棉花CCCH型锌指蛋白基因GhZFP1的分离、功能鉴定及其作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高盐和真菌胁迫是影响植物生长发育的重要影响因子。植物在长期的进化过程中形成了多种适应机制,其中包括胁迫条件下一些基因被诱导表达,并通过直接或间接的方式调控下游靶基因的表达,从而在提高植物抗逆性中发挥重要作用。因此,研究在适应胁迫过程中重要基因的表达调控及功能对了解植物在逆境条件下的响应和适应机制是十分必要的。锌指蛋白是一类生物体中广泛存在的具有典型锌指结构特征的超蛋白家族,几乎参与了生物体生长发育的各个阶段。根据锌指蛋白的结构及功能特点,锌指蛋白主要分为九大类:C2H2,C8,C6,C3HC4,C2HC,C2HC5,C4,C4HC3,CCCH(C,H分别代表半胱氨酸和组氨酸),一些与逆境相关的植物锌指蛋白相继被人们发现和研究。但迄今为止,与逆境胁迫相关的植物CCCH型锌指蛋白尚未有报道。
     本研究以世界上重要经济作物棉花为材料,构建了盐诱导棉花幼苗叶片cDNA文库,并用反向Northern差异筛选法获得一个与盐胁迫相关的棉花锌指蛋白基因GhZFP1。进一步序列比较及同源性分析表明,GhZFP1编码了一个CCCH型锌指蛋白,目前对该类型锌指蛋白的研究相对较少。因此本论文通过对其序列、表达及生物学功能的研究,探索了GhZFP1与植物抗逆性之间的关系,并利用酵母双杂交的方法,从棉花中筛选到9个与其相互作用的蛋白,从而进一步对其信号响应及分子作用机制有了更深层次的了解。主要研究结果如下:
     1、利用Clontech SmartTM cDNA Library ConstructionKit构建盐胁迫诱导棉花幼苗叶片cDNA文库,通过反向Northern差异筛选法获得一个与盐胁迫相关的锌指蛋白基因GhZFP1 5’端。设计特异引物进行3’-RACE克隆到GhZFP1基因的3’端,拼接后用特异引物扩增到1017bp的GhZFP1全长cDNA,编码一个339氨基酸的蛋白,推测其分子量为38.4kDa。
     2、同源序列比较表明,GhZFP1编码了一个CCCH型锌指蛋白,属于一个研究较少的CCCH型锌指蛋白家族。氨基酸序列分析表明GhZFP1有两个比较典型的CCCH型锌指(CX8CX5CX3H,CX5CX4CX3H),在其N端和C端分别有一个核定位信号序列(NLS)和一个可能的核输出信号序列(NES),跨膜结构分析表明在其190-213氨基酸之间存在一个跨膜结构域(TM),因此推测GhZFP1可能作为一种重要调控因子起作用。GhZFP1是棉花中首次被克隆的CCCH型锌指蛋白基因,对其表达及功能探索将大大促进整个CCCH型锌指蛋白家族的研究。
     3、Northern表达分析结果表明GhZFP1受NaCl、PEG和SA诱导表达,在一定时间范围内其表达水平随诱导时间的延长而增加,但不受CuSO4、ABA、4?C、CaCl2和乙烯诱导,说明GhZFP1对盐胁迫的非专一性,可以响应多种生物与非生物胁迫。在NaCl处理下,GhZFP1在茎和叶中均有表达,以茎中最高,在根中没有表达,并且在中棉所19号(ZMS19)中的表达量要显著高于在中棉所17号(ZMS17)中的表达,说明GhZFP1表达不仅具有一定的组织特异性而且与不同棉花品种的耐盐性也有关。Southern杂交结果表明GhZFP1在棉花基因组中是以单拷贝的形式存在的。
     4、聚类分析表明GhZFP1与拟南芥中一小类CCCH型锌指蛋白在整个系统进化树上形成独特的一枝。序列分析表明该分枝的每个成员除了具有保守的两个锌指外,还有一些其它共同特征,在其第一个锌指前都有一个由38个氨基酸组成的保守区,在其C端都有一个NES序列,基因内部都没有内含子。用SubLoc v1.0亚细胞定位分析软件预测它们都定位于细胞核内,但均未预测到可能的NLS序列。最近的拟南芥芯片研究和GhZFP1诱导表达分析也表明,该分枝成员的表达都受到不同生物和非生物胁迫诱导,因此命名其为与SRZFP亚家族(stress-related zinc finger protein subfamily)。本研究是在植物中首次发现与胁迫相关的CCCH型锌指蛋白家族,可能也是高等植物特有的CCCH型锌指蛋白家族。
     5、将GhZFP1-GFP融合蛋白在洋葱表皮细胞内瞬时表达,在洋葱表皮细胞的细胞核内观察到绿色荧光,表明GhZFP1编码了一个核定位蛋白。
     6、在烟草中超表达GhZFP1基因,用GhZFP1特异探针标记的Northern杂交结果表明GhZFP1只在转基因植株中表达。同野生型相比,转基因烟草能在200mM,250mM NaCl条件下正常生长,生长势、根长及鲜重都要明显好于野生型。经过200mM NaCl处理后,转基因植株Fv/Fm和K+/Na+比要明显高于野生型植株,尤其是体内积累的Na+离子含量要小于野生型植株,转基因植株地上部K+/Na+比要远高于野生型植株。这些结果说明GhZFP1的过量表达能够提高转基因烟草的耐盐能力。用立枯菌(Rhizoctonia solani)对烟草植株进行活体接菌实验,结果表明转基因植株较野生型抗病能力明显增强。
     7、从GhZFP1中选取N端大约185氨基酸的亲水区域构建原核表达载体pET30a-GhZFP1-185,并在大肠杆菌BL21(DE3)中表达融合蛋白,将该融合蛋白进行纯化获得抗原,免疫家兔,其抗血清效价为1:1000。
     8、用BD MatchmakerTM Library Construction & Screening Kits构建酵母双杂交文库,以GhZFP1 N端1-237氨基酸(m1)为诱饵蛋白对文库进行筛选,获得9个与其相互作用的靶蛋白。Northern杂交结果表明,其中的一个靶蛋白基因GZIRD21A的表达受PEG和SA诱导,而另一个靶蛋白基因GZIPR5的表达受NaCl和SA诱导,它们的诱导表达模式与GhZFP1的表达模式十分相似,初步推测GZIRD21A和GZIPR5可能在响应不同的生物和非生物胁迫中,与GhZFP1形成复杂的蛋白复合物,从而在不同的信号传递途径中发挥着重要作用。
     9、GhZFP1与GZIRD21A和GZIPR5的相互作用结构域的鉴定实验表明,GhZFP1与GZIRD21A和GZIPR5的相互作用具有一定的特异性,要进一步确定相互作用的最小范围,还需构建更多的GhZFP1缺失体。
High salinity and fungal pathogen attack are major stresses that are commonly encountered by plants during their developments. To adapt to the changes of environmental stresses, a series of physiological and biochemical reactions occur to eliminate or alleviate the physiological damage induced by improper surroundings. Upon exposure to the stresses, many genes are induced and their products either directly protect plants against stresses or further control the expression of other target genes. To understand the adaptive mechanisms of development of plants and their response to environmental stresses, it is imperative to know the function of crucial genes and their regulation during different stress response in plants。Zinc finger proteins are defined as a superfamily with typical zinc finger domain that involved in many aspects of plant growth and development and have been widely found in many animals and plants. They have been classified into nine types according to the structural and functional diversities: C2H2, C8, C6, C3HC4, C2HC, C2HC5, C4, C4HC3, CCCH (C, H represented Cysteine and Histidine, respectively). Until now, some zinc finger protein related to stress have been isolated and identified, but none of CCCH-type zinc finger proteins has been studied.
