钙转运异常与高尿酸导致的内皮细胞损伤的相关关系及其分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:随着我国社会的进步,居民蛋白摄入和果糖摄入的增多,高尿酸血症已经成为危害我国居民健康的一个重要的危险因素。随着研究的深入,学术界逐渐认识到,高尿酸(Uric acid, UA)导致的危害并不仅仅限于其能够导致痛风、泌尿系统结石和传统意义上的“尿酸性肾病”,人们发现,高UA本身就能够导致心血管系统和肾小球的损伤。其中高UA导致的内皮功能损伤和炎症反应起着重要的作用。目前认为,细胞内线粒体钙稳态失衡导致的线粒体功能损伤是内皮细胞损伤的主要机制之一,线粒体功能异常会直接导致细胞内活性氧(ROS)的产生增加,同时还会抑制内皮细胞内皮型一氧化氮合酶(eNOS)的产生以及一氧化氮(NO)的释放,此外还会导致细胞炎症因子产生的增多。因此,我们认为在高UA导致的内皮损伤过程中,可能也遵从这一途径,或者可能还有其他的特殊机制。这是本研究的出发点。
     目的:探讨高UA导致的内皮损伤和炎症反应过程中细胞内钙启动机制。
     方法:体外培养人脐静脉内皮细胞系(HUVEC-C),分别给予不同浓度和不同时间点的UA刺激。在本研究的第一部分,即UA刺激HUVEC-C后内皮损伤和炎症反应的现象研究中,针对细胞内不同部位的钙离子浓度,我们分别使用细胞胞浆钙离子([Ca2+]cyt)的特异性探针Fluo-3 AM和线粒体钙离子([Ca2+]mito)的特异性探针Rhod-2 AM,对活细胞进行染色,激光共聚焦显微镜观察细胞内钙离子的改变情况;针对细胞内的超氧阴离子(·O2-),我们使用细胞内总·O2-的特异性探针CM-H2DCFDA检测高UA刺激后的趋势,使用专门针对定位于线粒体·O2-的特异性探针——感染携带黄色荧光蛋白(cpYFP)的腺病毒的方法——检测线粒体内·O2-的变化;针对内皮损伤和炎症,我们使用硝酸还原酶法检测内皮细胞释放NO的改变趋势,逆转录-聚合酶链反应(RT-PCR)、Western Blot以及酶联免疫吸附法(ELISA)等方法分别检测eNOS以及一系列炎症因子如C-反应蛋白(CRP)、细胞间粘附分子-1(ICAM-1)和白介素-6(IL-6)在mRNA和蛋白水平表达的变化情况。在本研究的第二部分,即机制研究中,我们分别使用了一些常见的细胞内钙通道的特异性阻断剂,如细胞膜L型钙通道阻断剂Nicardipine,细胞膜钠钙交换体(NCXpm)的阻断剂KB-R7943;定位于线粒体的钙单向转运体(MCU)的阻断刺Ru360,线粒体钠钙交换体(NCXmito)的阻断剂CGP-37157;定位于内质网(ER)的月几浆网/内质网钙ATP酶(SERCA)的阻断剂Thapsigangin,1,4,5-三磷酸肌醇受体(IP3R)的阻断剂2APB以及Ryanodine受体的阻断剂Ryanodine(大剂量),阻断各自的钙通道,然后观察高UA刺激内皮细胞后内皮功能的变化以及炎症反应的改变趋势。
     结果:高UA可呈时间、浓度依赖性地导致内皮损伤,表现为eNOS产生和NO释放的减少,预先使用ROS的清除剂维生素C (Vit C)有助于减轻其内皮损伤;在此过程中,[Ca2+]mito显著升高,而[Ca2+]cyt未出现显著变化;同时,内皮细胞产生·O2-显著增多,炎症因子释放明显增多。当阻断位于ER的IP3R和位于线粒体的NCXmito时,UA导致的内皮细胞[Ca2+]mito,总·O2-水平和线粒体·O2-水平均明显缓解,同时NO释放的降低会得到恢复,炎症因子的产生增多显著下降;而阻断SERCA和MCU则只能降低[Ca2+]mito和总·O2-水平的增加,无助于减少线粒体·O2-,也无减轻内皮损伤和炎症反应的作用。L型通道的阻断剂Nicardipine虽然不能减轻[Ca2+]mito,总·O2-水平和线粒体·O2-水平的增加,却能在一定程度上减轻内皮损伤和炎症。
     结论:UA导致的内皮细胞损伤和炎症反应过程中,细胞内钙的变化,尤其是[Ca2+]mito的增多(线粒体钙超载)起着启动作用;ROS,尤其是·O2-的增多在此过程中起重要的介导作用;钙在IP3R和NCXmito两个通道的转运可能在此过程中起着重要的作用。本研究的结果揭示了UA导致内皮损伤的分子机制,有可能为临床治疗提供新的思路和靶点。
Background:Hyperuricemia has become an important risk factor for health of residents in China during the past 30 years. Researchers have recognized that the harmful of uric acid (UA) is not limited in its causing gout, urinary stones, and so called "uric acid nephropathy" only, on the contrary, it was found that UA per se is a risk factor in cardiovascular and renal damage, in which endothelial dysfunction plays a critical role. In the process of endothelial dysfunction, mitochondrial calcium homeostasis imbalance can increased intracellular reactive oxygen species (ROS) production, inhibit endothelial nitric oxide synthase (eNOS) production and nitric oxide (NO) release, and lead to increased inflammatory cytokine production. As a result, the main purpose of this study is to clarify whether UA induced endothelial injury and inflammation were also caused by this classical process, or have another special mechanism.
     Objective:To investigate the mechanisms of intracellular calcium in the process of UA induced endothelial dysfunction and inflammation.
