TGF-β1在滑膜肉瘤中的作用及其促转移机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     检测TGF-β1在滑膜肉瘤中的表达,分析它在滑膜肉瘤发生发展中的作用,并探讨其促进滑膜肉瘤转移的可能机制。
     方法:
     1.分析滑膜肉瘤中TGF-β1的表达及其与SYT-SSX融合基因的关系。
     收集天津医科大学附属肿瘤医院2005-2009年冻存的新鲜滑膜肉瘤组织标本35例,利用RT-PCR技术检测滑膜肉瘤的SYT-SSX亚型,应用Real-time PCR技术检测TGF-β1 mRNA的表达,分析TGF-β1 mRNA表达与SYT-SSX亚型的关系。
     筛选1974-2005年经手术切除石蜡包埋的滑膜肉瘤组织标本140例,使用免疫组化技术检测TGF-β1蛋白的表达,RT-PCR检测SYT-SSX亚型,分析TGF-β1蛋白表达与SYT-SSX亚型的关系。
     2.收集140例滑膜肉瘤的临床病理资料和随访资料,回顾性分析TGF-β1表达与患者临床病理参数及总体生存、无转移生存之间的关系,探讨TGF-β1在滑膜肉瘤发生发展中的作用。
     3.在滑膜肉瘤石蜡包埋组织中,使用免疫组化方法检测CD31、MMP-2、TIMP-2、MMP-9、TIMP-1的表达,分析微血管密度(MVD)、基质金属蛋白酶及其抑制剂与肿瘤转移及患者总体生存、无转移生存的关系,进而分析它们与TGF-β1的关系,探讨TGF-β1促进滑膜肉瘤转移的作用机制。
     结果:
     1.TGF-β1在滑膜肉瘤中的表达及其与SYT-SSX融合基因的关系
     新鲜滑膜肉瘤组织中检测到TGF-β1的mRNA表达量平均为0.154±0.110。在110例(78.6%)滑膜肉瘤石蜡包埋组织中检测到TGF-β1蛋白的表达,其中49例高表达,61例低表达。
     TGF-β1在SYT-SSX1型和SYT-SSX2型新鲜滑膜肉瘤组织中的mRNA表达量分别为0.2385±0.1214和0.2385±0.1214,前组明显高于后组(t=2.960,P=0.007)。同样,在140例石蜡包埋组织中TGF-β1蛋白的表达与SYT-SSX亚型有关(t=2.093,P=0.004), SYT-SSX1型滑膜肉瘤(4.3265±2.0350)中TGF-β1蛋白的表达明显高于SYT-SSX2型滑膜肉瘤(3.4187±1.6019)。
     2. TGF-β1与临床病理参数及患者生存的关系
     TGF-β1的表达与滑膜肉瘤的组织学分型、临床分期、转移有关,在双相型、临床晚期、转移性滑膜肉瘤中的表达明显高于单相型、临床早期和非转移性滑膜肉瘤(均P<0.05)。TGF-β1的表达与患者的性别、年龄、肿瘤的部位、大小、组织学分级无关(均P>0.05)。
     单因素生存分析结果显示,患者的年龄、肿瘤大小、病理学分级、临床分期、放疗、转移、TGF-β1是影响患者总体生存的危险因素(均P<0.05),而性别、肿瘤部位、组织学分型、化疗与患者的总体生存无关(均P>0.05)。多因素分析结果显示,TGF-β1的表达(RR=2.451,P=0.000)、肿瘤大小(RR=2.476,P=0.001)和临床分期(RR=2.199,P=0.005)是影响滑膜肉瘤患者总体生存的独立危险因素。
     单因素分析影响滑膜肉瘤患者无转移生存的因素,结果表明,患者的年龄、放疗、组织学分级、TGF-β1的表达与滑膜肉瘤的无转移生存有关(均P<0.05),而性别、肿瘤大小、部位、组织学分型、化疗与滑膜肉瘤患者的无转移生存无关(均P>0.05)。多因素分析结果显示TGF-β1(RR=1.695,P=0.031)、患者年龄(RR=1.834,P=0.017)、组织学分级(RR=2.465,P=0.000)是影响滑膜肉瘤患者无转移生存的独立危险因素。
     3.基质金属蛋白酶及其抑制剂和微血管密度与滑膜肉瘤转移及TGF-β1表达的关系
     MMP-2、MMP-9高表达滑膜肉瘤的转移发生率明显高于低表达组(分别P=0.005,P=0.045),而TIMP-2、TIMP-1与是否发生转移无显著关系(P>0.05)。并且,MMP-2、MMP-9高表达患者的总体生存较差(分别P=0.009,P=0.027),无转移生存较差(分别P=0.000,P=0.018),而TIMP-2、TIMP-1的表达与患者的总体生存和无转移生存无关(P>0.05)。
     相关性分析结果显示,TGF-β1与MMP-2(rs=0.238 P=0.005)、MMP-9(rs=0.117 P=0.036)的表达成正相关关系,而TIMP-2、TIMP-1与TGF-β1的表达无关(P>0.05)。
     140例滑膜肉瘤的MVD为50.0±18.6个/HPF。MVD与滑膜肉瘤的转移无关,与患者的总体生存和无转移生存无关(P>0.05)。TGF-β1表达与MVD (rs=0.299,P=0.000)成正相关关系。
     结论:
     1.在大多数滑膜肉瘤中存在TGF-β1的表达。
     2.结合前期研究结果,TGF-β1可能是SYT-SSX的一个下游基因,可能在SYT-SSX的调控下影响滑膜肉瘤的发生和进展。
     3. TGF-β1可能促进肿瘤的转移,进而影响患者的总体生存和无转移生存。
     4. TGF-β1可能通过上调MMP-2、MMP-9的表达,促进滑膜肉瘤的转移。
     5.虽然TGF-β1可以促进滑膜肉瘤血管的生成,但是后者与肿瘤的转移没有直接关系。
Object:to test the expression of TGF-β1in synovial sarcoma, to analyze the function of TGF-β1 in synovial sarcoma and to investigate the possible mechanism of TGF-β1 regulating the metastasis of synovial sarcoma.
     Methods:
