苹果GPP和IMP基因的cDNA克隆、原核表达及抗体制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗坏血酸(AsA)是生物体内重要的抗氧化剂和很多酶的辅因子,植物体内的AsA是人类天然AsA的来源。作为大众水果的苹果,其AsA含量并不高,严重影响了其品质。研究植物AsA的合成代谢途径进而改善植物组织中AsA的含量对人类健康和植物自身都有重大意义。研究苹果AsA合成关键酶基因的功能是研究苹果果实AsA合成积累、机制的基础。本实验主要对植物AsA生物合成途径中的两个关键酶——L-半乳糖-1-磷酸磷酸酶(GPP)和肌醇-1-磷酸磷酸酶(肌醇单磷酸酶,IMP)基因进行了以下研究,以期为进一步研究GPP、IMP基因的功能奠定基础,进而从分子水上为苹果果实AsA合成、积累机理的研究提供理论依据。
     用提取的苹果幼果总RNA做反转录,通过RT-PCR扩增GPP和IMP基因的cDNA全长序列,并分别对其序列进行生物信息学分析。对亚克隆得到的GPP、IMP基因和pET-32a载体同时进行双酶切,经连接、转化构建pET-GPP和pET-IMP表达载体,并对二者的重组菌液进行IPTG诱导,研究其融合蛋白的特性。利用His-GPP和His-IMP融合蛋白的包涵体制备抗原免疫家兔,制备抗血清并检测其特异性。用丙酮-三氯乙酸法提取苹果不同组织的总蛋白,采用Western杂交方法探索苹果GPP和IMP基因编码蛋白在苹果不同组织中的表达情况。实验结果如下:
     1.克隆得到了全长为1121 bp的苹果GPP基因序列和全长为1201bp的IMP基因序列,开放阅读框分别为813 bp和1008 bp,分别编码270和335个氨基酸。通过序列分析获得了预测的GPP和IMP基因编码蛋白的理化性质、二级结构、三级结构等结果,发现二者存在一定的相似度。
     2.根据克隆得到的GPP、IMP基因序列和pET-32a的序列重新设计引物引入合适的酶切位点,从pMD-GPP和pMD-IMP中亚克隆得到目的片段,经双酶切、连接和转化成功的构建了pET-GPP和pET-IMP表达载体并在E.coli BL21中得到高效表达,其表达产物分子量分别49 KD和57 KD左右。经过原核表达分析可知,His-GPP最适的IPTG诱导浓度和时间分别是0.1 mmol?L-1和5 h,而His-IMP则为0.01 mmol?L-1和4 h,且二者的融合蛋白均主要以包涵体的形式存在。
     3.用佐剂乳化His-GPP和His-IMP重组蛋白的包涵体免疫家兔,获得的抗血清分别经纯化的His-GPP和His-IMP可溶性蛋白检测,Western结果显示均具较高的特异性。
     4.丙酮-三氯乙酸法提取得到了高质量的苹果组织总蛋白,经Western杂交实验在苹果各组织中均检测到了大小分别约为33 KD和39 KD的不同强度的GPP和IMP蛋白表达信号。
L-Ascorbic acid (AsA) is one of the most important antioxidants and cofactor for many enzymes, it is the main source of natural AsA to people. Apple fruit is a kind of favorite fruit, but it contains lower AsA than other fruit, which seriously affected its quality. Studying the AsA biosynthesis of plant and improving the content of AsA in plant tissues are significant for plant themselves and human health. Studying the function of AsA biosynthesis and metabolism genes which involved in apple fruit is the basis of apple fruit AsA accumulation mechanism. This experiment focused on the L-galactose-1-P phosphatase(GPP) and Myo-inositol-1-P phosphatase(IMP) which involved in AsA biosynthesis and the results are useful for further study of function of GPP and IMP gene, and they also provide the theoretical basis of the molecular mechanism of synthesis and accumulation of AsA in apple fruit.