     In this experiment, a NaCl-induced cDNA library from cotton seedlings was constructed, and a new zinc finger protein gene GhZFP1 related to salt stress was identified by differential hybridization screening. Sequence and homology comparison revealed that GhZFP1 belonged to an unusual CCCH-type zinc finger proteins family. In this thesis, our studies are mainly focused on the sequence and expression analysis, function identification of the cotton gene GhZFP1. We used a yeast two-hybrid screen to identify proteins that interact with GhZFP1 expecting that such search might provide new insight into the function and molecular mechanism of GhZFP1 protein. The main results are as follows:
     1. A NaCl-induced cDNA library of cotton seedlings was constructed with Clontech SmartTM cDNA Library Construction Kit. We screened a salt-induced zinc finger protein gene GhZFP1 by differential hybridization from the cDNA library. The full length cDNA was further isolated by 3’-RACE and RT-PCR. The clone contains 1017 nucleotides and encodes 339 amino acid residues with the predicted molecular mass of 38.4 kDa.
     2. Sequence and homology comparison revealed that GhZFP1 encoded a putative CCCH-type zinc finger protein and belonged to a poorly studied CCCH-type zinc finger proteins family. Amino acid sequence analysis showed that GhZFP1 contained two typical zinc finger motifs (Cx8Cx5Cx3H, Cx5Cx4Cx3H). Moreover, a potential nuclear localization signal (NLS) and a putative leucine-rich nuclear export sequence (NES) were found in the N-terminal and C-terminal region of the protein, respectively。By the TMpred software, the deduced protein sequence contained one transmembrane (TM) segments at 190-213 amino acid residues, suggesting that it maybe act as an important regulator in responsing to stresses. GhZFP1 is the first CCCH-type zinc finger protein that had been identified and functionally characterized in cotton, and so a series of studies of it will accelerate the study of the whole CCCH-type zinc finger protein family.
     3. Northern blot results showed that the mRNA accumulation of GhZFP1 was induced by NaCl, PEG and SA treatments and kept increasing in a time-dependent course, but there was no significant GhZFP1 mRNA accumulation under 4?C, CuSO4, CaCl2, abscisic acid (ABA) and ethephon treatments, suggesting that GhZFP1 was not induced by specfic salt stress but induced by different biotic and abiotic stresses. Northern blot results also showed that GhZFP1 expression was up-regulated by NaCl stress in both leaves and stems, but not detected in roots. GhZFP1 mRNA was more abundant in ZMS19 than in ZMS17 under salt stress, indicating that GhZFP1 mRNA transcription levels were not only associated with tissue specificity but also associated with the salt tolerance of field-grown different cotton cultivars. Southern blot showed that it is a single-copy gene in cotton genome.
     4. The phylogenetic analysis of GhZFP1 indicated that several zinc finger proteins and GhZFP1 were most closely related to each other and significantly clustered together into a single branch in the tree, designated as SRZFP subfamily. Each member of this subfamily contained a conserved 38 amino acid sequence leading to the first putative zinc finger and a putative NES-like sequence at the C-terminal region, outside of these regions and zinc finger domains. Gene structural analysis revealed that each member of this subfamily was intronless gene. Expression profiles of SRZFP members in many microassay databases show that members of SRZFP subfamily might be involved in response to multiple stresses and play important roles in different signal transduction pathways.This is the first report showing that a CCCH-type zinc finger protein of SRZFP subfamily response to stresses in plants, indicating that SRZFP subfamily may be unique for higher plant species.
