抗氧化酶活性的影响[J].植物学通报, 15(3):43~47.
    戴伟民,蔡润,藩俊松等.2002.盐胁迫对番茄幼苗生长发育的影响[J].上海农业学报, 18(1):58~62.
    刁丰秋,章文华,刘友良.1997.盐胁迫对大麦叶片类囊体膜脂组成和功能的影响[J].植物生理学报, 23(2):105~110.
    范小峰,杨颖丽,程转霞.2009.胁迫下唐古特白刺愈伤组织生理生化变化研究[J].干旱地区农业研究, 27(3):203~207.
    傅秀云,崔光泉,林恒.1988.冬小麦耐盐力与脯氨酸含量的关系[J].山东农业科学, (2):5~7.
    高俊凤.2006.植物生理学实验指导[M].北京:高等教育出版社.
    郭北海.2000.甜菜碱醛脱氢酶基因转化小麦及其表达[J].植物学报, 42(3):279~283.
    郭房庆,汤章城.1999.NaCl胁迫下抗盐突变体和野生型小麦Na,K累积的差异分析[J].植物学报, 41 (5):515~518.
    郭连生,田有亮.1998.运用PV技术对华北常见造林树种耐旱性评价的研究[J].内蒙古林学院学报, 20 (3):1~8.
    韩亚琦,唐宇丹,张少英等.2007.盐胁迫抑制槲栎2变种光合作用的机理研究[J].西北植物学报, 27 (3):583~587.
    胡新生,王世绩.1998.树木水分胁迫生理与耐旱性研究进展及展望[J].林业科学, 34(2):77~85.
    惠红霞,许兴,李守明.2004.盐胁迫抑制光合作用的可能机理[J].生态学杂志, 23 (1):5~9.
    贾探民,杜双田.1999.世界各国防治土壤盐碱化主要措施[J].垦殖与稻作, (2):43~44.
    姜卫兵,马凯,王业遴等.1991.无花果耐盐性生理指标的探讨[J].江苏农业学报, 7(3):29~33.
    蒋明义,杨文英,徐江.1994.渗透胁迫下水稻幼苗叶绿体降解的活性氧损伤作用[J].植物学报, 36(4):289~295.
    赖声渭,曹兵.2002.浅谈林木抗旱性评价方法[J].防护林科技, (3):48~49.
    李合生.2002.现代植物生理学[M].北京:高等教育出版社.
    李合生.2003.植物生理化实验原理和技术[M] .北京:高等教育出版社.
    李玉明,石德成,李毅丹等.2002.混合盐碱胁迫对高粱幼苗的影响[J ].杂粮作物,22 (1):41~45.
    梁峥,骆爱玲.1995.甜菜碱和甜菜碱合成酶[J].植物生理学通讯, 31(1):1~8.
    梁峥,赵原,骆爱玲等.1994.甜菜碱对呼吸酶的保护效应[J].植物学报, 36(2):947~951.
    梁正伟.1991.水稻品种耐盐碱特性及其生理研究[D].长春:吉林农业大学硕士论文.
    林栖凤.2004.耐盐植物研究[M].北京:科学出版社.
    刘凤荣,陈火英,刘杨等.2004.盐胁迫下不同基因型番茄可溶性物质含量的变化[J].植物生理与分子生物学学报, 30 (1):99~104.
    卢静君,李强,多立安.2002.盐胁迫对金牌美达丽和猎狗种子萌发的研究[J] .植物研究, 22 (3):328-332.
    陆静梅,李建东.1994.三种双子叶耐盐碱植物根的解剖研究[J].东北师范大学报(自然科学版), (3) :96~99.
    吕芝香,王正刚.1993.盐胁迫小麦苗吡咯-5-羧酸还原酶活性和游离脯氨酸积累[J].植物生理学报, 19(2):111~114.
    吕芝香,王正刚.1993.盐胁迫小麦苗吡咯-5-羧酸还原酶活性和游离脯氨酸积累[J].植物生理学报, 19(2):111~114.
    罗辉.2004.玉米幼苗的盐胁迫的适应[J].井冈山师范学院学报(自然科学版),25 (5):23~28.