     The complete GPP and IMP gene sequences were amplificated by RT-PCR method, and the bioinformatic tools were used to analyze the sequences. In order to further understand the function of the two genes, expression plasmids of GPP and IMP gene were constructed with pET-32a and expressed in E.coli BL21, IPTG was added to induce the fusion protein expression,then analyzed the characteristics of the fusion proteins. His-GPP and His-IMP fusion proteins were used to immunolize rabbits to prepare Polyclonal antibody, then the specific recognition were detected by Western blot experiment, and the expression of GPP, IMP gene in apple different tissues were analysised by the same method. The main results were as follows:
     1. The full-length cDNA of GPP is 1121 bp and contains a complete open reading frame of 813 bp, which encoding 270 amino acids. And the full-length cDNA of IMP is 1201 bp and contains a complete open reading frame of 813 bp, which encoding 335 amino acids. Homology analysis of their sequences showed high homology with the cDNA from other plants, respectively. Through the bioinformatic analyze, we found the secondary structure and tertiary structure of GPP are similar to IMP’s, maybe it is the explanation of the similar function between GPP and IMP gene.
     2. We signed other two pairs of specific primers based on the sequences of GPP, IMP gene and pET-32a, then GPP and IMP gene were subcloned into the expression vector pET-32a. The recombinant expression vectors pET-GPP and pET-IMP were digested by BamHI and SalI and the results show that GPP and IMP were correctly linked to the pET-32a. The recombinant expression vectors pET-GPP and pET-IMP were transformed into E.coli BL21 cells and then induced by IPTG, the molecular weights of the cells specifically expressed proteins are 49 KD and 57 KD based on SDS-PAGE gel results, respectively. They are identical to the known His-GPP and His-IMP fusion proteins, so the GPP and IMP gene were expressed in E.coli BL21. We also fixed the best expression condition by compare the expression result of different IPTG density and cell induced culture times. The result shows that the best expression condition for His-GPP induced is 0.1 mmol?L-1 IPTG at 28℃for 5 h, and the best expression condition for His-IMP induced is 0.01 mmol?L-1 IPTG at 37℃for 4 h. Through solublity analysis we found His-GPP and His-IMP fusion proteins were almost expressed in inclusion body.
     3. Inclusion body of His-GPP and His-IMP from E.coli induced by IPTG were used as antigens, then injected into rabbit to prepare the antibodies. The validity of polyclonal antibodies were confirmed by western blot and the results show that they had specific antigen-antibody recognition to the His-GPP and His-IMP.
     4. Total Proteins were extracted from different tissues of apple and separated by SDS-PAGE,then transferred to a PVDF membrane. Western blot was Performed using antibodies against GPP and IMP, respectively. Specific bands about 33 KD and 39 KD were found in Western blot immune images. The reason of the appearance of these bands are the expression signals of GPP and IMP gene in apple tissues were detected.
引文
崔晓峰,刘箭,杨晓贺,吴显荣. 1995.小分子量热激蛋白胶体金免疫电镜定位.植物学报, 37(8): 652~654
    丁坤善,郑彩霞,包仁艳,姜春宁. 2005.油松雌性不育系球果蛋白质双向电泳技术的建立.植物学通报, 22(02): 190~197
    高静. 2009.苹果果实L-半乳糖脱氢酶基因cDNA克隆及其功能的初步鉴定. [硕士学位论文].杨凌:西北农林科技大学
    郝炜. 2005.中国葡萄属野生种抗白粉病基因原核表达及抗体制备.[硕士学位论文].杨凌:西北农林科技大学
    何文亮,黄承红,杨颖丽.2004.盐胁迫过程中抗坏血酸对植物的保护功能.西北植物学报, 12: 2196~2201