     5. GhZFP1-GFP fusion protein was constructed and transiently expressed in onion epidermal cells. The green fluorescence was detected in the nucleus of onion epidermal cells. These results are consistent with our observation that GhZFP1 encodes a nuclear-localized protein.
     6. GhZFP1 was introduced into tobacco plants. Northern blot analysis shows that GhZFP1 was expressed in plants of each transgenic line. The transgenic tobacco plants overexpressing GhZFP1 grew better than wild type tobacco in 200 mM,250 mM or 300 mM NaCl conditions, and then further verified by measuring changes in chlorophyll fluorescence (Fv/Fm) or endogenous Na+, K+ contents in shoots and roots , thereby validating the increased tolerance to salt stress. The enhanced resistance to Rhizoctonia solani in transgenic tobacco also demonstrated that disease resistance conferred by GhZFP1 was effective against fungal pathogens.
     7. A hydrophilic 5’fragment of GhZFP1 was selected to construct an E.coli expression vector pET30a-GhZFP1-185, and then it was induced by IPTG to express in E.coli strain BL21(DE3). The fusion proteins were purified and used to immune rabbits to obtain antiserum. The value of antibody reaches 1:1000.
     8. A yeast two-hybrid library was constructed with BD MatchmakerTM Library Construction & Screening Kits. By using the N-terminal 237 amino acids of GhZFP1 (m1) as bait, we screened and identified 9 positive clones that interacting with it. Northern blot analysis shows that expression of GZIRD21A was very rapidly induced by PEG and SA treatments, and GZIPR5 transcripts were induced by NaCl and SA treatments in cotton. These results are consisted with previous studies and resembled to the expression of GhZFP1, indicating that their interaction help to facilitates formation of higher order complexes and play important roles in transmitting different signal transduction pathway.
     9. Interaction regions analysis of GhZFP1 showed that it interacted with GZIRD21A and GZIPR5 by different amino acid sequences, To investigate the smallest binding sites of GZIRD21A and GZIPR5 in GhZFP1, a series deletions of GhZFP1 were need to be generated in the future study.
引文
1.慈龙骏,沈国舫。中国的土地荒漠化及沙区综合开发。面向二十一世纪的林业国际会议学术讨论会文集,1997,p21。
    2.陈西广等。几丁质的研究与进展.生物工程进展。1997,17(3):5-9。
    3.黄骥,王建飞,张红生。植物C2H2型锌指蛋白的结构与功能。遗传,2004,26:414-418。
    4.黄骥,张红生,曹雅君等。一个新的水稻C2H2型锌指蛋白cDNA的克隆与序列分析。南京农业大学学报,2002,25:110-112。
    5.蓝海燕,田颖川,等。 表达β-1 ,3-葡聚糖酶及几丁质酶基因的转基因烟草及其抗病性的研究。遗传学报,2000,27(1):70-77。
    6.刘友良,汪良驹。植物对盐胁迫的反应和耐盐性。余叔文,汤章城主编:植物生理与分子生物学(第二版),科学出版社,1998,752-769。
    7.欧阳石文,等。转几丁质酶基因研究进展。生物技术通报,2001,3:28-31。
    8.孙小芳,刘友良。棉花品种耐盐性鉴定指标可靠性的检验。作物学报,2001,27(6):794-801。
    9.田路明,黄丛林,张秀海,张潞生,吴忠义。逆境相关植物锌指蛋白的研究进展。生物技术通报,2005,6:12-16。
    10.王东,杨金水。棉花类耐盐锌指蛋白基因的克隆与结构分析。复旦学报 (自然科学),2002,41:42~45。
    11.谢先芝。抗虫转基因植物的研究进展及前景。生物工程进展,1999,19(6):47-52。
    12.邢全华,王斌。植物葡聚糖酶基因抗病作用的研究进展。遗传,2002,24(6): 715-720。
    13.闫龙凤,杨青川,韩建国,刘志鹏。植物半胱氨酸蛋白酶研究进展。草业学报,2005,14:11-19。
    14.余晓丹,沈晓明,颜崇淮。锌指蛋白结构和功能研究进展。国外医学卫生学分册,2004,31:3。
    15.张其德。盐胁迫对植物及其光合作用的影响(上)。植物杂志,1999,6:32-33。
    16.张民,余龙,胡培蓉,等。17 个新 C2H2 型锌指基因片段的分离与克隆。生物化学与生物物理学报,1998,30(5):465-470。
    17.朱祯。植物抗虫遗传操作策略。北京科学出版社,2000。
    18.Adams P, Thomas JC, Vernon DM, Bohnert HJ, Jensen RG. Distinct cellular and prganismic responses to salt stress. Plant and Cell Physiology, 1992, 33:1215-1223.
    19.Alexander D, Goodman R M, Gutrella M. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein Ia. Proc Natl Acad Sci USA, 1993,90: 7327-7331.
    20.Allen RD et al. Use of transgenic plants to study antioxidant defenses. Free Radic Bio Med, 1997, 23: 473-479.
    21.Alia et al. Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J, 1998, 16: 155-161.
    22.Al-khatib M, McNeilly T, Coolins JC. The potential of selection and breeding fro omproved salt tolerance in Lucerne (Medicago astiva L.). Eupphytica, 1993, 65: 43-51.
    23.Anderberg RJ, Wallker-Simmons MK. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Nati Acad Sci USA, 1992, 89: 10183-10187.
    24.Anthony DD, Merrick WC. Eukaryotic initiation factor (eIF)-4F. Implications for a role in internal initiation of translation. J Biol Chem, 1991, 266: 10218-10226.
    25.Apse MP, Aharon GS, Snedden WA et al. salt tolerance conferres by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 1999, 285: 256-1258.