     1. Thirty five synovial sarcoma cases in Tianjin cancer hospital from 2005-2009 were collected in this study. RT-PCR detected the fusion gene subtype of synovial sarcoma. Real-time PCR detected the mRNA of TGF-β1. RT-PCR detected the fusion gene subtype of synovial sarcoma. Analyze the correlation between the expression of TGF-β1 and the subtype SYT-SSX.
     140 synovial sarcoma tissues undergoing surgery and being Paraffin-embedded in Tianjin cancer hospital from 1974-2005 were selected in this study, the expression of TGF-β1 protein in synovial sarcoma were detected by immunohistochemistry. RT-PCR detected the subtype of fusion gene. Analyze the correlation between the protein expression of TGF-β1 and SYT-SSX.
     2. The clinicopathological and follow-up data of 140 synovial sarcoma patients were reviewed. Analyze the correlation between TGF-β1 and clinicopathological parameters and the effect of TGF-β1 on the survival of synovial sarcoma patients. To study the contribution of TGF-β1 in synovial sarcoma
     3. CD31, MMP-2, TIMP-2, MMP-9, TIMP-1 were detected by immunohistochemisry. Analyze the role of these factors in the metastasis and survival in synovial sarcoma. To study the correlation MVD, MMP-2, TIMP-2, MMP-9, TIMP-1 and TGF-β1, To study the mechanism of TGF-β1 regulating the metastasis of synovial sarcoma,
     Results:
     1. The expression of TGF-β1 in synovial sarcoma and the correlation between TGF-β1 and SYT-SSX fusion gene
     The mRNA expression of TGF-β1 in fresh synovial sarcoma was 0.154±0.110.The protein expression of TGF-β1 was tested in 110 (78.6%) cases Paraffin-embedded tissues of synovial sarcoma. higher expression of TGF-β1 in 49 cases, lower expression of TGF-β1 in 61 cases.
     The amount of TGF-β1 mRNA in SYT-SSX1 an SYT-SSX2 fresh synovial sarcoma tissues was 0.2385±0.1214 and 0.2385±0.1214, the SYT-SSX1 group was higher than SYT-SSX2 group (t=2.960,P=0.007). The expression of TGF-β1 protein correlated with subtype of SYT-SSX(t=2.093, P=0.004), The expression of TGF-β1 protein in SYT-SSX1 synovial sarcoma(4.3265±2.0350) was higher than SYT-SSX2 synovial sarcoma(3.4187±1.6019).
     2. The correlation of TGF-β1 with clinicopathologic parameters and the survival of patients
     The expression of TGF-β1 protein correlated with the type of histology, clinical stage, metastasis of synovial sarcomas. the expression of TGF-β1 protein in biphasic synovial sarcoma, later stage and metastatic synovial sarcomas were higher than monophasic synovial sarcomas, early stage and non-metastatic synovial sarcomas(P<0.05), the expression of TGF-β1 protein had no correlation with the sex, age, location, size, grade of synovial sarcomas (P>0.05).