    黄景花,张红,李明. 2003.采用免疫胶体金电镜技术对黄瓜幼叶叶肉细胞中的钙调素(CaM)进行定位.园艺学报,30(6): 728~730
    李云琴,李桂新. 2004.烟草曲茎病毒复制蛋白基因的原核表达和免疫定位.微生物学报, 44(6): 745~748
    廖关德,谢秋玲,林剑. 2002.外源基因在大肠杆菌中德高效表达.生命科学, 14(5): 283~287
    林玲. 2006.中国华东葡萄抗坏血酸过氧化物酶基因的原核表达及抗体制备[硕士学位论文].杨凌:西北农林科技大学
    马春花,马锋旺,李明军. 2006.外源抗坏血酸对离体苹果叶片衰老的影响.园艺学报, 33: 1179~1184
    马雪梅,黄秉仁,蔡良婉. 1995. ThioFusion表达系统-大肠杆菌中表达可溶性蛋白的重大突破.生命的化学, 15(3):35~37
    庞勇,马锋旺,徐凌飞. 2005.抗坏血酸对苹果组培苗耐热性的诱导效应.果树科学, 22: 167~169
    尚增振. 2009.阔叶猕猴桃果实维生素C合成相关酶cDNA克隆与表达分析. [硕士学位论文].杨凌:西北农林科技大学
    吴丹,仇华吉,童光志. 2002.几种表达系统的比较.生物技术通报, (2): 30~34
    余皓.2007.中国野生华东葡萄白河-35-1抗白粉病PR10基因的克隆与表达分析. [硕士学位论文].杨凌:西北农林科技大学
    张敏. 2009.苹果果实抗坏血酸合成酶基因的克隆及定量表达分析. [硕士学位论文].杨凌:西北农林科技大学
    周邦军. 2006.中国华东葡萄抗白粉病新基因原核表达与抗体制备. [硕士学位论文].杨凌:西北农林科技大学
    Agius F, Gonzalez-lamothe R, Caballero J L. 2003. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nature Biotechnology, 21: 177~181
    Alhagdow M, Mounet F, Gilbert L. 2007. Silencing of the mitochondrial ascorbate synthesizing enzyme L-Galactono-1,4-Lactone dehydrogenase affects plant and fruit development in Tomato. Plant Physiology, 145:1408~1422
    An H M, Fan W G, Chen L G. 2007. Molecular characterisation and expression ofL-galactono-1,4-lactone dehydrogenase and L-ascorbic acid accumulation during fruit development in Rosa roxburghii. J Horti Sci Biotech, 82: 627~635
    Argelia L, Boris I C, Pedro M, Craig L N. 2004. myo-Inositol Oxygenase Offers a Possible Entry Point into Plant Ascorbate Biosynthesis. Plant Physiol, 133: 1200~1205
    Attolico A D, De Tullio M C. 2006. Increased ascorbate content delays flowering in long-day grown Arabidopsis thaliana. Plant Physiol Biochem, 44: 462~466
    Austin C. 2003. Novel approach to obtain biologically active recombinant heterodimeric proteins in Escherichia coli.J Chromatogran B Analyt Technol Biomed Life Sci, 786(1-2): 93~98
    Balestrasse K B, Gardey L, Gallego S M E L.2001. Response of antioxidant defence system in soybean nodules and roots subjected to cadmium stress.Australian Journal of Plant Physiology, 28: 497~504
    Barth C, De Tullio M , Conklin P L.2006. The role of ascorbic acid in the control of flowering time and the onset of senescence. Journal of Experimental Botany, 57: 1657~1665
    Bartoli C G, Pastori G M, Foyer C H. 2000. Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexesⅢandⅣ. PlantPhysiol, 123: 335~343
    Benzie I F. 2003. Evolution of dietary antioxidants. Comp Biochem. Physiol A Mol Integr Physiol, 136: 113~126
    Bharti S, Garg O P. 1970. Changes in the ascorbic acid content of the lateral buds of soybean in relation to flower induction. Plant Cell Physiol, 11: 723~727
    Burkhard R. 1996. Predicting one dimensional protein structure by profile based neural networks.Methods Enzymol, 266: 525~539
    Carr A C, Frei B. 1999. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Clin Nutr, 69: 1086~1107
    Chinoy J J, Nanda K K, Garg O P.1957. Effect of ascorbic acid on growth and flowering of Trigonella foenum-graecum and Brassica chinensis. Physiol Plant, 10: 869~876
    Chow C H, Aristidou A A, Meng S Y.1995. Characterization of a pH-inducible promoter system for high-level expression of recombinant protein in Escherichia coli. Biotechno Bioeng, 47: 186~194
    Citterio S, Sgorbati S, Scippa S. 1994. Ascorbic acid effect on the onset of cell proliferation in pea root. Physiol Plant, 92: 601~607
    Conklin P L, Gatzek S, Wheeler G L. 2006. Arabidopsis thaliana VTC4 encodes l-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme, J Biol Chem, 281: 15562~15570