    26.Arain AG, Baig MS, Rehman K. The performance of cotton strains under different fertility regimes. In: New Genetical Aproached to Crop Improvement II. 1998, 435-444.
    27.Ashraf M, Ahmad S. Genetic sffects for yield components and fiber characteristics in upland cotton (Gossypium hirsutum L.) cultivated under salinized (NaCl) conditions. Agronomie, 2000b, 20: 917-926.
    28.Ashraf M, McNeilly T. Improvement of slat tolerance in maize (Zea mays L.). Plant Breed, 1990, 104: 101-107.
    29.Ashraf M, Waheek A. Screening of local/exotic accession of lentil (Lens culinaris Medic.) to salt stress. Plant Soil, 1990, 154: 257-266.
    30.Ashraf M. Salt tolerance of cotton: some new advances. Crit Rev Plant Sci, 2002, 21: 1-32.
    31.Basset G, Raymond P, Malek L, et al. Changes in the expression and the enzymic properties of the 20S proteasome in sugar starved maize root s, evidence for an in vivo oxidation of the proteasome. Plant Physiology, 2002,128 (3):1149-1162.
    32.Berg JM, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science, 1996, 271: 1081-1085.
    33.Bernd W. Structure function relationship in class CA1 cysteine peptidase propeptides. Acta Biochemical Polonica,2003, 50(3):691-713.
    34.Binghua Jiang, Ulfah Siregar, Kenneth O, Willeford, Dawn S Luthe, and W Paul Williams. Association of a 33-Kilodalton cysteine proteinase found in corn callus with the inhibition of fali armyworm larva1 growth. Plant Physiol. (1995) 108: 1631-1640.
    35.Binzel ML, Hess FD, Bressan RA, Hasegswa PM. Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol, 1988, 86: 607-614.
    36.Blumwald E, Aharon GS, Apse MP. Sodium transport in plant cells. Biochim. Biophys. Acta, 2000, 1465: 140-151.
    37.Carballo E, Lai WS, & Blackshear PJ. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science, 1998, 281: 1001-1005.
    38.Carballo E, Lai WS, Blackshear PJ. Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood, 2000, 95: 1891-1899.
    39.Chen W P, Chen P D, Liu D J, et al. Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theor.Appl.Genet, 1999, 99: 755-760.
    40.Chung WS, Lee SH, Kim JC et al. Identification of a calmodulin-regulated soybean Ca2+-ATPase (SCA1) that is located in the plasma membrane. Plant Cell, 2000, 12: 1393 -1408.
    41.Cobley LS, Steele WM. Vegetables and fibers. In: An introduction to the botany of tropical crops, 2nd ed. 1976, p.252-257. Longman, London. New Yourk.
    42.Delaney KJ, Xu R, Zhang J, Li QQ, Yun KY, Falcone DL, Hunt AG. Calmodulin interacts with and regulates the RNA-binding activity of an Arabidopsis polyadenylation factor subunit. Plant Physiol, 2006, 140:1507-1521.
    43.Dracup M. Increasing salt tolerance of plants through cell culture requires greater understanding of tolerance mechanisms. Australian Journal of Plant Physiology, 1991, 18: 1-15.
    44.Enyedi A J, Raskin I. Induction of UDP-Glucose: Salicylic Acid Glucosyltransferase Activity in Tobacco Mosaic Virus-inoculated Tobacco (Nicotiana Tobacum) Leaves. Plant Physiol, 1993, 101: 1375-1380
    45.Epple P, Mack AA, Morris VR, et al. Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant-specific zinc finger proteins. Proc Nati Acad Sci USA, 2003, 100: 6831-6836.
    46.Eric P B, Bonnie J W, Zhao C S. Plant proteolytic enzymes:possible roles during programmed cell death. Plant Molecular Biology, 2000, 44:399-415.
    47.Fischer J, Becker C, Hillmer S, et al. The families of papain and legumain-like cysteine proteinases from embryonic axes and cotyledons of Vicia seeds: developmental patterns, intercellular localization and functions in globulin proteolysis. Plant Molecular Biology, 2000, 431:83-101.
    48.Fowers TJ. Chloride as a nutrient and as an osmoticum. In: Tinker B, L?uuchli A, eds. Asvanced in plant nutrition, New York, Praeger, 1988, 3: 55-78.
    49.Fryxell PA, Kraven LA, Stewart MD. A revision of Gossypium sect. randicalyx (Malvaceae), Including the description of six new species. Syst. Bot, 1992, 17(1): 91-114.
    50.Fung LE, Ma HC, Wand SS. X-ray microanalysis of ion distribution in salt tolerance andsalt intolerant popular genotypes. J.Beijing forestry University, 1996, 5: 23-30.
    51.Fukuda-Tanaka S, Inagaki Y, Yamaguchi T, Saito N, Iida S.Y. Colour-enhancing protein in blue petals. Nature, 2000, 407: 581.
    52.Guangxia Gao, Xuemin Guo, Stephen P. Goff1. Inhibition of Retroviral RNA Production by ZAP, a CCCH-Type Zinc Finger Protein. Science, 2002, 297:1703-1706.
    53.Gaxiola R, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, FinkGR. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+ pump. Proc Nati Acad Sci USA, 2001, 98:11444-11449.
    54.Gregory A. Taylor, Michael J. Thompsont, Wi S. Lai, and Perry J. Blackshears. Mitogens stimulate the rapid nuclear to cytosolic translocation of tristetraprolin, a potential zinc finger transcription factor. Molecular endocrinology, 1996, 10:140-146.
    55.Gorham J, Bridges J. Effects of calcium on growth and leaf ion concentrations of Gossypium hirsutum grown in saline hydroponic culture. Plant and Soil, 1995, 176: 219-227.
