DDR2调控MMP-13表达的分子机制及其与类风湿性关节炎关节软骨破坏关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DDR2 (Discoidin Domain Receptor 2)属于受体型蛋白酪氨酸激酶,其配体为天然纤维型胶原(I, II和III型)。胶原与DDR2的结合能使其发生酪氨酸磷酸化,从而介导其下游的信号转导。我们实验室已有的研究表明,DDR2在体外培养的RA成纤维样滑膜细胞中高表达。RA的主要病理特征为血管翳的形成和滑膜组织的过度增殖并贴附于关节软骨,而关节软骨的主要胶原成份为II型胶原,这就为DDR2与其配体的结合并介导相关信号转导过程提供了空间上的可能。由于DDR2的主要功能是增加细胞中MMPs的表达。因此,我们认为在RA病人的关节中可能存在这样的病理过程:异常的炎症反应和滑膜功能的异常上调了滑膜细胞中DDR2的表达水平,同时滑膜的过度增殖为DDR2与胶原配体的相互作用提供了生理基础,使DDR2发生持续活化并过分泌MMPs侵蚀破坏软骨结构。
     在MMPs家族成员中,胶原酶是天然胶原降解的限速酶。RA滑膜细胞主要分泌胶原酶1(MMP-1)和胶原酶3(MMP-13)。而MMP-13对II型胶原的降解能力是MMP-1的5~10倍,此外,MMP-13还能降解关节软骨中的蛋白聚糖。因此,DDR2是否调控RA滑膜细胞过表达MMP-13及其调控机制成为本研究的出发点。
     我们首先体外分离了RA滑膜组织,经原代培养生长至四代的成纤维样滑膜胞用于实验。以II型胶原刺激RA滑膜细胞48小时后,收集细胞并分别分析MMP-13和MMP-1的mRNA和蛋白表达水平。结果显示,II型胶原刺激同时上调MM-1和MMP-13的mRNA和蛋白水平,然而,MMP-13被上调的幅度显著大于MMP-1,前者mRNA上调了8倍左右,而后者只上调了两倍。提示,II型胶原主要诱导滑膜细胞表达MMP-13。进一步通过逆转录病毒介导的方式,在小鼠成纤维样滑膜细胞中过表达DDR2,显著增加了滑膜细胞中II型胶原诱导的MMP-13的表达水平,明确了DDR2与MMP-13在滑膜细胞中表达的相关性。
     与原代RA滑膜细胞相比,永生化的RA滑膜细胞系MH7A几乎失去受II型胶原诱导表达MMP-13的能力。而根据文献报道,此细胞系与原代培养的RA滑膜细胞主要的表型差别是,细胞中ERK MAPK的组成型活化和细胞增殖速率的增加。据此,我们分析ERK MAPK可能参与了RA滑膜细胞中II型胶原诱导的MMP-13的表达。进一步用研究发现,ERK MAPK通路的特异性抑制剂PD98059能阻断DDR2诱导的MMP-13的表达和转录。此外,过表达DDR2显著增加了细胞中ERK MAPK的磷酸化水平,上述实验证据充分说明了ERK MAPK为DDR2下游的信号转导分子之一,并参与诱导MMP-13的表达。
     为了进一步探索DDR2介导MMP-13表达的分子机制,我们构建了MMP-13启动子报告基因,发现过表达野生型和组成型活化的DDR2分子(将人IgG1Fc段与无信号肽的DDR2序列进行融合,并连入分泌型蛋白表达载体中)都能上调MMP-13启动子报告基因的活性,且后者的调控活性强于前者,然而激酶区突变的DDR2分子则不具备这种调控作用,明确了DDR2对MMP-13启动子活性呈现活化依赖的上调作用。我们对MMP-13启动子区序列进行截短突变分析,发现将近端的Runx-2结合位点突变后,启动子报告基因失去了受DDR2诱导的活性,进一步共表达DDR2和Runx-2,发现它们能协同增加MMP-13的启动子活性,提示Runx-2可能受DDR2活化的调控并参与MMP-13的转录。然而,Runx-2基因主要表达于成骨细胞和骨骼肌细胞中,是调控骨形成和骨骼肌功能的重要转录因子之一。目前,还没有Runx-2在滑膜组织中表达的相关报道。我们通过免疫组织化学检测到了Runx-2蛋白在RA滑膜组织的表达,发现RA炎症条件下与软骨相接触的滑膜衬里层Runx-2表达水平较滑膜下层高,这与DDR2和MMP-13在RA滑膜组织中的表达模式一致。此外,在滑膜细胞中过表达Runx-2,显著增加滑膜细胞中II型胶原诱导的MMP-13的表达。上述结果充分提示了Runx-2可能受DDR2活化的调控上调RA滑膜细胞中MMP-13的表达。
     细胞表面RTK的活性是受到严格的控制和调节的,这对于维持细胞内稳态有着非常重要的意义。Cbl家族的蛋白作为泛素连接酶E3能促进多种RTK偶联泛素标签并走向降解的途径,是负向调控RTK功能的重要机制之一。那么,作为RTK的DDR2是否能受Cbl蛋白的泛素化调节呢?如果活化的DDR2可以被Cbl蛋白负向调控,那么这类泛素连接酶E3是否能降低滑膜细胞中DDR2介导的MMP-13的表达呢?基于上述疑问,我们首先检测了Cbl和Cbl-b对DDR2泛素化水平的影响。体内体外泛素化实验都显示,Cbl-b能显著增加活化DDR2的泛素化水平,而Cbl蛋白则不具备这种能力,并且Cbl-b对DDR2泛素化的调控依赖于其泛素连接酶的活性。脉冲追踪实验也显示,Cbl-b对DDR2泛素化的调控使其走向了依赖蛋白酶体的降解途径。为了明确Cbl-b对DDR2的泛素化调控是否降低滑膜细胞中胶原诱导的MMP-13的表达,我们分析了Cbl-b- / -小鼠滑膜细胞中II型胶原诱导的MMP-13表达量。结果显示, Cbl-b基因缺失上调了滑膜细胞中II型胶原诱导的MMP-13的表达量和胶原酶活性。我们关于Cbl-b负调控DDR2并降低滑膜细胞中MMP-13表达水平的研究很好的解释了Cbl-b - / -小鼠以II型胶原诱导关节炎后,滑膜组织呈现更严重的侵蚀破坏软骨的这一表型。
Discoidin domain receptor 1 (DDR1) and 2 (DDR2) are receptor tyrosine kinases (RTKs) that bind different types of collagen as their ligands. We previously reported that DDR2 was highly expressed and activated in Rheumatoid Arthritis (RA) fibroblast-like synoviocytes (FLSs). RA is characterized by synovial hyperplasia and progressive joint destruction. The adhesion of synovial tissue with joint cartilage in RA renders the possibility that DDR2 binds to collagen II which is the main component of cartilage. As the main function of DDR2 is to upregulate the expression levels of MMPs, we speculated that“collagen II—DDR2—MMPs”pathway may occur and promotes the cartilage erosion in RA.