    Cuypers A, Vangronsveld J C H. 2001. The redox status of plant cells(AsA and GSH)is sensitive to zinc imposed oxidative stress in roots and primary leaves of phaseolus vulgaris.Plant Physiol Biochem, 39: 657~664
    Dale G E, Broger C, Langen H. 1994. Improving protein solubility through rationally designed amino acid replacements:solubilization of the trimethoprin-resistant type S1 dihydrofolate reductase.Protein Eng, 7: 993~1000
    Daniela A A, De Tullio M. 2007. Contrasting effects of increased ascorbate content on growth and development of long-day and shor-day grown Brassica rapa. Caryologia, 60: 185~187
    Davey M W, Franck C, Keulemans J. 2004. Distribution, development and stress response ofantioxidant metabolism in Malus. Plant Cell and Envi, 27: 1309~1320
    Davey M W, Van Montagu M, Sanmatin M. 2000. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric, 80: 825~860
    Dejardin A,Sokolov L N, Kleczkowski L A. 1999. Sugar/osmoticum levels modulate differential abscisic aci-independent expression of two stress-responsive sucrose synthase gene in Arabidopsis.Biochem J, 344(2): 503~510
    Della Penna D. 1999. Nutritional genomics: manipulating plant micronutrients to improve human health. Science, 285: 375~379
    Demmig-Adams B, Adams W W. 2002. Antioxidants in photosynthesis and human nutrition. Science, 298: 2149~2153.
    Dumville J C, Fry S C.2003. Solubilisation of tomato fruit pectins by ascorbate: a possible non-enzymic mechanism of fruit softening. Planta, 217: 951~961
    Foyer C H, Lelandais M. 1996. A comparison of the relative rates of transport of ascorbate and glucose across the thylakoid, chloroplast and plasmalemma membranes of pea leaf mesophyll cells. J Plant Physiol, 148: 391~398
    Foyer C H, Van Der Straeten D. 2006. A new era in plant metabolism research reveals a bright future for bio-fortification and human nutrition. Physiologia Plantarum, 126(3): 289~290
    Franceschi V R, Tarlyn N M. 2000. L-Ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants. Plant Physiol, 130: 649~656
    Frossard E, Bucher M, Machler F, Mozafar A, Hurrell R. 2000. Potential for increasing the content and bioavailability of Fe, Zn, and Ca in plants for human nutrition. Sci Food Agric, 80: 861~879
    Giacomelli L, Rudella A, van Wijk K J. 2006. High light response of the thylakoid proteome in arabidopsis wild type and the ascorbate-deficient mutant vtc2. A comparative proteomics study. Plant Physiol, 141: 685~701
    Hancock R D, McRae D, Haupt S. 2003. Synthesis of L-ascorbic acid in the phloem. BMC Plant Biol, 3: 7
    Hancock R D, Viola R. 2005. Biosynthesis and catabolism of L-ascorbic acid in plants. Crit Rev Plant Sci, 24: 167~188
    Hancock R D, Viola R. 2005. Improving the nutritional value of crops through enhancement of L-ascorbic acid (vitamin C) content: rationale and biotechnological opportunities. Agric Food Chem, 53: 5248~5257
    Haslbeck M, Schuster I, Grallert H. 2003. GroE-dependent expression and purification of pig heart mitochondrial citrate syntheses in Escherichia coli.J Chromatogr B Analyt Technol Biomed Life Sci, 786(1-2): 127~135
    Holst A , Froèlich T. 1907. Experimental studies relating to shipberiberi and scurvy. II. On the etiology of scurvy. J. Hyg, 7: 634~671
    Horemans N, Foyer C H, AsArd H. 2000. Transport and action of ascorbate at the plant plasma membrane.Trends Plant Sci, 5: 263~267