    56.Hajibagheri MA, Harvey DMR, Flowers TJ. Quantitative ion distribution within root cells of salt-sensitive and salt-tolerance maize varieties. New Phytol, 1987, 105: 367-379.
    57.Halfter U, Ishitani M, Zhu JK. The Arabidopsis SOSa protein kinase physically interacts with and is activated by the calcium0binding protein SOS3. Proc Nati Acad Sci USA, 2000, 97: 3725-3740.
    58.Harmon AC, Gribskov M, Gubrium E, Harper JF. The CDPK superfamily of protein kinase. New Phytol, 2001, 151:175-183
    59.Hassan H, Souad A, Edward N B, et al. Isolation and characterization of a gene encoding a drought-induced cysteine protease in tomato(L ycopersicon esculentum). Genome, 2001, 44:368-374.
    60.Hideki S, Takashi A, Tetsuo M, et al. Expression of a subset of theArabidopsis Cys2/His2-type zinc-finger protein gene family under water stress. Gene, 2000, 248: 23-32.
    61 . Hidenori Sassa, Hisashi Hirano. Style-specifc and developmentally regulatedaccumulation of a glycosylated thaumatin/PR5-like protein in Japanese pear (Pyrus serotina Rehd.). Planta 1998, 205:514-521.
    62.Holmstrom KO, Mantyla E, Welin B, Mandal A, Palva TE, Tunnela OE, Londesborough J. Drought tolerance in toacco. Nature, 1996, 379: 686-684.
    63.Holmstrom KO, Somersalo S, Mandal A, Plava TE, Welin B. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot, 2000, 51: 177-185.
    64.Hwang I, Aheen J. Two-component circuity in Arabidopsis cytokinin signal transduction. Nature, 2000, 413: 383-389.
    65.Hwang I, Goodman HM. An Arabidopsis thaliana root-specific kinase homolog is induced by dehydration, ABA, and NaCl. Plant J, 1995, 8:37-43.
    66.Ichimura K, Mizoguchi T, Yoshida R, Yuasa T. Shinozaki K. Various abiotic stresses rapidly active Arabidosis MAP kinases AtMPK4 and AtMPK6. Plant J, 2000, 24: 655-665.
    67.Iwasaki T, Kiyosue T,Yamaguchi S K, et al. The hydration-inducible rd17 (cor47) gene and its promoter region in Arabidopsis thaliana. Plant Physiology, 1997,115 (3):1287.
    68.Jang HJ, Pin KT, Kang SG et al. Molecular cloning of a novel Ca+-binding protein that is induced by NaCl stress. Plant Mol Biol, 1998, 37:839-847.
    69.Jaglo-Ottonsen KR, et al. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280:104-106.
    70.Jennifer T J ,John E M. A salt and dehydration-inducible pea gene, Cyp15a, encodes a cell wall protein with sequence similarity to cysteine protease. Plant Molecular Biology, 1995, 28:1055-1065.
    71.Jomak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H. Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Nati Acad Sci USA, 1996, 93: 11274-11279
    72.Kalir A, Poljakoff-Mayber A. Changes in activity of malate dehydrogenase, calase, peroxidase and superoxide dismutase in leaves of Halimione portulacides L. Allenexposed to high sodium chloride comcentration. Ann Bot, 1981, 47:75-85.
    73.Kasuga M, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol, 1999, 17:287-291.
    74.Kazuko Yamaguchi-Shinozaki, Masahiro Koizumi1, Satomi Urao, Kazuo Shinozaki. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel prote. Plant Cell Physiol, 1992, 33:217-224.
    75.Kiegerl S, Cardinale F, Siligan C, Gross A, Baudouin E, Liwosz A, Eklof S, Till S, Bogre L Hirt H, Meskiene I. SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell, 2000, 12: 2247-2258
    76.Kimberly J. Delaney, Ruqiang Xu, Jingxian Zhang, Q. Quinn Li, Kil-Young Yun, Deane L. Falcone, and Arthur G. Hunt. Calmodulin Interacts with and Regulates the RNA-Binding Activity of an Arabidopsis Polyadenylation Factor Subunit1. Plant Physiology, 2006, 140, :1507–1521.
    77.Kim JC, Lee SH, Cheong YH. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant Journal, 2001, 25:247-259.
    78.Knight H. Calcium signaling during abiotic stress in plants. Int Rev Cytol, 2000,195: 269-325
    79.Koiwa H, Katoh, Nakatsu T, et al. Purification and characterization of tobacco pathogenesis- related protein PR5d, an antifungal thaumatin-like protein. Plant Cell Physiol, 1997, 38: 783-791.
    80.Kong J, Cao WH, Zhang J S, et al. Acta Botanica Sinica, 2004, 46:573-577.
    81.Kovtun Y, et al. Functional analysis of oxidative stress-activated protein kinase cascade in plants. Proc Nati Acad Sci USA, 2000, 97: 2940-2945.
    82.Krishna SS, et al. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res, 2003, 31:532-550.
    83.Kudula J, Xu W, Harter K, Gruissem W, Luan S. Genes for calcineurin B-like protein inArabidopsis are differentially regulated by stress signals. Proc Nati Acad Sci USA, 1999, 96: 4718-4723.
    84.Lan H Y,Chen Z H. Glucanase and it’s developmental regulation and defensive reaction. Biotechnology Information, 1998, 4:10-15.
    85.Leung J, Bouvier-Durand M, Morris PC, Guerrier D, Chefdor F, Giraudat J. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science, 1994, 264:1448-1452.
    86.Leung J, Merlot S, Giraudat J. The Arabidopsis Abscisic acid- insensitive ABI2 and ABI1 genes encode homologous protein phosphatase involve in abscisic acid signal transduction. Plant Cell, 1997, 9: 759-771.