     Unvariable analyzed the factors that affecting the overall survival of synovial sarcoma patients. The results revealed that age, tumor size, histological grade, clinical stage, radiotherapy, metastasis, TGF-β1 affected the patients overall survival.(P<0.05). while sex, location, the subtype of histology, chemotherapy had no correlation with patients overall survival (P>0.05), multivariable analysis revealed that TGF-β1(RR=2.451 P=0.000), tumor size(RR=2.476 P=0.001), clinical stage(RR=2.199 P=0.005)were independent risk factors affecting the overall survival of synovial sarcoma patients.
     Unvariable analyzed the factors that affecting the metastasis-free-survival of synovial sarcoma, which results revealed that age, radiotherapy, histological grade, TGF-β1 correlated with the metastasis-free-survival of synovial sarcoma(P<0.05). while sex, tumor size, location, subtype of histology therapy, chemotherapy had no correlation with the metastasis-free-survival of synovial sarcoma (P>0.05). Multivariable analysis revealed that TGF-β1(RR=1.695, P=0.031), patients age(RR=1.834, P=0.017), histological grade(RR=2.465,P=0.000) were independent risk factors affecting metastasis-free-survival of synovial sarcoma patients.
     3. The correlation matrix metalloproteinases, Inhibitor of matrix metalloproteinases and microvessel density with the expression of TGF-β1
     The synovial sarcomas with higher expression of MMP-2, MMP-9 were easily metastasis than that with lower expression of MMP-2, MMP-9(P=0.005,P=0.045),while TIMP-2、TIMP-1 had no correlation with the metastasis of synovial sarcoma(P<0.05). The synovial sarcomas patients with higher expression of MMP-2, MMP-9 had poor overall survival(P=0.009, P=0.027) and poor metastasis-free-survival of synovial sarcoma, (P=0.000,P=0.018). While TIMP-2、TIMP-1 had no correlation with the overall survival of synovial sarcoma and metastasis-free-survival of synovial sarcoma patients(P>0.05). Correlation analysis revealed that TGF-β1 correlated with MMP-2(rs=0.228 P=0.005), MMP-9 (rs=0.117 P=0.036), While TIMP-2、TIMP-1 had no correlated with TGF-β1(P>0.05).
     The average density of microvessel in 140 synovial sarcomas were 50.0±18.6. MVD had no correlation with metastasis of synovial sarcomas, MVD had no correlation with the overall survival of synovial sarcoma and metastasis-free-survival of synovial sarcoma patients(P>0.05). While MVD had positive correlated with the expression of TGF-β1(rs=0.299,P=0.000). Conclusions:
     1. The expression of TGF-β1 exists in most synovial sarcoma.
     2. TGF-β1 might be a down-stream gene of SYT-SSX, SYT-SSX might regulate the genetic and development of synovial sarcoma by TGF-β1.
     3. TGF-β1 possible promotes the metastasis of synovial sarcoma, which affectes patients survival.
     4. TGF-β1 might control the metastasis of synovial sarcoma by up-regulating MMP-2, MMP-9.
     5. Although TGF-β1 promotes the angiogenesis of synovial sarcoma, the microvessel has no direct correlation with the metastasis of synovial sarcoma.
引文
[1]Fletcher CDM,Unni KK, Mertens F. World health organization classification of tumours. Pathology and genetics of tumours of soft tissue and bone [M]. IARC Press Lyon, France,2002:10-11.
    [2]Clark J, Rocques PJ, Crew AJ, et al.Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma[J].Nat Genet,1994,7(4):502-508.
    [3]dos Santos NR, de Bruijn DR,van Kessel AG. Molecular mechanisms underlying human synovial sarcoma development [J].Genes Chromosomes Cancer,2001,30 (1):1-14.
    [4]C.Thaete,D.Brett,P.Monaghan,et.al Functional domains of the SYT and SYT-SSX synovial sarcoma translocation proteins and co-localization with the SNF protein BRM in the nucleus[J]. Human Molecular Genetics,1999,8(4):585-591.
    [5]Saito T, Nagai M, Ladanyi M.SYT-SSX1 and SYT-SSX2 interfere with repression of E-cadherin by snail and slug:a potential mechanism for aberrant mesenchymal to epithelial transition in human synovial sarcoma[J]. Cancer Res, 2006,66(14):6919-6927
    [6]Pisarev MA, Thomasz L, Juvenal GJ.Role of transforming growth factor beta in the regulation of thyroid function and growth[J].Thyroid,2009,19(8):881-892.