    Horemans N, Foyer CH, Potters G. 2000. Ascorbate function and associated transport systems in plants. Plant Physiol Biochem, 38: 531~540
    Horemans N, Raeymaekers T, Van Beek K. 2007. Dehydroascorbate uptake is impaired in the early response of Arabidopsis plant cell cultures to cadmium. J Exp Bot, 58: 4307~4317
    Huang C H, He W L, Guo J K. 2005. Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J Exp Bot, 56: 3041~3049
    Isherwood F A, Chen Y T, Mapson L W. 1954. Synthesis of L-ascorbic acid in plants and animals. Biochem J, 56: 1~21
    Ishikawa T, Dowdle J, Smirnoff N. 2006. Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol Plant,126: 343-355
    Jain A K, Nessler C L. Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol Breed, 2000, 6: 73~78
    Jin Y H, Tao D L, Hao Z Q, Ye J, Du Y J, Liu H L, Zhou Y B. 2003. Environmental stresses and redox status of ascorbate. Acta Botanica Sinica, 45(7): 795~801
    Laing W A, Bulley S, Wright M. 2004. A highly specific L-galactose-1-phosphate phosphatase on the path to ascorbate biosynthesis. Proc Natl Acad Sci USA, 10: 16976~6981
    Laing W A, Frearson N, Bulley S. 2004. Kiwifruit L-galactose dehydrogenase: molecular, biochemical and physiological aspects of the enzyme.Functional Plant Biology, 31: 1015~1025
    Lee K H, Kim H S,Jeong H S.2002. Chanperonin GroESL mediates the protein folding of human liver mitochondrial aldehyde dehydrogenase in Escherichia coli.Biochem Biophys Res Commun, 298(2): 216~221
    Li M J, Ma F W, Zhang M. 2008. Distribution and metabolism of ascorbic acid in apple fruits (Malus domestica Borkh cv. Gala.). Plant Sci, 174: 606~612
    Li Y, Schellhorn H E. 2007. Can ageing-related degenerative diseases be ameliorated through administration of vitamin C at pharmacological levels. Med Hypotheses, 68: 1315~1327
    Li Y, Schellhorn H E. 2007. New developments and novel therapeutic perspectives for vitamin C. J Nutr, 137: 2171~2184
    Loewus F A, Loewus M W. 1987. Biosynthesis and metabolism of ascorbic acid in plants. Crit Rev Plant Sci, 5: 101~119
    Lorence A, Chevone B I, Mendes P, Nessler C L. 2004. myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol, 134: 1200~1205
    Luwe M, Takahama U, Heber U. 1993. Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiol, 101: 969~976
    Majumder A, Raha T. 2001. Effect of osmolytes and chaperone-like action of P-protein on folding of nucleocapsid protein of Chandipura virus.J Biol Chem, 276(33): 30948~30953
    Maurino V G, Grube E, Zielinski J. 2006. Identification and expression analysis of twelve members of the nucleobase-ascorbate transporter (NAT) gene family in Arabidopsis thaliana. Plant Cell Physiol, 47: 1381~1393
    Muller-Moule P, Golan T, Niyogi K K. 2004. Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. Plant Physiol, 134: 1163~1172
    Noctor G, Foyer C H. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol, 49: 249~279
    Olmos E, Kiddle G, Pellny T K. 2006. Modulation of plant morphology, root architecture, and cell structure by low vitamin C in Arabidopsis thaliana. J Exp Bot, 57: 1645~1655
    Pallanca J E, Smirnoff N. 1999. Ascorbic acid metabolism in pea seedlings. A comparison of D-glucosone, L-sorbosone, and L-galactone-1,4-lactone as ascorbate precursors. Plant Physiology, 20: 453~461
    Pastori G M, Kiddle G, Antoniw J. 2003. Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone. Plant Cell, 15: 939~951