    马翠兰,刘星辉,杜志坚.2003.盐胁迫对柚、福橘种子萌发和幼苗生长的影响[J].福建农林大学学报(自然科学版), 32 (3):320~324.
    马翠兰,刘星辉.2000.果树对盐胁迫的反应及耐盐性鉴定的研究进展[J].福建农业大学学报, 29(2):161~166.
    马焕成,王沙生.1998.胡杨膜系统的盐稳定性及盐胁迫下的代谢调节[J].西南林学院学报, 18 (1):15~23.
    毛桂莲,许兴,徐兆桢.2004.植物对盐耐受性的生理和生化的研究进展[J].中国生态农业学报, 29 (1):43~46.
    苗海霞,孙明高,夏阳等.2005.盐胁迫对苦楝根系活力的影响[J ].山东农业大学学报, 36 (1):9~12.
    盛彦敏,石德成,肖洪兴等.1999.不同程度中碱性复合盐对向日葵生长的影响[J ].东北师大学报(自然科学版), (4):65~69.
    石连旋.2007.松嫩不同盐碱化羊草草甸草原羊草光合及逆境生理生态特性研究[D].东北师范大学博士论文.
    石元亮,王晶,李晓云.1991.松嫩平原盐渍土积盐与碱化关系及发展趋势研究[J].吉林农业科学, 3:49~53.
    隋德宗.2006.盐胁迫对柳树无性系幼苗生长影响的研究[D].南京林业大学硕士学位论文.
    孙广玉.2005.盐碱土上马蔺的渗透调节和光合适应的研究[D].中国农业大学博士论文.
    谈健康,安树青,王铮锋等.1998.NaCl、Na2SO4和Na2CO3胁迫对小麦叶片自由基含量及质膜透性的比较研究[J].植物学通报, (15):82~86.
    谭常,杨惠东,余叔文.1980.植物生理实验手册[M].上海:上海科技出版社, 67~70.
    陶晶.2002.东北主要杨树抗盐机理及抗性品种选育的研究[D].东北林业大学博士学位论文.
    田福平,王锁民,郭正刚等.2004.紫花苜蓿脯氨酸含量的含水量、蛋株质量与抗旱性的相关性研究[J].草业科学, 21(1):3~6.
    汪良驹,刘友良,马凯.2000.盐碱胁迫下无花果细胞质膜与液泡膜H+-ATPCase活性对脯氨酸积累的影响.植物生理学报, 26(3):232~236.
    汪良驹,刘友良.1989.无花果耐盐机理的研究I-盐逆境下脯氨酸和可溶性蛋白的积累[J].南京农业大学学报, 12 (4):124~125.
    王树凤,陈益泰,徐爱春.2007.盐胁迫对2种珍贵速生树种种子萌发及幼苗生长的影响[J].植物资源与环境学报,16 (1):49~52.
    王勋陵,王静.植物形态结构与环境[M].1989.兰州:兰州大学出版社.
    魏海霞,孙明高,夏阳等.2005.NaCl胁迫对苦楝细胞膜透性和有机渗透调节物质含量的影响[J].甘肃农业大学学报, 40(5):599~603.
    翁锦周,林江波,林加耕等.2007.盐胁迫对桉树幼苗的生长及叶绿素含量的影响[J].热带作物学报, 28(4):15~20.
    吴春荣,李亚,张晓琴等.2009.不同品种白刺幼苗对盐分胁迫的适应性研究[J].甘肃科技, 25(20):154~180.
    吴永波,薛建辉.2002.盐胁迫对3种白蜡树幼苗生长与光合作用的影响[J].南京林业大学学报(自然科学版), 26 (3):19~22.
    武德,曹帮华,刘欣玲等.2007.盐胁迫下刺槐种子萌发主导因素的确定[J].山东科学, 20 (1):25~29.
    武德,曹帮华,于志鹏等.2007.盐碱胁迫下绒毛白蜡种子的萌发特性[J].江西农业大学学报, 29 (1):85~88.
    谢得意,王惠萍,王付欣等.2000 .盐胁迫对棉花种子萌发及幼苗生长的影响[J].中国棉花,27 (9):12~13.
    阎秀峰,孙国荣等.2000.星星草生理生态学研究[M].北京:科学出版社.