     Among the members of MMP family, interstitial collagenase (MMP-1) and collagenase-3 (MMP-13) play critical roles because they cleave type I, II and III collagens at a specific site generating 3/4 N-terminal and 1/4 C-terminal fragments, which rapidly denature at physiologic temperature and become susceptible to degradation by other MMPs. MMP-13 is of special interest with regard to cartilage degradation due to its preference to type II collagen in articular cartilage. In addition, MMP-13 is efficient in cleaving minor cartilage type IX and X collagen as well as aggrecan. Notably, the expression of MMP-13 was detected in synovial fibroblasts in RA, particularly at sites of synovial invasion into cartilage. Therefore, the present study focused on regulation of MMP-13 by DDR2 in synovial fibroblasts.
     We performed in vitro experiments to confirm the effects of culturing synovial fibroblasts of RA at passage 4 on type II collagen-coated plate on MMP-13 and MMP-1 expression. Real time PCR analysis demonstrated that MMP-13 mRNA level in synovial fibroblasts was elevated, to a similar extent, approximately 7-fold by native collagen II, while mRNA expression of MMP-1 was only slightly increased in synovial fibroblasts cultured on collagen-coated plate with 2-fold induction. Four synovial fibroblast cultures obtained from RA patients were included in this study. The induction of MMP-13 and MMP-1 protein in the culturing media by collagen II were comparable to that of their mRNA. Therefore, the expression of MMP-13 and MMP-1 is differentially regulated by collagen II in RA FLSs. To confirm the induction of MMP-13 production by DDR2, we expressed wild type DDR2 by retrovirus infection in murine synovial fibroblasts. As indicated, MMP-13 expression was dramatically increased by the overexpression of DDR2 in synoviocytes cutured on native type II collagen-coated plate.
     It is notable that rheumatoid MH7A cells exhibited dramatically decreased MMP-13 induction after treatment with collagen II, however, induction of MMP-13 production by collagen II was appropriately 8-fold in the primary cultured FLSs from RA patients. It is known that ERK is constitutively activated in MH7A cells thus this phenomenon indicates that ERK activation may contribute to collagen-induced MMP-13 expression in RA FLSs. To test the role of MEK/ERK cascade in DDR2—MMP-13 signaling, experiments were performed to make sure that whether PD98059 was able to block DDR2-induced MMP-13 expression. It was shown that MMP-13 mRNA and protein levels induced by collagen II can be decreased by PD98059 treatment. The enhancement of MMP-13 promoter activity upon DDR2 over-expression was reduced dramatically in the presence of PD98059. ERK1/2 phosphorylation in wild type DDR2-transfected MC3T3-E1 cells increased. However, collagen-induced ERK phosphoylation in the kinase-dead DDR2 mutant (K608E) transfected cells decreased compared with that in the mock transfection cells. These results indicated that ERK MAPK were involved in DDR2-induced MMP-13 expression.