    [7]Samarakoon R, Higgins PJ.Integration of non-SMAD and SMAD signaling in TGF-beta1-induced plasminogen activator inhibitor type-1 gene expression in vascular smooth muscle cells[J].Thromb Haemost,2008,100(6):976-983.
    [8]Amy j Galliber. Role of transforming growth factorβ in cancer progression [J].future oncol,2006,2(6):743-763.
    [9]Kominsky SL, Doucet M, Thorpe M, MMP-13 is over-expressed in renal cell carcinoma bone metastasis and is induced by TGF-beta1 [J]. Clin Exp Metastasis, 2008,25(8):865-870.
    [10]Kuo YC, Su CH, Liu CY.Transforming growth factor-beta induces CD44 cleavage that promotes migration of MDA-MB-435s cells through the up-regulation of membrane type 1-matrix metalloproteinase[J].Int J Cancer,2009, 124(11):2568-2576.
    [11]Wang B, Herman-Edelstein M, Koh P, et al.E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of TGF{beta} [J].Diabetes,2010 Apr 14. [Epub ahead of print].
    [12]Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer[J]. Cancer Res,2001,15;61(12):4766-4772.
    [13]Kobie JJ, Wu RS, Kurt RA, et al.Transforming growth factor β inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines[J]. Cancer Res,2003,63(8):1860-1864.
    [14]Terabe M, Matsui S, Park J-M, et al. Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance abrogation prevents tumor recurrence.[J] J Exp Med,2003,198(11):1741-1752.
    [15]Brett D, Whitehouse S, Antonson P, et al.The SYT protein involved in the t(X;18) synovial sarcoma translocation is a transcriptional activator localised in nuclear bodies[J]. Hum Mol Genet,1997,6(9):1559-1564.
    [16]Yan Sun,l Baocun Sun, Jian Wang, et al. Prognostic implication of SYT-SSX fusion type and clinicopathological parameters for tumor-related death, recurrence, and metastasis in synovial sarcoma[J]. Cancer Sci,2009,100(6): 1018-1025.
    [17]Kasai T, Shimajiri S, Hashimoto H. Detection of SYT-SSX fusion transcripts in both epithelial and spindle cell areas of biphasic synovial sarcoma using laser capture microdissection. Mol Pathol,2000,53(2):107-110.
    [18]Ladanyi M, Antonescu CR, Leung DH, et al. Impact of SYT-SSX fusion type on the clinicalbehavior of synovial sarcoma:amulti-institutional retrospective study of 243 patients[J].Cancer Res,2002,62(1):135-140.
    [19]Yuntao Xie, Bjo"rn Skytting, Gunnar Nilssonet al. SYT-SSX Is Critical for Cyclin D1 Expression in Synovial Sarcoma Cells:A Gain of Function of the t(X;18)(p11.2;q11.2) Translocation[J].Cancer Res,2002,62(13):3861-3867.
    [20]Gunnar Nilsson, Bjo"rn Skytting, Yuntao Xie.The SYT-SSX1 Variant of Synovial Sarcoma Is Associated with a High Rate of Tumor Cell Proliferation and Poor Clinical Outcome[J].Cancer Res,1999,59(13):3180-3184.
    [21]Inagaki H, Nagasaka T, Otsuka T, et al. Association of SYT-SSX fusion types with proliferative activity and prognosis in synovial sarcoma.[J]Mod Pathol, 2000,13(5):482-488.
    [22]Panagopoulos I, Mertens F, Isaksson M.Clinical impact of molecular and cytogenetic findingsin synovial sarcoma[J]. Genes Chromosomes Cancer,2001, 31(4):362-372.
    [23]Kawai, A, Woodruff, J, Healey, et al. SYT-SSX gene fusion as a determinant of morphology and prognosis in synovial sarcoma[J]. N Engl J Med,1998,338(3): 153-160.
    [24]魏秀平,孙燕,赵秀兰,等.SYT-SSX、E-钙粘素及β-连接素对滑膜肉瘤转移的影响[J].中国肿瘤临床,2010,37(4):205-208.
    [25]Heldin CH, Landstrom M, Moustakas A. et al. Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition.[J].Curr Opin Cell Biol,2009,21(2):166-176.
    [26]Wang CL, Wan YL, Liu YC, et al. TGF-betal/SMAD signaling pathway mediates p53-dependent apoptosis in hepatoma cell lines[J].Chin Med Sci J, 2006,21(1):33-35.
    [27]Bleeker FE, Lamba S, Rodolfo M,et al.Mutational profiling of cancer candidate genes in glioblastoma, melanoma and pancreatic carcinoma reveals a snapshot of their genomic landscapes[J].Hum Mutat,2009,30(2):E451-459.