    杨继涛.2003.植物耐盐性研究进展[J].中国农学通报, 19(6):46~51.
    杨淑慎,高俊风,李学俊等.2001.植物叶片的衰老[J].西北植物学报, 21(6):1271~1277.
    殷立娟,祝玲.1989.羊草苗对盐碱胁迫的反应和适应性[J].东北师范大学报(自然科学版), 4:87~95.
    殷立娟,祝玲.1991.野大麦苗期抗盐碱性的研究[J].草地学报, 1 (1):142~148.
    於丙军,章文华.1997.NaCl对大麦幼苗根系蛋白质和游离氨基酸含量的影响[J].西北植物学报, 17 (4) :439~442.
    苑盛华,杨传平,焦喜才等.1996.盐渍条件下种子的萌发特性[J].东北林业大学报, 24 (6):41~46.
    张宝泽,赵可夫.1996.刺槐和沙枣耐盐性能的研究[J].山东科学, 9 (2):53~55.
    张川红,沈应柏,尹伟伦.2002.盐胁迫对几种苗木生长及光合作用的影响[J].林业科学, 38 (2):27~311.
    张景云.2007.黄瓜不同抗盐品种生理生化特性的研究[D].东北农业大学硕士论文.
    张润花,郭世荣,李娟.2006.盐胁迫对黄瓜根系活力、叶绿素含量的影响[J].长江蔬菜, 02:47~49.
    张志良.2003.植物生理学实验指导[M].第三版.北京:高等教育出版社.
    赵福庚,何龙飞,罗庆云.2004.植物逆境生理生态学[M].北京:化学工业出版社.
    赵可夫.植物抗盐生理[M].1993.北京:中国技术出版社.
    周桂莲.1998.麦类作物耐盐性机制研究进展[J].西北农业学报, 7(4):97~101.
    周希琴,吉前华.2004.盐胁迫下木麻黄幼苗抗氧化酶活性的变化及Ca2+对它的调控[J].植物生理学通讯,40 (2):184~186.
    朱凤岗,王忠胜,汪建民等. 1997.农科化学实验[M].北京:中国农业出版社.
    朱宇旌,张勇,胡自治等.2000.小花碱茅茎适应盐胁迫的显微结构研究[J],中国草地, 5:6~9.
    朱志华,胡荣海,宋景芝等.1996.盐胁迫对不同小麦品种种子萌发的影响[J].作物品种资源, (4):25~29.
    Abebe T,Guenzi AC,Martinb.2003.Tolerance of mannitol accumulating transgenic wheat to water stress and salinity[J].Plant Physiol, 131 (4):1748~1755.
    Abraham E,Rigo G,Szekely G.2003.Light-dependent induction of proline biosynthesis by abseisie aeid and salt stress is inhibited by brassinosteroid in Aiabidopsis,Plant Mol.Biol,51:363~72.
    Adams P,Thomas J C,Vernon D M,Bohnert H J,Jensen R G.1992.Distinct cellular and organismic responses to salt stress.Plant Cell Physiol, 33: 1215~1223.
    Ahlfors R,Langs,Overmyer K.2004.Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein protein interaction domain protein family and modulates abscisic acid,ethylene,and methyl jasmonate responses[J].Plant Cell, 16(7):1925~1937.
    Alberre R S,Thomber J P,FiseusE L.1997.Water stress on the eontent and organization of chlorophyll inmesophylland bundle sheath chloroplasts of maize[J].Plant Physiol. (59):351~353.
    Aldesuquy H S.1998.Effect of seawater salinity and gibberllic acid on abscisic acid, amino acids and water-use efficiency of wheat plants[J].Agrochimica, 42:147~157.
    Alshammary S F,YL Qian,S J Wallner.2004.Growth response of four grass species to salinity [J].Agricultural water management, (66):97~111.
    Apsem P,Aharon GS,Snedden WA.1999.Salt tolerance conferred by overexpression of a vacuolar Na+/ H+antiport in Arabidopsis [J].Science, 285(5431):1256~1258.