     We further investigated whether activation of DDR2 was able to up-regulate MMP-13 promoter activity. The ectopic expression of wild-type DDR2 led to a 2.5-fold increase in MMP-13 promoter activity compared with the vector control. The kinase-dead DDR2 mutant (K608E) had no effect on MMP-13 promoter activity. When a constitutively active form DDR2 (FcDDR2) was introduced into the cells, it yielded a much greater increase of MMP-13 promoter activity compared with other constructs. To identify the responsive regions of the MMP-13 promoter to DDR2 signaling, serial deletion and mutant constructs of the 5'-flanking region of the human MMP-13 gene as well as DDR2 were transiently co-transfected into 293T cells. Constructs containing a mutated Runx-2 site exhibited 1.5-fold reduced DDR2 induction and no change for basal reporter expression. FcDDR2 and Runx2 were co-transfected with the reporter gene, a synergistic increase in reporter activity was observed. These experiments demonstrated that Runx-2 is required for DDR2-mediated induction of MMP-13. Runx-2 expression was also confirmed in RA synovial tissue by immunohistochemistry. It was demonstrated that Runx-2 was highly expressed in the synovial lining which is coincident with DDR2 and MMP-13 expression pattern in RA. Furthermore, collagen-induced MMP-13 expression was augmented by overexpression of Runx-2 mediated by retrovirus infection in murine synovial fibroblasts. In general, Runx-2 might be a key transcriptional modulator involved in DDR2-induced MMP-13 expression in RA synovial fibroblasts.
     RTK is tightly controlled in order to keep the normal function of the cells. Members of Cbl family functions as E3 ubiquitin ligases to facilitate the ubiquitination and degradation of multiple RTKs. We were wondering whether DDR2 might be a target for Cbl proteins. It was shown that Cbl-b but not Cbl could promote the ubiquitination of DDR2 in a collagen dependent manner. Pulse chase experiment demonstrated that Cbl-b promotes the degradation of DDR2. Synovial fibroblasts from Cbl-b- / - mice were shown to expressed more MMP-13 mRNA and protein upon collagen II treatment compared with cells from wild mice. Our above observation accounts for a more severe phenotype of synovial tissue from Cbl-b- / - mice upon induction of CIA(collagen-induced arthritis).
引文
1.于孟学,王迎雪,施全胜。类风湿性关节炎发病机理,基础医学与临床,1998,18(4):241-7
    2.蒋明,朱立平,林孝义主编,《风湿病学》,科学出版社,1995
    3.姚凤祥,麻世迹,陈阳主编,《现代风湿病学》,人民军医出版社,1995
    4. Okada Y, Nagase H, and Harris ED Jr. Matrix metalloproteinases 1, 2, and 3 from rheumatoid synovial cells are sufficient to destroy joints. J Rheumatol, 1987; 14 No: 41-2
    5. Muller-Ladner U, Kriegsmann J, Franklin BN, Matsumoto S, Geiler T, Gay RE, and Gay S. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am J Pathol, 1996; 149 (5): 1607-15
    6. Dooley S, Herlitzka I, Hanselmann R, Ermis A, Henn W, Remberger K, Hopf T, Welter C: Constitutive expression of c-fos and c-jun, overexpression of ets-2, and reduced expression of metastasis suppressor gene nm23-H1 in rheumatoid arthritis. Ann Rheum Dis, 1996, 5:298–304.
    7. Grimbacher B, Aicher WK, Peter HH, Eibel H: Measurement of transcription factor c-fos and EGR-1 mRNA transcription levels in synovial tissue by quantitative RT-PCR. Rheumatol Int 1997, 17: 109–112.
    8. Knotny E, Ziolkowska M, Dudzinka E, Filipowicz-Sosnowska A, Ryzewska A: Modified expression of c-Fos and c-Jun proteins and production of interleukin-1 beta in patients with rheumatoid arthritis. Clin Exp Rheumatol, 1995, 13:51–57.
    9. Trabandt A, Aicher WK, Gay RE, Sukhatme VP, Fassbender HG, Gay S:Spontaneous expression of immediately-early response genes c-fos and egr-1 in collagenase-producing rheumatoid synovial fibroblasts. Rheumatol Int, 1992, 12:53–59.
    10. Asahara H, Fujisawa K, Kobata T, Hasunuma T, Maeda T, Asanuma M,Ogawa N, Inoue H, Sumida T, Nishioka K: Direct evidence of high DNA binding activity of transcription factor AP-1 in rheumatoid arthritis synovium. Arthritis Rheum, 1997, 40: 912–918.
    11. Miagkov AV, Kovalenko DV, Brown CE, Didsbury JR, Cogswell JP, Stimpson SA, Baldwin AS, Makarov SS: NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc Natl Acad Sci USA 1998, 95:13859–13864.
    12. Vincenti MP, Coon CI, Brinckerhoff CE: Nuclear factor kappaB/p50 activates an element in the distal matrix metalloproteinase 1 promoter in interleukin-1beta-stimulated synovial fibroblasts. Arthritis Rheum, 1998, 41: 1987–1994.
    13. Firestein GS, Echeverri F, Yeo M, Zvaifler NJ, Green DR: Somatic mutations in the p53 tumor suppressor gene in rheumatoid arthritis synovium. Proc Natl Acad Sci USA 1997, 94:10895–10900.
    14. Pap T, Aupperle KR, Jeisy E, Gay RE, Firestein GS, Gay S: Inhibition of endogenous p53 by gene transfer increases the invasiveness of fibroblast-like synoviocytes in the SCID mouse model of rheumatoid arthritis (RA) [abstract]. Arthritis Rheum, 1999, 42:S163.