    Premkumar L, Bageshwar U K, Gokhman I. 2003. An unusual halo tolerant alpha-type carbonic anhydrate from the alga Unadilla Salina functionally expressed in Escherichia coli.Protein ExprPurif, 28(1): 151~157
    Qian W Q, Yu C M, Liu H J. 2007. Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. The Plant Journal, 49(3): 399~413
    Qiu J, Swartz J R, Georgiou G. 1998. Expression of active human tissue type plasminogen activatases in Escherichia coli.Appl Env Microbiol, 64: 4897~4903
    Radzio J A, Lorence A, Chevone B I. 2004. L-Gulono-1,4-lactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants. Plant Mol Biol, 53: 837~844
    Rainwater D T, Gossett D R, Millhollon E P. 1996. The relationship between yield and the antioxidant defense system in tomatoes grown under heat stress. Free Radical Research, 25: 421~435
    Rassam M, Bulley S M, Laing W A. 2007. Oxalate and ascorbate in Actinidia fruit and leaves. Acta Horticulturae, 753: 479~485
    Rautenkranz A A F, Li L, M?chler F, M?rtinoia E, Oertli J J. 1994. Transport of ascorbic and dehydroascorbic acid across protoplast and vacuole membranes isolated from barley leaves. Plant Physiol, 106: 187~193
    Reichstein T, Grussner A, Oppenauer R. 1933. Synthese der L-ascobinsauure (C-vitamin). Helv Chim Acta, 16: 1019~1033
    Sambrook J, Fritsch E F, Maniatis. 1989. Molecular cloning End ed, New York: Cold Spring Harbor, Laboratory Press: 60~68
    Schopfer P. 2001. Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J, 28: 679~688
    Seddi R, Chaix J C, Puigserver A. 2003. Expression of a soluble and activatable form of bovine procarboxypeptidase A in Escherichia coli.Protein Expr Purif, 27(2): 220~228
    Smirnoff N, Pallanca J E. 1996. Ascorbate metabolism in relation to oxidative stress. Biochemical Society Transactions, 24: 472~478
    Smirnoff N. 1993. The role of active oxygen in the response to water deficit and desiccation. New Phytol, 125: 27~58
    Smirnoff N. 2000. Ascorbate biosynthesis and function in photoprotection. Phil Trans R SOC Lond Ser B Biol Sci, 355: 1455~1464
    Svent-Gyoèrgi A. 1928. Observations on the function of the peroxidase systems and the chemistry of the adrenal cortex. Descriptionof a new carbohydrate derivative. Biochem J, 22: 1387~1409
    Svent-Gyoèrgi A. 1931. On the function of hexuronic acid in the respiration of the cabbage leaf. J Biol Chem, 90: 385
    Szarka A, Horemans N, Banhegyi G. 2004. Facilitated glucose and dehydroascorbate transport in plant mitochondria. Arch Biochem Biophys, 428: 73~80
    Tabata K, ?ba K, Suzuki K. 2001. Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA for L-galactono-1,4-lactone dehydrogenase. Plant J, 27: 139~148
    Urban A, Ansmant I, Motorin Y. 2003. Optimization of expression and purification of the recombinant Yol066(Rib2) protein from Saccharomyeces cerevisiae. J Chromatogran B Analyt Technol Biomed Life Sci, 786(1-2): 187~191
    Vanacker H, Carver T L W, Foyer C H. 1998. Pathogeninduced changes in the atioxidant status of the apoplast in barley leaves. Plant Physiol, 117: 1103~1114
    Veljovic-Jovanovic S D, Pignocchi C, Noctor G, Foyer H C. 2001. Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant. Plant Physiol, 127(2): 426~435
    Wolucka B A, Van Montagu M. 2003. GDP-mannose 3,5-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem, 278: 47483~47490
    Zhang W, Gruszewski HA, Chevone BI, Nessler CL. 2008. An Arabidopsis purple Acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol, 146: 431-440

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700