    Bailly C, Benamar A, Corbineau F, et al. 1996.Changes in malondialdehyde content and in superoxide dismutase, catacase and glutathione reductase activities in sunflower seeds relected to deterioration during accelerated aging[J]. Physiol Plant, 97: 104~110.
    Bartels D,Sunkar R.2005.Drought and salt tolerance in plants [J].Crit RevPlant Sci, 24(1):23~58.
    Bartels D,Sunkar R.2005.Drought and salt tolerance in plants[J].Crit Rev Plant Sci, 24(1):23~58.
    Beryhomieu P,Conejero G,Nublat A.2003.Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance[J].EMBOJ, 22(9):2004~2014.
    Binzel,M L,Hasegawa,P M,Rhodes D.1987.Plant Physiol, 84:1408~1415.
    Borsani O,Zhu J,Verslues P E.2005.Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis[J].Cell, 123(7):1279~1291.
    Bray E A.1997.Plant res ponses to water deficit.Trends Plant Sci, 2:48~54.
    Brini F,Hanin M,Mezghani I.2007.Overexpression of wheat Na+/H+ antiporter TaNHX1 and H+-pyrophosphatase TVP1 improve salt and drought stress tolerance in Arabidopsis thaliana plants[J].Exp Bot,58(2):301~308.
    Byerrem RU,Sato CS,Ball CD.1995.Utilization of betaine as a methyl group donor in tobacco[J].Plant Physiol, 31:374~377.
    Cambell L C,Pitman M G. Salinity and plant cells [M] .London:Macmillan ,1971.
    Cao W H,Liu J,He XJ.2007.Modulation of ethylene responses affects plant salt-stress responses[J].Plant Physiol, 143(2) :707~719.
    Cheng N H,Pittman J K,Zhu J K.2004.The protein kinase SOS2 activates the Arabidopsis H+/ Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance[J].Biol Chem, 279(4):2922~2926.
    Chowdhury, Bowling D.1995.Plant and Soil[J]. 171:317~322.
    Delauney AJ,VermaDPS.1993.Proline biosynthesis and osmoregulation in plants.Plant J, 4(2):215 ~231.
    Friedman R,Altman A.1989.The effect of salt st ress on poyamie bioynthsis and content in mung bean plants and in halophytes[J].Physiol Plant, 76:295~302.
    Fukuda A,Nakamura A,Tagiri A.2004.Function,intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice[J].Plant Cell Physiol, 45(2):146~159.
    Gao F,Gao Q,Duan X.2006.Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance[J].Exp Bot, 57(12):3259~3270.
    Garciadeblas B,Sennm E,Banuelosma.2003.Sodiumtransport and HKT transporters:the rice model[J].Plant J, 34(6):788~801.
    Garga K,Kimj K,Owens T G.2002.Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses [J].PNAS, 99(25):15898~15903.
    Gaxiolar A,Li J,Undurragas.2001.Drought and salt tolerant plants result fromoverexpression of the AVP1 H+-pump [J].PNAS, 98 (20):11444~11449.
    Ge QP,Lin P.2004.Effect of salinity on genetic differentiation of Kandelia candel population.Acta Ecologica Sinica, 24 (4):730~735.
    Guo S,Yin H,Zhang X.2006.Molecular cloning and characterization of avacuolar H+-pyrophosphatase gene,SsVP,from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis [J ].Plant Mol Biol, 60(1):41~50.
    Guo Y,Qiu Q S,Quintero F J.2004.Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and cterminal regulatory domain for salt tolerance in Arabidopsis thaliana[J].Plant Cell, 16(2):435~449.
    Gupta A S,Heinen J L,Holadaya S,et al.1993.Increased resistance to oxidative stress in trans-genic plants that overexpress chloroplastic that overexpress chloroplastic Cu /Zn superoxide dismutase[J].Proceedings of the NationalAcademy of Sciences, 90 (4):1629~1633.
    Hans-Werner K.1997.Ultrastructural and physiological changes in root cells of sorghum plants induced by NaCl,.Journal of Experimental Botany, 48(3):693~706.
    Hare PD,Cress WA,Van Staden J.1998.Dissecting the roles of osmolyte accumulation during stress[J].Plant Cell Envir, 21:535~553.