    15. Kullmann F, Judex M, Neudecker I, Lechner S, Jüsten HP, Green DR, Wessinghage D, Firestein GS, Gay S, Sch?llmerich J, Müller-LadnerU: Analysis of the p53 tumor suppressor gene in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 1999, 42:1594–1600.
    16. Pap T, Franz JK, Hummel KM, Jeisy E, Gay RE, Gay S: Activation of synovial fibroblasts in rheumatoid arthritis: lack of expression of the tumour suppressor PTEN at sites of invasive growth and destruction. Arthritis Res, 2000, 2:59–65.
    17. Rinaldi N, Schwarz EM, Weis D, Leppelmann JP, Lukoschek M, Keilholz U, Barth TF: Increased expression of integrins on fibroblastlike synoviocytes from rheumatoid arthritis in vitro correlates with enhanced binding to extracellular matrix proteins. Ann Rheum Dis,1997, 56:45–51.
    18. Ishikawa H, Hirata S, Andoh Y, Kubo H, Nakagawa N, Nishibayashi Y, Mizuno K: An immunohistochemical and immunoelectron microscopic study of adhesion molecules in synovial pannus formation in rheumatoid arthritis. Rheumatol Int, 1996, 16:53–60.
    19. Dike LE, Farmer SR: Cell adhesion induces expression of growthassociated genes in suspension-arrested fibroblasts. Proc Natl Acad Sci USA 1988, 85:6792–6796.
    20. Dike LE, Ingber DE: Integrin-dependent induction of early growth response genes in capillary endothelial cells. J Cell Sci. 1996,109:2855–2863.
    21. Birkedal-Hansen, H., W. G. Moore, M. K. Bodden, L. J. Windsor, B. Birkedal-Hansen, A. DeCarlo, and J. A. Engler. 1993. Matrix metalloproteinases: a review. Crit Rev.Oral Biol.Med. 4:197-250.
    22. Murphy, G., V. Knauper, S. Atkinson, G. Butler, W. English, M. Hutton, J. Stracke, and I. Clark. 2002. Matrix metalloproteinases in arthritic disease. Arthritis Res. 4 Suppl 3:S39-S49.
    23. Lindy, O., Y. T. Konttinen, T. Sorsa, Y. Ding, S. Santavirta, A. Ceponis, and C. Lopez-Otin. 1997. Matrix metalloproteinase 13 (collagenase 3) in human rheumatoid synovium. Arthritis Rheum. 40:1391-1399.
    24. Vincenti, M. P. and C. E. Brinckerhoff. 2002. Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res. 4:157-164.
    25. M. P. Vincenti, L. A. White, D. J. Schroen, U. Benbow & C. E. Brinckerhoff: Regulating expression of the gene for matrix metalloproteinase-1 (collagenase): mechanisms that control enzyme activity, transcription, and mRNA stability. Crit Rev Eukaryot Gene Expr 1996, 6(4), 391-411
    26. M. P. Vincenti, L. A. White, D. J. Schroen, U. Benbow & C. E. Brinckerhoff: Regulating expression of the gene for matrix metalloproteinase-1 (collagenase): mechanisms that control enzyme activity, transcription, and mRNA stability. Crit Rev Eukaryot Gene Expr, 1996, 6(4), 391-411
    27. C. E. Brinckerhoff & L. M. Matrisian: Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 3(3), 207-214 (2002)
    28. Tardif G, Reboul P, Dupuis M, Geng C, Duval N, Pelletier JP et al. Transforming growth factor-beta induced collagenase-3 production in human osteoarthritic chondrocytes is triggered by Smad proteins: cooperation between activator protein-1 and PEA-3 binding sites. J Rheumatol 2001; 28(7):1631-1639.
    29. Su Z, Shi Y, Fisher PB. Cooperation between AP1 and PEA3 sites within the progression elevated gene-3 (PEG-3) promoter regulate basal and differentialexpression of PEG-3 during progression of the oncogenic phenotype in transformed rat embryo cells. Oncogene 2000; 19(30):3411-3421.
    30. J. A. Mengshol, K. S. Mix & C. E. Brinckerhoff:Matrix metalloproteinases as therapeutic targets in arthriticdiseases: bull's-eye or missing the mark? Arthritis Rheum, 46(1), 13-20 (2002)
    31. A. Barchowsky, D. Frleta & M. P. Vincenti: Integration of the NF-kappaB and mitogen-activated protein kinase/AP-1 pathways at the collagenase-1 promoter: divergence of IL-1 and TNF-dependent signal transduction in rabbit primary synovial fibroblasts. Cytokine 12(10), 1469-1479 (2000)
    32. M. J. Jimenez, M. Balbin, J. M. Lopez, J. Alvarez, T. Komori & C. Lopez-Otin: Collagenase 3 is a target of Cbfa1, a transcription factor of the runt gene family involved in bone formation. Mol Cell Biol 19(6), 4431- 4442 (1999)
    33. J. A. Mengshol, M. P. Vincenti & C. E. Brinckerhoff: IL-1 induces collagenase-3 (MMP-13) promoter activity in stably transfected chondrocytic cells: requirement for Runx-2 and
    34. Xiao G, Jiang D, Thomas P, Benson MD, Guan K, Karsenty G et al. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem 2000; 275(6):4453-4459.