    [28]Blackford A, Serrano OK, Wolfgang CL,et al.SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer[J].Clin Cancer Res,2009, 15(14):4674-4979.
    [29]Tian F, DaCosta Byfield S, Parks WT, et al. Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines[J]. Cancer Res.2003,63(23):8284-8292.
    [30]Leivonen SK, Kahari VM.Transforming growth factor-β signaling in cancer invasion and metastasis [J]. int J Cancer,2007,121(10):2119-2124.
    [31]Giehl K, Imamichi Y, Menke A. Smad4-independent TGF-beta signaling in tumor cell migration [J]. Cells Tissues Organs,2007,185(1-3):123-130.
    [32]Guillou L, Benhattar J, Bonichon F,et al. Histologic grade, but not SYT-SSX fusion type, is an important prognostic factor in patients with synovial sarcoma: a multicenter, retrospective analysis[J].J Clin Oncol,2004,22(20):4040-4050.
    [33]Takenaka S, Ueda T, Naka N, et al. Prognostic implication of SYT-SSX fusion type in synovial sarcoma:a multi-institutional retrospective analysis in Japan [J]. Oncol Rep,2008,19(2):467-476.
    [34]Sultan I, Rodriguez-Galindo C, Saab R, et al. Comparing children and adults with synovial sarcoma in the Surveillance, Epidemiology, and End Results program,1983 to 2005:an analysis of 1268 patients[J]. Cancer, 2009,115(15):3537-3547.
    [35]ten Heuvel SE, Hoekstra HJ, Bastiaannet E, et al. The classic prognostic factors tumor stage, tumor size, and tumor grade are thestrongest predictors of outcome in synovial sarcoma:no role for SSX fusion typeor ezrin expression[J].Appl Immunohistochem Mol Morphol,2009,17(3):189-195.
    [36]Muraoka, R. S, Koh, Y, Roebuck, L. R, et al. Increased malignancy of neu-induced mammary tumors overexpressing active transforming growth factorβ1[J].Mol Cell Biol,2003,23(23):8691-8703.
    [37]Picon A, Gold LI, Wang J, et al. A subset of metastatic human colon cancers expresses elevated levels of transforming growth factor betal [J]. Cancer Epidemiol Biomarkers Prev,1998,7(6):497-504.
    [38]Wikstrom P, Stattin P, Franck-Lissbrant I, et al. Transforming growth factor betal is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer[J].Prostate,1998,37(1):19-29.
    [39]Yule SM, Skinner R, English MW, et al. Outcome and toxicity of an Ifosfamide-based soft tissue sarcoma treatment protocol in children. The importance of local therapy[J]. Sarcoma.1998;2(3-4):171-177.
    [40]Dunn LK, Mohammad KS, Fournier PG, et al. Hypoxia and TGF-beta drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment [J].PLoS One,2009,4(9):e6896.
    [41]Muraoka-Cook, R. S, Kurokawa, H, Koh, Y, et al. Conditional overexpression of active transforming growth factor β1 accelerates metastases of transgenic mammary tumors[J]. Cancer Res,2004,64(24):9002-9011.
    [42]Cannito S, Novo E, Compagnone A, et al. Redox mechanisms switch on hypoxia-dependent epithelial-mesenchymal transition in cancer cells[J].Carcinogenesis,2008,29(12):2267-2278.
    [43]McConkey DJ, Choi W, Marquis L, et al. Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer [J]. Cancer Metastasis Rev,2009,28(3-4):335-344.
    [44]Viloria-Petit AM, Wrana JL.The TGF beta-Par6 polarity pathway:Linking the Par complex to EMT and breast cancer progression[J].Cell Cycle, 2010,9(4):623-624.
    [45]Hills CE,PE. Squires TGF-betal-inducedepithelial-to-mesenchymal transition and therapeutic intervention in diabetic nephropathy[J].Am J Nephrol,2010,31(1):68-74
    [46]ABDIN FH. Tumors of synovial origin[J].N C Med J,1955,16(6):210-215.
    [47]Cironi L, Provero P, Riggi N, et al. Epigenetic features of human mesenchymal stem cells determine their permissiveness for induction of relevant transcriptional changes by SYT-SSX1[J]. PLoS One,2009,4(11):e7904.
    [48]Kawai A, Naito N, Yoshida A, et al. Establishment and characterization of a biphasic synovial sarcoma cell line, SYO-1[J].Cancer Lett,2004,204(1):105-113.