    Hare PD,Cress WA.1997.Metabolic implications of stress-induced proline accumulation in plants [J].Plant Growth Regulation, 21:79~102.
    He C,Yan J,Shen G.2005.Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field[J].Plant Cell Physiol, 46(11):1848~1854.
    Hilda P,Graciela R,Sergio A,et al.2003.Salt tolerant tomato plants show increased levels of jasmonic acid[J].Plant Growth Regul, 41:149~158.
    Holmetrom KO,Somersalo S,Mandal A.2000.Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine[J].J Exp Bot, 51(343):177~185.
    Hong Z , Lakkineni K , Zhang Zl . 2000 . Removal of feedback inhibition ofΔ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress [J].Plant Physiol, 122 (4):1129~1136.
    Horie T,Yoshida K,Nakayama H.2001.Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa[J].Plant J, 27(2):129~138.
    Hu H,Dai M,Yao J.2006.Overexpressing a NAM,ATAF,and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J].PNAS, 103(35):12987~12992.
    Huangmd,Wu WL.2007.Overexpression of TMAC2,a novel negative regulator of abscisic acid and salinity responses ,has pleiotropic effects in Arabidopsis thaliana[J].Plant Mol Biol, 63(4):557~569.
    Igarashi Y,Yoshiba Y,Sanada Y.Characterization of the gene forΔ1-pyrroline-5-carboxylate synthetase and correlation between the expression ofthe gene and salt tolerance in Oryza sativa L [J].Plant Mol Biol,1997,33(5):857~865.
    Ihitani M,Liu J,Halfter U.SOS3 function in plant salt tolerance requires N2myristoylation and calcium binding[J ].Plant Cell,2000,12 (9):1667~1678.
    Inan G,Zhang Q,Li P.2004.A halophyte and cryophyte Arabidopsis relative model systemand its applicability to molecular genetic analyses of growth and development of extremophiles[J].Plant Physiol, 135 (3):1718~1737.
    Johasson I,Karisson M,Shu Kla V K eta.1998.Water Trans port Activity of the Plasma Membrane Acquaporin RM 28A is Regulated by Phos-phorylation [J].Plant Cell, 10:451~459.
    Katiyar,Zhu J,Kim K.2006.The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis[J].PNAS, 103(49):18816~ 18821.
    Kawasaki S,Borchert C,Deyholos M.2001.Gene expression profilesduring the initial phase of salt stress in rice[J].Plant Cell, 13(4):889~905.
    Kumar S,Dhingra A,Daniell H.2004.Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells,roots,and leaves confers enhanced salt tolerance[J].Plant Physiol, 136(1):2843~2854.
    Laurie S,Feeneyka,Maathuis FJ M.2002.A role for HKT1 in sodium uptake by wheat roots[J ].Plant J, 32(2):139~149.
    Liu J,Ishitani M,Halfter U.2000.The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance[J].PNAS, 97(7):3730~3734.
    Liu W,Fairbairn DJ,Reid RJ.2001.Characterization of two HKT1 homologues from Eucalyptus camaldulensis that display intrinsic osmosensing capability[J].Plant Physiol, 127(1):283 ~294.
    Lu Yuanfang.1999.Effect of NaCl stress on water and phytosynthetisgas exchange of spinach leaves[J].Plant physiology communications, 35 (4).
    Lu Z X,Wang Z G.1993.Pyrroline-5-Carboxylate Reductase Activity and Free Proline Accumulation in Leaves of Triticum aestivum SeedlingsUnder Salt Stress[J].Acta Photophysiologica Sinica, 19 (2):1111~1114.
    Maeshima.2001.Tonoplast transporters:organization and function[J].Annu Rev Plant Physiol Plant Mol Biol, 52:469~497.
    Martinez J,Jiang X,Garciadeblas.2007.Conservation ofthe salt overly sensitive pathway in rice[J].Plant Physiol, 143(2):1001~1012.
    Maser P,Hosoo Y,Goshima S.2002.Glycine residues in potassium channel like selectivity filters determine potassium selectivity in four loop persubunit HKT transporters from plants[J].PNAS, 99(9):6428~6433.