    35. D'Alonzo RC, Selvamurugan N, Karsenty G, Partridge NC. Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation. J Biol Chem 2002; 277(1):816-822.
    36. Hess J, Porte D, Munz C, Angel P. AP-1 and Cbfa/runt physically interact and regulate parathyroid hormone-dependent MMP13 expression inosteoblasts through a new osteoblast-specific element 2/AP-1 composite element. J Biol Chem 2001; 276(23): 20029-20038.
    37. M. Feldmann, F. M. Brennan & R. N. Maini: Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 14 (397-440 (1996)
    38. J. Massague & D. Wotton: Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19(8), 1745-1754 (2000)
    39. K. S. Mix, M. B. Sporn, C. E. Brinckerhoff, D. Eyre &D. J. Schurman: Novel inhibitors of matrix metalloproteinase gene expression as potential therapies for arthritis. Clin Orthop Relat Res 427 (Suppl), S129-137 (2004)
    40. B. V. Shlopov, G. N. Smith, Jr., A. A. Cole & K. A. Hasty: Differential patterns of response to doxycycline and transforming growth factor beta1 in the down-regulation of collagenases in osteoarthritic and normal human chondrocytes. Arthritis Rheum 42(4), 719-727 (1999)
    41. A. H. Baker, D. R. Edwards & G. Murphy: Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115(Pt 19), 3719-3727 (2002)
    42. J. Martel-Pelletier, D. J. Welsch & J.- P. Pelletier: Metalloproteases and inhibitors in arthritic diseases. Best Pract Res Clin Rheumatol 15(5), 805-829 (2001)
    43. K. Brew, D. Dinakarpandian & H. Nagase: Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477(1-2), 267-283 (2000)
    44. I. S. Aljada, N. Ramnath, K. Donohue, S. Harvey, J. J. Brooks, S. M. Wiseman, T. Khoury, G. Loewen, H. K. Slocum, T. M. Anderson, G. Bepler & D. Tan: Upregulation of the tissue inhibitor of metalloproteinase-1 proteinis associated with progression of human non-smallcell lung cancer. J Clin Oncol 22(16), 3218-3229 (2004)
    45. Vogel W, Gish GD, Alves F, Pawson T. The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1997; 1(1):13-23.
    46. Ikeda K, Wang LH, Torres R, Zhao H, Olaso E, Eng FJ et al. Discoidin domain receptor 2 interacts with Src and Shc following its activation by type I collagen. J Biol Chem 2002; 277(21):19206-19212.
    47. Vogel W, Brakebusch C, Fassler R, Alves F, Ruggiero F, Pawson T. Discoidin domain receptor 1 is activated independently of beta(1) integrin. J Biol Chem 2000; 275(8):5779-5784.
    48. Birgit leitinger. Molecular Analysis of Collagen Binding by the Human Discoidin Domain Receptors, DDR1 and DDR2. J Biol Chem . 2003 ; 278(19): 16761–16769,
    49. Perez JL, Shen X, Finkernagel S, Sciorra L, Jenkins NA, Gilbert DJ, Copeland NG Wong TW. Identification and chromosomal mapping of a receptor tyrosine kinase with putative phospholipid binding sequence in its ectodomain. Oncogene, 1994; 9(1): 211-219.
    50. Edelhoff S, Sweetser DA, Disteche CM. Mapping of the NEPreceptor tyrosine kinase gene to human chromosome 6p21.3 and mouse chromosome 17C.Genomics, 1995, 25(1): 309-311
    51. F. Alves, S. Saupe, M. Ledwon, F. Schaub, W. Hiddemann and W.F. Vogel, Identification of two novel, kinase-deficient variants of discoidin domain receptor 1: differential expression in human colon cancer cell lines. FASEB J, 15 (2001) (7), p. 1321
    52. J.L. Perez, X. Shen, S. Finkernagel, L. Sciorra, N.A. Jenkins, D.J. Gilbert, N.G. Copeland and T.W. Wong, Identification and chromosomal mapping of a receptor tyrosine kinase with a putative phospholipid binding sequence in its ectodomain Oncogene, 9 (1994) (1), p. 211.
    53. S. Sakuma, H. Saya, M. Tada, M. Nakao, T. Fujiwara, J.A. Roth, Y. Sawamura, Y. Shinohe and H. Abe, Receptor protein tyrosine kinase DDR is up-regulated by p53 protein. FEBS Lett, 398 (1996) (2–3), p. 165
    54. Vogel W. Discoidin domain receptors: structural relations and functional implications. FASEB J,1999; 13 suppl: S77-S82.
    55. Abdulhussein R, McFadden C, Fuentes-Prior P, Vogel WF. Exploring the collagen- binding site of the DDR1-tyrosine kinase receptor. J Biol.Chem, 2004; 279(30): 31462-31470.