    [49]Cohen, P, Nunn, S. E, Peehl, D. M. Transforming growth factor-P induces growth inhibition and IGF-binding protein-3 production in prostatic stromal cells: Abnormalities in cells cultured from benign prostatic hyperplasia tissues[J]. Journal of Endocrinology,2000,164(2):215-223.
    [50]Bretland, A. J, Reid, S. V, Chapple, C. R. et al. Role of endogenous transforming growth factor β (TGFβ)1 in prostatic stromal cells[J]. Prostate,2001, 48(4):297-304.
    [51]Story, MT., Hopp, KA., Meier, DA. Regulation of basic fibroblast growth factor expression by transforming growth factor P in cultured human prostate stromal cells[J]. Prostate,1996,28(4):219-226.
    [52]Zhang S, Zhang D, Sun B.Vasculogenic mimicry:current status and future prospects [J].Cancer Lett,2007,254(2):157-164.
    [53]Joshi A, Cao D.TGF-beta signaling, tumor microenvironment and tumor progression:the butterfly effect[J].Front Biosci,2010,15:180-194.
    [54]Andrei V. Bakin, Alfiya Safina, Cammie Rinehart, et al. A Critical Role of Tropomyosins in TGF- Regulation of the Actin Cytoskeleton and Cell Motility in Epithelial Cells[J]Molecular Biology of the Cell,2004,15(10):4682-4694,
    [55]Robert V, Hideaki N. Matrix metalloproteinases and tissue inhibitors of metalloproteinases[J]. Circul Res,2003,92(8):827-839.
    [56]Pellikainen JM, Ropponen KM, Kataja VV,et al. Expression of matrix metalloproteinase(MMP)-2 and MMP-9 in breast cancer with a special reference to activator protein-2,HER2,and prognosis[J]. Clin Cancer Res,2004,10(22): 7621-7628.
    [57]Hua J, Muschel RJ. Inhibition of matrix metalloproteinase 9 expression by a ribozyme blocks metastasis in a rat sarcoma model system[J].Cancer Res,1996, 56(22):5279-5284.
    [58]Cho HJ, Lee TS, Park JB, et al. Disulfiram suppresses invasive ability of osteosarcoma cells via the inhibition of MMP-2 and MMP-9 expression[J].J Biochem Mol Biol,2007,40(6):1069-1076.
    [59]Saito T, Oda Y, Sakamoto A, et al. Matrix metalloproteinase-2 expression correlates with morphological and immunohistochemical epithelial characteristics in synovial sarcoma[J]. Histopathology,2002,40(3):279-285.
    [60]Zhong J, Gencay MM, Bubendorf L, et al. Roth M.ERK1/2 and p38 MAP kinase control MMP-2, MT1-MMP, and TIMP action and affect cell migration:a comparison between mesothelioma and mesothelial cells[J].J Cell Physiol, 2006,207(2):540-552.
    [61]Seomun Y, Kim JT, Joo CK.MMP-14 mediated MMP-9 expression is involved in TGF-betal-induced keratinocyte migration[J].J Cell Biochem,2008,104(3): 934-941
    [62]Hu YB, Zong YR, Feng DY, et al. p38/ERK signal pathways regulating the expression of type I collagen and activity of MMP-2 in TGF-betal-stimulated HLF-02 cells [J].Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi,2006,24(2):77-80.
    [63]Konrad L, Scheiber JA, Schwarz L, et al. TGF-betal and TGF-beta2 strongly enhance the secretion of plasminogen activator inhibitor-1 and matrix metalloproteinase-9 of the human prostate cancer cell line PC-3 [J].Regul Pept, 2009,155(1-3):28-32.
    [64]Kallakury BV, Karikehalli S, Haholu A, et al. Increased expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinases 1 and 2 correlate with poor prognostic variables in renal cell carcinoma[J]. Clin Cancer Res,2001,7(10):3113-3119.
    [65]Ross JS, Kaur P, Sheehan CE, et al. Prognostic significance of matrix metalloproteinase 2 and tissue inhibitor of metalloproteinase 2 expression in prostate cancer[J].Mod Pathol,2003,16(3):198-205.
    [66]Danilewicz M, Sikorska B, Wagrowska-Danilewicz M.Prognostic significance of the immunoexpression of matrix metalloproteinase MMP-2 and its inhibitor TIMP-2 in laryngeal cancer[J].Med Sci Monit,2003,9(3):MT42-47.
    [67]Kwak HJ, Park MJ, Cho H, et al. Transforming growth factor-betal induces tissue inhibitor of metalloproteinase-1 expression via activation of extracellular signal-regulated kinase and Spl in human fibrosarcoma cells [J]. Mol Cancer Res,2006,4(3):209-220.