    87.Iida A, Kazuoka T, Torikai S, Kikuchi H,Oeda K. A zinc finger protein RHL41 mediates the light acclimatization response in Arabidopsis. Plant Journal, 2000, 24:191-203.
    88.Li J, Jia D, Chen X. HUA1, a regulator of stamen and carpel identities in Arabidopsis, codes for a nuclear RNA binding protein. Plant Cell, 2001, 13:2269-2281.
    89.Lippuner V, Martha S, Charles S. Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. The Journal of Biological Chemistry , 1996 , 271:12859-12866.
    90.Linthorst H J, van der Does C, Brederode F T, et al. Circadian expression and induction by wounding of tobacco genes for cysteine proteinase. Plant Molecular Biology, 1993, 21:685-694.
    91.Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required fro salt tolerance. Proc Nati Acad Sci USA, 2000, 97: 3730-3734.
    92.Liu J, Zhu JK. A calcium sensor homolog required for plant salt tolerance. Science, 1998, 280: 1943-1945.
    93.Li Z, Thomas TL. PEI1, an embryo-specific zinc finger protein gene required for heart-stage embryo formation in Arabidopsis. Plant Cell, 1998, 10:383-398.
    94.Li ZY, Chen SY. Theoretical and Applied Genetics, 2001, 102:363-368.
    95.Maas EV, and Hoffman GJ. Crop salt tolerance—Current assessment. J Irrig Drain Div Am Soc Civ Eng, 1977, 103:115–134.
    97.Mackay JP. A bacterial RNA that functions as both a tRNA and an mRNA. Trends Biochem Sci, 1998,23(1):1-4 .
    98.Malamy J, Carr J P, Klessig D F, et al. Salicylic Acid: A Likely Endogenous Signal in the Resistance Response of Tobacco to Viral Infection. Science, 1990, 250: 1002-1004.
    99.Manuel Mart??nez, Ignacio Rubio-Somoza, Pilar Carbonero and Isabel D??az.A cathepsin B-like cysteine protease gene from Hordeum vulgare (gene CatB) induced by GA in aleurone cells is under circadian control in leaves. Journal of Experimental Botany, 2002. 384: 951-959.
    100.Mark Kinkema, Weihua Fan, Xinnian Dong. Nuclear Localization of NPR1 Is Required for Activation of PR Gene Expression. Plant Cell, 12:2339–2350.
    101.Martin M, Busconi L. Membrane localizationof a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J, 2000, 24: 429-435.
    102.Masahiro K, Kazuko Y, Hideo T, et al, Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene, 1993,129 (2):175-182.
    103.Matheos DP, Kingbury TJ, Ahsan US, Cunningham KM. Crz1p, a calcineurin-dependent transcription facter that defferentially regulates gene expression in Saccharomyces cerevisiae. Gene Dev, 1997, 11:3445-3458.
    104.Metraux J P, Signer H, Ryals J, et al. Increase in Salicylic Acid of the Onset of System Acquired in Cucumber. Science, 1990, 250:1004-1006.
    105.Mendoza I, Rubio F, Rodriguez-Navarro A, Pardo JM. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J Bool Chem, 1994, 269: 8792-8796.
    106.Meyer K, Leube MP, Grill E. A protein phosphatase involved in ABA signal transduction in Arabidopsis thaliana. Science, 1994, 264:1452-1455.
    107.MikolajczykM, Olubunmi SA, Muszynska G, Klessig DF, Dorowolska G. Osmotic stressinduces rapid activation of a salicylic acid-induced protein kinase and a homog of protein kinase ASK1 in tobacco cells. Plant Cell, 2000, 12:165-178.
    108.Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi- Shinozake K, Matsumoto K, Shinozaki K. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Nati Acad Sci USA, 1996, 93:765-769.
    109.Morrisey E E, Ip H S, Lumm, et al. A zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev Biol, 1996, 177:309-322.
    110.Morrisey E E, Ip H S, Tang Z, et al. GATA-4 activates transcription via two novel domains that are conserved within the GATA-4/5/6 subfamily. J Biol Chem, 1997, 272:8515-8524.
    111.M. Onishi, H. Tachi, T. Kojima, M. Shiraiwa, H. Takahara. Molecular cloning and characterization of a novel salt-inducible gene encoding an acidic isoform of PR-5 protein in soybean. Plant Physiology and Biochemistry, 2006, 44:574–580.
    112.Mukhopadhyay A, Vij S, Tyagi A K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Nati Acad Sci USA, 2004, 101: 6309-6314.
    113.Munns R, Cramer GR, Ball MC. Interactions between rising CO2, soil salinity and plant growth, In: Luo Y, Mooner HA, eds. Carbondioxide and environmental stress. London: Academic Press, 1999:139-167.
    114.Munns R. Comparative physiology of salt and water stress. Plant Cell and Environment, 2002, 25: 239-250.
    115.Nakamura T, Liu Y, Hirata D, Namba H, Harada SI, Hirokawa T, Miyakawa T. Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions. EMBO J, 1993, 12: 4063-4071.
    116.Neumann P. Salinity resistance and plant growth revised. Plant Cell and Environment, 1997, 20:1193-1198.
    117.Niu X, Bressan RA, Hasegswa PM, Pardo JM. Ion homeostasis in NaCl stress environments. Plant Physiol, 1995, 109:735-742.
    118.Ota IM, Varshavsky A. A yeast protein similar to bacterial two-component regulators. Science, 1993, 262: 566-569.
    119.Pandey GK, Reddy VS, Reddy MK, Deswal R, Bhattacharya A, Sopory SK. Transgenic tobacco expressing Entamoeba histolytica calcium binding protein enhanced growth and tolerance to slat stress. Plant Science, 2002, 162: 41-47.