    56. Agarwal q Kovac L, Radziejewski C, Samuelsson SJ. Binding of discoidin domain receptor 2 to collagen I: an atomic force microscopy investigation. Biochemistry, 2002; 41(37): 11091-11098.
    57. Vogel WF. Ligand-induced shedding of discoidin domain receptor 1.FEBS Lett, 2002 Mar 13;514(2-3):175-80
    58. Leitinger B, Steplewski A, Fertala A. The D2 Period of Collagen II Contains a Specific Binding Site for the Human Discoidin Domain Receptor, DDR2. J Mol Biol. 2004 Dec 3;344(4):993-1003
    59. Matsuyama W, Wang L, Farrar WL, Faure M, Yoshimura T. Activation of discoidin domain receptor 1 isoform b with collagen up-regulates chemokine production in human macrophages: role of p38 mitogen-activated protein kinase and NF-kappa B. J Immunol, 2004; 172(4):2332-2340.
    60. Koo, D.H.H., McFadden, C., Huang, Y., Abdulhussein, R., Friese-Hamim, M., Vogel, W.F Pinpointing phosphotyrosine-dependent interactions downstream of the collagen receptor DDR1. FEBS Lett. 2006 Jan 9;580 (1):15-22.
    61. Vogel W., Lammers R., Huang J., Ullrich A. Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation Science 1993 259 (5101): 1611-1614.
    62. L'hote C.G., Thomas P.H., Ganesan T.S. Functional analysis of discoidin domain receptor 1: effect of adhesion on DDR1 phosphorylation. 2002 16 (2): 234-236.
    63. Faraci-Orf E, McFadden C, Vogel WF. DDR1 signaling is essential to sustain Stat5 function during lactogenesis. J Cell Biochem. 2006 Jan 1;97(1):109-21
    64. Ikeda K, Wang LH, Torres R, Zhao H, Olaso E, Eng FJ, Labrador P, Klein R, Lovett D, Yancopoulos GD, Friedman SL, Lin HC Discoidin domain receptor 2 interacts with Src and Shc following its activation by type I collagen.J Biol Chem. 2002 May 24;277(21):19206-12.
    65.Yang K, Kim JH, Kim HJ, Park IS, Kim IY, Yang BS. Tyrosine 740 phosphorylation of discoidin domain receptor 2 by Src stimulates intramolecular autophosphorylation and Shc signaling complex formation. J Biol Chem. 2005 Nov 25;280(47):39058-66. 26.
    66. Faraci E, Eck M, Gerstmayer B, Bosio A, Vogel WF. An extracellular matrix-specific microarray allowed the identification of target genes downstream of discoidin domain receptors. Matrix Biol. 2003 Jun;22(4):373-81.
    67. Zerlin M, Julius MA, Goldfarb M. NEP: a novel receptor-like tyrosine kinase expressed in proliferating neuroepithelia. Oncogene. 1993 Oct;8(10):2731-9.
    68. Lai C, Lemke G. Structure and expression of the Tyro 10 receptor tyrosine kinase. Oncogene. 1994 Mar;9(3):877-83
    69. Curat CA, Vogel WF. Discoidin domain receptor 1 controls growth and adhesion of mesangial cells. J Am Soc Nephrol. 2002 Nov;13(11):2648-56.
    70. Hou G, Vogel W, Bendeck MP. The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair. J Clin Invest. 2001 Mar;107(6):727-35
    71. Labrador JP, Azcoitia V, Tuckermann J, Lin C, Olaso E, Ma?es S, Brückner K, Goergen JL, Lemke G, Yancopoulos G, Angel P, Martínez C, Klein R. The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism. EMBO Rep. 2001 May;2(5):446-52.
    72. Olaso E, Labrador JP, Wang L, Ikeda K, Eng FJ, Klein R, Lovett DH, Lin HC, Friedman SL. Discoidin domain receptor 2 regulates fibroblast proliferation and migration through the extracellular matrix in association with transcriptional activation of matrix metalloproteinase-2. J Biol Chem. 2002 Feb 1;277(5):3606-13.
    73. Olaso E, Ikeda K, Eng FJ, Xu L, Wang LH, Lin HC, Friedman SL. DDR2 receptor promotes MMP-2-mediated proliferation and invasion by hepatic stellate cells. J Clin Invest. 2001 Nov;108(9):1369-78.
    74. Barker KT, Martindale JE, Mitchell PJ, Kamalati T, Page MJ, Phippard DJ, Dale TC, Gusterson BA, Crompton MR. Expression patterns of the novel receptor-like tyrosine kinase, DDR, in human breast tumours. Oncogene. 1995 Feb 2;10(3):569-75.
    75. Alves F, Vogel W, Mossie K, Millauer B, H?fler H, Ullrich A. Distinct structural characteristics of discoidin I subfamily receptor tyrosine kinases and complementary expression in human cancer. Oncogene. 1995 Feb2;10(3):609-18
    76. Ongusaha PP, Kim JI, Fang L, Wong TW, Yancopoulos GD, Aaronson SA, Lee SW. p53 induction and activation of DDR1 kinase counteract p53-mediated apoptosis and influence p53 regulation through a positive feedback loop. EMBO J. 2003 Mar 17;22(6):1289-301
    77. Kamohara H, Yamashiro S, Galligan C, Yoshimura T. Discoidin domain receptor 1 isoform-a (DDR1alpha) promotes migration of leukocytes in three-dimensional collagen lattices. FASEB J. 2001 Dec;15(14):2724-6
    78. Matsuyama W, Kamohara H, Galligan C, Faure M, Yoshimura T. Interaction of discoidin domain receptor 1 isoform b (DDR1b) with collagen activates p38 mitogen-activated protein kinase and promotes differentiation of macrophages. FASEB J. 2003 Jul;17(10):1286-8.