    [68]Zhou D, Cheng SQ, Ji HF, et al. Evaluation of protein pigment epithelium-derived factor (PEDF) and microvessel density (MVD) as prognostic indicators in breast cancer[J].J Cancer Res Clin Oncol,2010 [Epub ahead of print]
    [69]Miyahara M, Tanuma J, Sugihara K, et al. Tumor lymphangiogenesis correlates with lymph node metastasis and clinicopathologic parameters in oral squamous cell carcinoma[j].Cancer,2007,110(6):1287-1294.
    [70]K Yudoh, M Kanamori, K Ohmori, et al. Concentration of vascular endothelial growth factor in the tumour tissue as a prognostic factor of soft tissue sarcomas[J].British Journal of Cancer,2001,84(12):1610-1615.
    [71]Xiong B, Gong LL, Zhang F, et al. TGF betal expression and angiogenesis in colorectal cancer tissue[J]. World J Gastroenterol,2002,8(3):496-498.
    [1]Massague J, Cheifetz S, Ignotz RA.Multiple type-beta transforming growth factors and their receptors[J].J Cell Physiol Suppl,1987,Suppl 5:43-47
    [2]Roberts AB, Sporn MB.Transforming growth factor beta[J].Adv Cancer Res, 1988,51(6)107-145.
    [3]Roberts AB, Sporn MB. Transforming growth factor-beta:potential common mechanisms mediating its effects on embryogenesis, inflammation-repair, and carcinogenesis[J]. Int J Rad Appl Instrum B,1987,14(4):435-439.
    [4]Mokrosinski J, Krajewska WM. TGF beta signalling accessory receptors[J].Postepy Biochem,2008,54(3):264-273
    [5]Lonn P, Moren A, Raja E, et al. Regulating the stability of TGFbeta receptors and Smads[J]. Cell Res,2009,19(1):21-35.
    [6]Itoh S, ten Dijke P. Negative regulation of TGF-β receptor/Smad signal transduction[J]. Curr Opin Cell Biol,2007,19(2):176-184
    [7]Heldin CH, Landstrom M, Moustakas A.Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition[J].Curr Opin Cell Biol,2009,21(2):166-176.
    [8]Tsuchiya M, Sharma R, Tye CE, et al. Transforming growth factor-betal expression is up-regulated in maturation-stage enamel organ and may induce ameloblast apoptosis [J].Eur J Oral Sci,2009,117(2):105-112.
    [9]Cucina A, Proietti S, D'Anselmi F, et al. Evidence for a biphasic apoptotic pathway induced by melatonin in MCF-7 breast cancer cells [J]. J Pineal Res, 2009,46(2):172-180.
    [10]Schneiders D, Heger J, Best P, et al. Smad proteins are involved in apoptosis induction in ventricular cardiomyocytes[J]. Cardiovasc Res,2005,67(1):87-96.
    [11]Yanagisawa K,Osada H,M asuda A,et al,Induction of apoptosis by SAD3 and down regulation of SMAD3 expression in response to FGF beta in human normal lung epithelial cells[J].Oncogene,1998,17(13):1743-1747.
    [12]Lu Q, Patel B, Harrington EO,et al,Transforming growth factor-betal causes pulmonary micro vascular endothelial cell apoptosis via ALK5[J].Am J Physiol Lung Cell Mol Physiol,2009,296(5):L825-838.
    [13]Sulkowski S, Wincewicz A, Sulkowska M, Transforming growth factor-betal and regulators of apoptosis[J]. Ann N Y Acad Sci,2009,1171:116-123.
    [14]Murata M, Matsuzaki K, Yoshida K,et al. Hepatitis B virus X protein shifts human hepatic transforming growth factor (TGF)-beta signaling from tumor suppression to oncogenesis in early chronic hepatitis B[J]. Hepatology,2009, 49(4):1203-1217.
    [15]Antony ML, Nair R, Sebastian P, et al. Changes in expression, and or mutations in TGF-beta receptors (TGF-beta RI and TGF-beta RII) and Smad 4 in human ovarian tumors[J]. J Cancer Res Clin Oncol,2010,136(3):351-361
    [16]Bleeker FE, Lamba S, Rodolfo M,et al Mutational profiling of cancer candidate genes in glioblastoma, melanoma and pancreatic carcinoma reveals a snapshot of their genomic landscapes[J].Hum Mutat,2009,30(2):E451-459.
    [17]Blackford A, Serrano OK, Wolfgang CL,et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer [J]. Clin Cancer Res,2009, 15(14):4674-4979.