    120.Pardo JM, Reddy MP, Yang S et al. Stress signaling through Ca2+ /calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc Nalt Acad Sci USA, 1998, 95: 9681-9686.
    121.Patharkar OR, Cushman JC. A stress-induced calcium-dependent protein kinase from Mesembryanthermum crystallium phosphorylates a two-component psuedo-response regulator. Plant J, 2000, 24: 679-691.
    122.Pechan T,Ye L ,Chang Y,et al . A unique 332kD cysteine proteinase accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and other Lepidoptera. Plant Cell, 2000,12(7):1031-1040.
    123.Piao HL, Pih KT, Lim JH et al. An arebidopsis GSK3/shaggy-like gend that complements yeast salt stress-sensitive mutants is induced by NaCl and Abscisic acid. Plant Physiol, 1999, 119: 527-1534.
    124.Olga A. Koroleva1, Matthew L. Tomlinson1, David Leader, Peter Shaw1 and John H. Doonan1. High-throughput protein localization in Arabidopsis using Agrobacterium- mediated transient expression of GFP-ORF fusions.The Plant Journal, 2005, 41:162–174.
    125.Qiu QS, Guo Y, Dietrich M, Schumaker KS, Zhu JK. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Nati Acad Sci USA, 2002, 99:36-8441.
    126.Qiu, QS, Guo Y, Quintero FJ, Pardo JM, Schumaker KS, Zhu JK. Regulation of vacuolar Na+/H+ exchanger in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J Biol Chem, 2004, 279:207-215.
    127.Renu K C, Srivalli B, Ahlawat Y S. Drought induces many forms of cysteine proteasesnot observed during natural senescence. Biochemical and Biophysical Research Communication, 1999, 255 (2):324-327.
    128.Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105-2110.
    129.Rizhsky L, Davletova S, Liang H, et al. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. The Journal of Biological Chemistry, 2004, 279:11736-11743.
    130.Rojo E, Martin R, Carter C , et al. VPE gamma exhibit s a caspase-like activity that cont ributes to defense against pathogens. Current Biology, 2004, 14(21):1897-1906.
    131 . Roxas VP, Smith RHJR, Allen ER, Allen RD. Overexpression of glutathione S-transferase/Glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Bietechnol, 1997, 15: 988-991.
    132.Ruth S. Phillips, Silvia B. V. Ramos, and Perry J. Blackshear. Members of the tristetraprolin family of tandem CCCH zinc finger proteins exhibit CRM1-dependent nucleocytoplasmic shuttling. J Biol Chem, 2002, 277:11606-11613.
    133.Sakai H, Medrano L J, Meyerowitz E M. Role of SUPERMAN in maintain Arabdopsis floral whorl boundaries. Nature, 1995, 378: 199-203.
    134.Sakamoto A, et al. Genetic engineering of biosynthesis of glysinebetaine enhances tolerance to various stresses. In Plant Tolerance to Abiotic Stresses in Agriculture: Role of Genetic Engineering (Vol.) (Cherry JH et al.). 2000, 83:95-104. Kluwer Academic Publishers.
    135.Sakamoto H, Araki T, Meshi T, Iwabuchi M. Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress. Gene, 2000, 248:23-32.
    136.Sakamoto H, Maruyama K, Sakuma Y, et al. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiology, 2004, 136: 2734-2746.
    137.SakamotoA, MinamiM, HuhGH,et al. The putative zinc-finger proteinWZF1 interactswith a cis-acting element of wheat histone genes. EurJ Biochem, 1993, 217:1049-1056.
    138.Sang-Keun Oh, So Young Yi, Seung Hun Yu, Jae Sun Moon, Jeong Mee Park, Doil Choi. CaWRKY2, a Chili Pepper Transcription Factor, Is Rapidly Induced by Incompatible Plant Pathogens. Mol. Cells, 2006, 22:58-64.
    139.Schaffrath U, Mauch F, Freydl E. Constitutive expression of the defense-related Rir1b gene in transgenic rice plants confers enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol.Biol, 2003, 43:59-66.
    140.Schmitz RJ, Hong L, Michaels S, Amasino RM. FRIGIDA-ESSENTIAL 1 interacts genetically with FRIGIDA and FRIGIDA-LIKE 1 to promote the winter-annual habit of Arabidopsis thaliana. Development, 2005, 132:5471-5478.
    141.Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D. Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52:627-658.
    142.Searles MA, Lu D, Klug A. The role of the central zinc fingers of transcription factor IIIA in binding to 5S RNA. J Mol Biol, 2000, 301(1):47-60.
    143.Sheen J. Mutational analysis o protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc Natl Acad Sci USA, 1998, 95:975-980.
    144.Shen B, Jensen RG, Bohnert HJ. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol, 1997, 113:1177-1183.
    145.Shi HZ, Francisco J, Quintero FJ, et al. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell, 2002, 14:465-477.
    146.Shi HZ, Ishitani M, Kim C, Zhu JK. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Pro Natl Acad Sci USA, 2000, 97:6896-6901.
    147.Shi HZ, Lee BH, Wu S-J, Zhu J-K. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabisopsis thaliana. Nat Biotech, 2002, 21:81-85.
    148.Shi J, Kim KN, Ritz O, Albrecht V, Gupta R, Harter K, Luan S, Kudla J. Novel protein kinases associated with calcineurin B-like clacium sensors in Arabidopsis. Plant Cell,1999, 11: 2393-2406.
    149.Simpson D J. Proteolytic degradation of cereal prolamins-the problem with proline. Plant Science, 2001, 161(5):825-838.