    79.Wang J, Lü H, Liu X, Deng Y, Sun T, Li F, Ji S, Nie X, Yao L. Functional analysis of discoidin domain receptor 2 in synovial fibroblasts in rheumatoid arthritis.J Autoimmun. 2002 Nov;19(3):161-8.
    80. Xu L, Peng H, Wu D, Hu K, Goldring MB, Olsen BR, Li Y. Activation of the discoidin domain receptor 2 induces expression of matrix metalloproteinase
    13 associated with osteoarthritis in mice. J Biol Chem. 2005 Jan 7;280(1):548-55
    81. Schlesinger DH, Goldstein G, Niall HD. The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells. Biochemistry. 1975 May 20;14 (10):2214-8.
    82. Hicke, L. Getting down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol 1999, 9, 107–112
    83. Bonifacino, J.S. and Weissman, A.M. Ubiquitin and the control of protein fatein the secretory and endocytic pathways. Annu. Rev. Cell Dev.Biol. 1998,14, 19–57
    84. Hicke L, Dunn R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 2003;19:141–72.
    85. Haglund K, Di Fiore PP, Dikic I. Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem Sci 2003;28:598–603.
    86. Glickman MH, Ciechanover A. The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002, 82, 373–428.
    87. Tsygankov AY, Teckchandani AM, Feshchenko EA, Swaminathan G. Beyond the RING: CBL proteins as multivalent adapters.Oncogene. 2001 Oct 1;20(44):6382-402. Review.
    88. Meng W, Sawasdikosol S, Burakoff SJ, Eck MJ. Structure of the amino-terminal domain of Cbl complexed to its binding site on ZAP-70 kinase. Nature. 1999 Mar 4;398(6722):84-90.
    89. Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002 Apr;82(2):373-428. Review.
    90. Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science. 1999 Oct 8;286(5438):309-12
    91. Marmor MD, Yarden Y. Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene. 2004 Mar 15;23(11):2057-70. Review.
    92. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001 May17;411(6835):355-65. Review.
    93. Levkowitz G, Waterman H, Zamir E, Kam Z, Oved S, Langdon WY, Beguinot L, Geiger B, Yarden Y. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 1998 Dec 1;12(23):3663-74.
    94. Miyake S, Mullane-Robinson KP, Lill NL, Douillard P, Band H. Cbl-mediated negative regulation of platelet-derived growth factor receptor-dependent cell proliferation. A critical role for Cbl tyrosine kinase-binding domain. J Biol Chem. 1999 Jun 4;274(23):16619-28.
    95. Wang Y, Yeung YG, Stanley ER. CSF-1 stimulated multiubiquitination of the CSF-1 receptor and of Cbl follows their tyrosine phosphorylation and association with other signaling proteins. J Cell Biochem. 1999 Jan 1;72(1):119-34.
    96. Taher TE, Tjin EP, Beuling EA, Borst J, Spaargaren M, Pals ST. c-Cbl is involved in Met signaling in B cells and mediates hepatocyte growth factor-induced receptor ubiquitination. J Immunol. 2002 Oct 1;169(7):3793-800.
    97. Annemieke A. de Melker AA, van der Horst G, Calafat J, Jansen H, Borst J. c-Cbl ubiquitinates the EGF receptor at the plasma membrane and remains receptor associated throughout the endocytic route. J Cell Sci. 2001 Jun;114(Pt 11):2167-78.
    98. Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation.Nat Cell Biol. 2003 May;5(5):461-6.
    99. Petrelli A, Gilestro GF, Lanzardo S, Comoglio PM, Migone N, GiordanoThe endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met. Nature. 2002 Mar 14;416(6877):187-90.
    100. Haglund K, Shimokawa N, Szymkiewicz I, Dikic I. Cbl-directed monoubiquitination of CIN85 is involved in regulation of ligand-induced degradation of EGF receptors. Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12191-6. Epub 2002 Sep 6.
    101. Duan L, Reddi AL, Ghosh A, Dimri M, Band H. The Cbl family and other ubiquitin ligases: destructive forces in control of antigen receptor signaling. Immunity. 2004 Jul;21(1):7-17. Review.
    102. Rao N, Dodge I, Band H. The Cbl family of ubiquitin ligases: critical negative regulators of tyrosine kinase signaling in the immune system. J Leukoc Biol. 2002 May;71(5):753-63. Review.
    103. Murphy MA, Schnall RG, Venter DJ, Barnett L, Bertoncello I, Thien CB, Langdon WY, Bowtell DD. Tissue hyperplasia and enhanced T-cell signalling via ZAP-70 in c-Cbl-deficient mice. Mol Cell Biol. 1998 Aug;18(8):4872-82.