    Mckay HM,Mason WL.1991.Physiologically indicators of tolerance to cold storage in Sitka spruce and Douglas—fir seedings[J].Canadian Journal Forest Research, (21):890~901.
    Millama,TownsendJ,Chang I F.2006.The Arabidopsis AtDi19 gene family encodes a novel type of Cys2/ His2 zinc-finger protein implicated in ABA independent dehydration,high-salinity stress and light signaling pathways[J].Plant Mol Biol, 61(1~2):13~30.
    Mittler R.O2002.xidative stress,antioxidants and stress tolerance[J].Trends Plant Sci, 7(9):405~410.
    Mittova V,Guym,Tal M.2004.Salinity up regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt tolerant tomato species Lycopersicon pennellii [J].Exp Bot, 55(399):1105~1113.
    Munns R.2005.Genes and salt tolerance:bringing them together[J].New Phytol, 167(3):645~663.
    Noamanmn,Dvora K J,Dong J M.2002.Genes inducing salt tolerance in wheat,Lophopyrum elongatum and amphiploid and their responses to ABA under salt stress[J].Prospects for Saline Agriculture,37:139~144.
    Peng Y H,Zhu YF ,Mao YQ.2004.Alkali grass resists salt stress through high K+ and an endodermis barrier to Na+ [J].J Exp Bot, 55(398):939~949.
    Popova L P,Stoinova Z G,Maslenkova LT.1995.Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L during salinity stress.Plant Growth Regul, 14:211~218.
    Qiu Q S,Guo Y,Quintero F J.2004.Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt overly sensitive (SOS)pathway[J].J Biol Chem, 279(1):207~215.
    Ramon S,Franciso A,Vicente M,et al.1999.Genetic Engineering of Salt and Drought Tolerance with Yeast Regulating Genes [J].Horticulture, 78 (1):261~269.
    Rao GG,Rao GRI. 1986.Pigment composition and chlorophllase activity in pigment pea and Gingkllty under NaCl Salinity [J]. Indian Journal Experimental Biology, 19:768~770.
    Ren Z H,Gao J P,Li L G.2005.A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J].Nat Genet, 37(10):1141~1146.
    Rodrigues SM,Andrademo,Gomesa P.2006.Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought,salinity,and oxidative stress [J].J Exp Bot, 57(9):1909~1918.
    Rubio F,Gassmann W,Schroederj I.1995.Sodium driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance[J].Science, 270(5242):1660 ~1663.
    Rusa,Yokoi S ,Sharkhuu A.2001.AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots[J].PNAS, 98(24):14150~14155.
    Saavedra L,Svessson J,Carballo V.2006.A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance[J].Plant J, 45(2):237~249.
    Testerm,Davenport R.2003,Na+ tolerance and Na+ transport in higher plants[J].Ann Bot(Lond), 91(5):503~527.
    Shen Y G,Du B X,Zhang WK.2002.AhCMO,regulated by stresses in Atriplex hortensis,can improve drought tolerance in transgenic tobacco[J].TheorAppl Genet, 105(6/7):815~821.
    Shi H,Lee B H,Wu SJ.2003.Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana [J].Nat Biotechnol, 21(1):81~85.
    Shi H,Xiong L,Stevenson.2002.The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance[J].Plant Cell, 14(3):575~588.
    Shinozaki K,Yamaguchi-Shinozaki K,Miz oguchi T,Uraro T, Katagiri T,NakashimaK,Abe H,I chimura K,Liu QA,Nanjyo T,Uno YLuchi S,SrkiM,Lto T,Hirayama T,Mikami K.1998.Molecular responses to water stress in Arabidop sis thaliana.Plant Res, 111:345~351.
    Shirasawa K,Takabe T.2006.Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress[J].Ann Bot (Lond), 98(3):565~571.
    Su H,Balderas E,Verestrella R.2003.Expression of the cation transporter McHKT1 in a halophyte [J].Plant Mol Biol, 52 (5):967~980.
    Suleyman.2000.Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in synechococcus SP[J].Plant physiology, (123):1047~1056.
    Sun W,Bernard C.2001.At-HSP17,encoding a small heat-shock protein in Arabidopsis,can enhance osmotolerance upon overexpression[J].Plant J, 27(5):407~415.