    [18]Ye L, Zhang H, Zhang L, et al. Effects of RNAi-mediated Smad4 silencing on growth and apoptosis of human rhabdomyosarcoma cells[J].Int J Oncol,2006, 29(5):1149-1157.
    [19]Chen H, Yang WW, Wen QT, TGF-beta-induced fibroblast activation protein expression, fibroblast activation protein expression increases the proliferation, adhesion, and migration of HO-8910PM[J]. Exp Mol Pathol,2009,87(3): 189-194.
    [20]Dunn LK, Mohammad KS, Fournier PG, et al. Hypoxia and TGF-beta drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment[J] PLoS One,2009,4(9):e6896.
    [21]Kominsky SL, Doucet M, Thorpe M. MMP-13 is over-expressed in renal cell carcinoma bone metastasis and is induced by TGF-betal[J]. Clin Exp Metastasis, 2008,25(8):865-870.
    [22]Kuo YC, Su CH, Liu CY. Transforming growth factor-beta induces CD44 cleavage that promotes migration of MDA-MB-435s cells through the up-regulation of membrane type 1-matrix metalloproteinase[J].Int J Cancer, 2009,124(11):2568-2576.
    [23]Yang X, Yip J, Harrison M. Primary human osteoblasts and bone cancer cells as models to study glycodynamics in bone[J].Int J Biochem Cell Biol,2008,40(3): 471-483.
    [24]Serrati S, Margheri F, Pucci M. TGFbetal antagonistic peptides inhibit TGFbetal-dependent angiogenesis[J].Biochem Pharmacol,2009,77(5):813-825.
    [25]Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer[J]. Cancer Res,2001,61(12):4766-72.
    [26]Kobie JJ, Wu RS, Kurt RA, et al. Transforming growth factor β inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines[J]. Cancer Res,2003,63(8):1860-1864.
    [27]Terabe M, Matsui S, Park J-M, et al. Transforming growth factor-P production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence [J].J Exp Med,2003,198(11):1741-1752.
    [28]Lee JC, Lee KM, Kim DW, et al. Elevated TGF-β1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients[J]. J Immunol,2004,172(12):7335-7340.
    [29]Liu VC, Wong LY, Jang T,Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells:role of tumor-derived TGF-beta[J]. J Immunol,2007,178(5):2883-2892.
    [30]Wolfraim LA, Fernandez TM, Mamura M, et al. Loss of Smad3 in acute T-cell lymphoblastic leukemia[J].N Engl J Med,2004,351(6):552-559.
    [31]Fang LP, Lin Q, Tang CS,et al.Hydrogen sulfide attenuates epithelial-mesenchymal transition of human alveolar epithelial cells[J].Pharmacol Res,2009 Nov 10. [Epub ahead of print]
    [32]Pozharskaya V, Torres-Gonzalez E, Rojas M.Twist:a regulator of epithelial-mesenchymal transition in lung fibrosis[J].PLoS One,2009, 23;4(10):e7559.
    [33]Choi SS, Diehl AM.Epithelial-to-mesenchymal transitions in the liver[J].Hepatology,2009,50(6):2007-2013.
    [34]Iwano M, Neilson EG Mechanisms of tubulointerstitial fibrosis[J].Curr Opin Nephrol Hypertens,2004,13(3):279-284.
    [35]Piek E, Moustakas A, Kurisaki A, et al. TGF-β type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells [J]. J Cell Sci,1999,112 (Pt 24):4557-4568.
    [36]Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A. TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition[J]. Mol Biol Cell,2005,16(4):1987-2002.
    [37]Sato M, Muragaki Y, Saika S, et al. Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction.[J] J Clin Invest,2003,112:1486-1494.
    [38]Veerasamy M, Nguyen TQ, Motazed R, et al. Differential regulation of E-cadherin and alpha-Smooth Muscle Actin by BMP 7 in human renal proximal tubule epithelial cells and its implication in renal fibrosis [J].Am J Physiol Renal Physiol,2009,297(5):1238-1248.
    [39]Izumi N, Mizuguchi S, Inagaki Y, et al. BMP-7 opposes TGF-betal mediated collagen induction in mouse pulmonary myofibroblasts through Id2[J]. Am J Physiol Lung Cell Mol Physiol,2006,290(1):120-126.
    [40]Na YR, Seok SH, Kim DJ. Bone morphogenetic protein 7 induces mesenchymal-to-epithelial transition in melanoma cells, leading to inhibition of metastasis[J].Cancer Sci,2009,100(11):2218-2225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700