    104. Chiang YJ, Kole HK, Brown K, Naramura M, Fukuhara S, Hu RJ, Jang IK, Gutkind JS, Shevach E, Gu H. Cbl-b regulates the CD28 dependence of T-cell activation. Nature. 2000 Jan 13;403(6766):216-20.
    105. Mueller DL. E3 ubiquitin ligases as T cell anergy factors. Nat Immunol. 2004 Sep;5(9):883-90. Review.
    106. Wernicke D, Seyfert C, Gromnica-Ihle E, Stiehl P. The expression of collagenase 3 (MMP-13) mRNA in the synovial tissue is associated with histopathologic type II synovitis in rheumatoid arthritis. Autoimmunity. 2006 Jun;39(4):307-13.
    107. Vincenti, M. P. and C. E. Brinckerhoff. 2002. Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res. 4:157-164.
    108. Mengshol, J. A., M. P. Vincenti, and C. E. Brinckerhoff. 2001. IL-1 induces collagenase-3 (MMP-13) promoter activity in stably transfected chondrocytic cells: requirement for Runx-2 and activation by p38 MAPK and JNK pathways. Nucleic Acids Res. 29:4361-4372.
    109. Olaso E, Ikeda K, Eng FJ, Xu L, Wang LH, Lin HC, Friedman SL. DDR2 receptor promotes MMP-2-mediated proliferation and invasion by hepatic stellate cells. J Clin Invest. 2001 Nov;108(9):1369-78.
    110. Miyazawa, K., A. Mori, and H. Okudaira. 1998. Establishment and characterization of a novel human rheumatoid fibroblast-like synoviocyte line, MH7A, immortalized with SV40 T antigen. J.Biochem.(Tokyo) 124:1153-1162.
    111. Kristie L Durst1 and Scott W Hiebert Role of RUNX family members in transcriptional repression and gene Silencing. Oncogene (2004) 23, 4220–4224
    112. Komori T, Kishimoto T. Cbfa1 in bone development. Curr Opin Genet Dev 1998;8: 494–9.
    113. Lian JB, Stein GS. Runx2/Cbfa1: a multifunctional regulator of bone formation. Curr Pharm Des 2003;9:2677–85.
    114. Ducy P, Zhang R, Geoffrey V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997;89:677–80.
    115. Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results ina complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997;89: 755–64.
    116. Banerjee C, McCabe LR, Choi JY, et al. Runt homology domain proteins in osteoblast differentiation: AML3/Cbfa1 is a major component of a bone specific complex. J Cell Biochem 1997;66:1–8.
    117. Thirunavukkarasu K, Miles RR, Halladay DL, et al. The osteoblast-specific transcription factor Cbfa1 contributes to the expression of osteoprotogerin, a potent inhibitor of osteoclast differentiation and function. J Biol Chem 2000;275:25163–72.
    118. Gao YH, Shinki T, Yuasa T, et al. Potential role of Cbfa1, an essential transcriptional factor for osteoblast differentiation, in osteoclastogenesis: regulation of mRNA expression of osteoclast differentiation factor (ODF). Biochem Biophys Res Commun 1998;252:697–702.
    119. Enomoto H, Shiojiri S, Hoshi K, et al. Induction of osteoclast differentiation by Runx2 through receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotogerin regulation and partial rescue of osteoclastogenesis in Runx2_/_ mice by RANKL transgene. J Biol Chem 2003;278:23971–7.
    120. Zelzer E, Glotzer DJ, Hartmann C, et al. Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mech Dev 2001;106: 97–106.
    121. Porte D, Tuckerman J, Becker M, et al. Both AP-1 and Cbfa1-like factors are required for the induction of interstitial collagenase by parathyroid hormone. Oncogene 1999;18:667–78.
    122. Jimenez MJ, Balbin M, Lopez JM, et al. Collagenase 3 is a target of Cbfa1,a transcription factor of the runt gene family involved in bone formation. Mol Cell Biol 1999;19:4431–42.
    123. Selvamurugan N, Kwok S, Partridge NC. Smad3 interacts with JunB and Cbfa1/Runx2 for transforming growth factor-beta1-stimulated collagenase-3 expression in human breast cancer cells. J Biol Chem. 2004 Jun 25;279(26):27764-73.
    124. Selvamurugan N, Partridge NC. Constitutive expression and regulation of collagenase-3 in human breast cancer cells. Mol Cell Biol Res Commun. 2000 Apr;3(4):218-23.
    125. Xiao G, Jiang D, Thomas P, Benson MD, Guan K, Karsenty G, Franceschi RT.MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1.J Biol Chem. 2000 Feb 11;275(6):4453-9.
    126. Jeon MS, Atfield A, Venuprasad K, Krawczyk C, Sarao R, Elly C, Yang C, Arya S, Bachmaier K, Su L, Bouchard D, Jones R, Gronski M, Ohashi P, Wada T, Bloom D, Fathman CG, Liu YC, Penninger JM.Essential role of the E3 ubiquitin ligase Cbl-b in T cell anergy induction. Immunity. 2004 Aug;21(2):167-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700