    Sunarpi,Horie T,Motoda J.2005.Enhanced salt tolerance mediated by AtHKT1 transporter induced Na+ unloading from xylem vessels to xylem parenchyma cells[J].Plant J, 44(6):928~938.
    Sunkar R,Zhu J K.2004.Novel and stress regulated microRNAs and other small RNAs from Arabidopsis[J].Plant Cell, 16(8):2001~2019.
    Taj IT,Seki M,Satou M.2004.Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray[J].Plant Physiol, 135(3):1697~1709.
    Taji T,Seki M,Satou M.2004.Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis related halophyte salt cress using Arabidopsis microarray[J].Plant Physiol, 135(3):1697~1709.
    Tarczynski MC,Jenaen RG,Bohnert HJ.1993.Stress protection of transgenic tobacco by production of the osmolyte mannitol[J].Science, 259(5094):508~510.
    Thomas JC , McElwain EF , Bohnert HJ . 1992 , Convergent induction of osmotic stress-responses[J].Plant Physiol, 100:416~423.
    Vaidyanathan R,Kuruvilla S,Thomas G.1999.Characterization and exp ression pattern of an abscisic acid and osmotic stress responsive gene from rice.Plant Science, 140:21~30.
    Wang B,Luttge U,Ratajcza R.Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa[J].Exp Bot,2001,52(365):2355~2365.
    Ward J M,Hirschi KD,SZE H.2003.Plants pass the salt[J].Trends Plant Sci, 8(5):200~201.
    William Hamilton E,A Scott.2001.Heckathorn.Mitochondrial Adaptations to NaCl[J].Plant Physiology, (126):1266~1274.
    Wong C E,Li Y,Labbe.2006.Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella,a close relative of Arabidopsis[J].Plant Physiol, 140(4):1437~1450.
    Wu CA,Yang GD,Meng Q W.2004.The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress[J].Plant Cell Physiol, 45(5):600~607.
    Wu L,Fan Z,Guo L.2003.Over-expression of an Arabidopsisδ-OAT gene enhances salt and drought tolerance in transgenic rice[J].Chi Sci Bul, 48(23):2594~2600.
    Xu D,Duan X,Wang B.1996.Expression of a late embryogenesis abundant protein gene,HVA1,from barley confers tolerance to water defic in transgenic rice[J].Plant Physiol, 110(1):249~257.
    Yamad A S,Katsuhara M,Kelly W B eta.1995.A Family of Transcripts Encoding Water Channel Proteins:Tissue-specific Expression in the Common Ice Plant [J].Plant Cell, 7(8):1129~1142.
    Yamaguchi,Shinozaki K.1994.A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought,low-temperature,or hight-salt stress[J].Plant Cell, 6(2):251~264.
    Yamaoto A,Bhuiyuan MN,Waditee R.2005.Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants[J].JExp Bot, 56(417):1785~1796.
    Yanagawa H,Watanabe K,NakamuraM.1989.Application of the feed ingredients for livestock to an artificial diet by using polyphagous strain of the silkworm[J].J. Seric. Sci. Jpn. 58 (5):401~406.
    Yang X,Liang Z.2008.Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants[J].Plant Mol Biol, 66(1/ 2):73~86.
    Yeo A.1998.Molecular Biology of Salt Tolerance in the Context of Whole Plant Physiology [J].Exp Bot, 49:915~929.
    Yu XW,Tang Z C.1998.Plant Physiology and Molecular Biology[M].Beijing: Science Publishing Company, 765~769.
    Zhang H X,Hodson J N,Willisms J P.2001.Engineering salt tolerant Brassica plants:characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation[J].PNAS, 98:12832~12836.
    Zhang X,Blumwald E.2001.Transgenic salt tolerant tomato plants accumulate salt in foliage but not in fruit[J].Nat Biotechnol, 19(8):765~768.
    Zhao K F.1999.Effect of salinily on the contents of osmotica ofmonocotyledonous halophytes and their contribution to osmotic adjustment[J].Acta Botanica Sincia, 41 (12):1287~1292.
    Zhu J K.2002.Salt and drought stress signal transduction in plants[J].Annu Rev Plant Biol, 53:247~273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700