    150.Soderman EM, Brocard IM, Lynch TJ, and Finkelstein RR. Regulation and function of the Arabidopsis ABA-insensitive4 gene in seed and abscisic acid response signaling networks. Plant Physiol, 2000, 124:1752–1765.
    151.Steponkus PL, Leipham A, Fleck RA, Langis R, Kasuga M, Yamaguchi-Shinozaki K. and Shinozaki K. Overexpression of DREB1A results in a prodigiouis increase in the freezing tolerance of Arabidopsis thaliana. Plant Biology, 2000, 436.773-784.
    152.Storey R, Pitman MG, Stelzer R, Carter C. X-ray micrio-analysis of cells and cell compartments of Atriplex spongiosa. J Exp Bot, 1983, 34:778-794.
    153.Sugano S, Kaminaka H, Rybka Z, Catala R, Salinas J, Matsui K, Ohme-Takagi M, Takatsuji H. Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant Journal, 2003, 36:830-841.
    154.Sugino M, Hibino T, Tanaka Y, Nii N, Takana T. Overexpression on DnaK from a halotolerant cyanobacterium Aphanothece halophytica acquires resistance to salt stress in transgenic tobacco plants. Plant Science, 1999, 146: 81-88.
    155.Szabolcs I. Soil s and salinization. In:Pessarakli M, ed. Handbook of plant and crop stress. New York: Marcel Dekker, 1994:3-11.
    156.Tadamasa U, Shigemi S, Yuko O, et al. Circadian and senescence enhanced expression of a tobacco cysteineprotease gene. Plant Molecular Biology, 2000, 44:649-657.
    157.Takatsuji H, Matsumoto T. Target-sequence recognition by separate-type Cys2/His2 zinc finger proteins in plants. J Biol Chem, 1996, 271(38):23368-23373.
    158.T?htiharju S, Palva T. Antisense inhibition of protein phophatase accelerates cold acclimtion in Arabidopsis thaliana. Plant J, 2001, 26: 461-470.
    159.Taylor GA, Thompson MJ, Lai WS, Blackshear PJ. Mitogens stimulate the rapid nuclear to cytosolic translocation of tristetraprolin, a potential zinc-finger transcription factor. Mol Endocrinol, 1996, 10:140-146.
    160.Phillips RS, Ramos SB, Blackshear PJ. Members of the tristetraprolin family of tandem CCCH zinc finger proteins exhibit CRM1-dependent nucleocytoplasmic shuttling. J Biol Chem, 2002, 277:11606-11613.
    161.Tester M, DavenportR. Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 2003, 91: 503-527.
    162.Tibor Pechan, Lijun Ye, Yu-min Chang, Anurina Mitra, Lei Lin, Frank M. Davis, W. Paul Williams, and Dawn S. Luthe. A Unique 33-kD Cysteine Proteinase Accumulates in Response to Larval Feeding in Maize Genotypes Resistant to Fall Armyworm and Other Lepidoptera. Plant Cell, 2000, 12:1031–1040.
    163.Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, and Kobayashi H. A recessive Arabidopsis mutant that grows photoautotrophiclly under salt stress shows enhanced active oxygen detoxification. Plant Cell, 1999, 11:1195-1206.
    164.Urao T, Katagiri T, Mizoguchi T, Tamaguchi–Shinozake K, Hyashida N, Shinozaki K. Two genes that enclde Ca2+ dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Mol Gen Genet, 1994, 244:331-340.
    165.Venema K, Quintero Fj, Pardo JM, Donaire JP. The Arabidopsis Na+/H+ exchanger AtNHX1 catalyses low affinity Na+ and K+ transport in reconstituted lyposomes. Journal of Biological Chemistry, 2002, 277: 2413-2418.
    166.Vichveger K, Dordschbal B, Roos W. Elicitor-activated phopholipase A2 generates lysophosphatidylcholines that mobilize the vacuolar H+ pool for pH signaling via the activation of Na+ dependent proton fluxes. Plant Cell, 2002, 14:1509-1525.
    167.Vierstra R D. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends in Plant Science, 2003, 8(3):135-142.
    168.Wang H, et al. ICK1, a cyclin-dependent protein kinase inhibitor form Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J, 1998, 15: 501-510.
    169.Wieland J, Naitsche Am, Strayle J et al. The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na+ pump in the yeast plasma membrane. EMBO J, 1995, 14: 3870-3882.
    170.Xiong L and Zhu JK. Salt Tolerance in: The Arabidopsis Book. American Society of Plant Biologists, 2002.
    171.Xu D, Duan X, Wand B, Hong B, Ho THD, Wu R. Expression of a late embryogenesis abundant protein gene HVA1, from barley confers tolerance to water deficit and slat stress in transgenic rice. Plant Physiology, 1996, 110: 249-257.
    172.Yang KY, Liu Y, Zhang S. Acttivation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci USA, 2001, 98:741-746.
    173.Zhang H-X and Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotech, 2001, 19:765-768.
    174.Zhang SQ, Klessig DF. MAPK cascades in plant defense signaling. Trends Plant Science, 2001, 6:520-534.
    175.Zhaosheng Kong, Meina Li, Wenqiang Yang, Wenying Xu, and Yongbiao Xue. A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiology, 2006, 141:1376–1388.
    176.Zhu B, Chen T H, Li P H. Analysis of late-blight disease resistance and freezing tolerance in transgenic potato plants expressing sense and antisense genes for an osmitin-like protein. Planta, 1996, 198:70-77.
    177.Zhu JK et al. Moleculaar aspects of osmotic stress in plants. Crit Rev Plant Sci, 1997, 16: 253-277.
    178.Zhu JK. Plant salt tolerance. Trends Plant Sci, 2001, 6:66-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700