     Methods:Human umbilical vein endothelial cells (HUVEC-C) cultured in vitro were stimulated with UA in different concentrations and different time points. The cytoplasmic calcium ([Ca2+]cyt) specific probe, Fluo-3 AM, and the mitochondrial calcium ([Ca2+]mito) specific probe, Rhod-2 AM, were employed to study the intracellular calcium changing after the UA stimulation, using confocal laser microscopy. The intracellular superoxide anion (·O2-) specific probe CM-H2DCFDA were employed to detect the changes in total·O2-, and the mitochondria·O2- specific probe, cpYFP, to detect the mitochondrial·O2-changes. Furthermore, we used reverse transcription-polymerase chain reaction (RT-PCR), Western Blot and enzyme-linked immunosorbent assay (ELISA) to detect eNOS and a series of inflammatory factors such as C-reactive protein (CRP), intercellular adhesion molecule-1 (ICAM-1) and interleukin-6 (IL-6) in mRNA and protein levels expression, respectively. In the second part of this study, different specific blockers for intracellular calcium channels were employed to inhibit the transduction through these channels. These blockers are, Nicardipine for L-type calcium channel, KB-R7943 for plasma membrane Na+/Ca2+exchanger (NCXpm), Ru360 for mitochondrial calcium uniporter (MCU), CGP-37157 for mitochondrial Na+/Ca2+exchanger (NCXmito), Thapsigangin for sarcoplasmic reticulum/endoplasmic reticulum calcium ATPase (SERCA),2-APB for 1,4,5-triphosphate receptor (IP3R), and high dose of Ryanodine for Ryanodine receptor (RyR).
     Results:High concentration of UA induced endothelial dysfunction in a time and concentration dependent manner, marked as reduced eNOS production and NO release. In this process, [Ca2+]mito was significantly increased, while [Ca2+]cyt did not changed; ROS production was significantly increased, so as the release of inflammatory factors. When the blockers for IP3R and NCXmito were used, UA induced [Ca2+]mito, total·O2-levels and mitochondrial·O2-elevations were significantly decreased, while the reduction of NO release increased, and the elevated inflammatory factors generation were significantly decreased. However, when SERCA and MCU were blocked, we only observed the reduction of elevation of the [Ca2+]mito and the total·O2-levels, but not the protection effect for the endothelial dysfunction and inflammation.
     Conclusion:High concentration of UA can induce endothelial dysfunction and inflammation, in which the the [Ca2+]mito were increased significantly (mitochondrial calcium overload). ROS, in particular,·O2-production, plays a mediating role in this process. Calcium transport through IP3R and NCXmito may play an important role. The results of this study clarified the molecular mechanisms of UA induced endothelial dysfunction and inflammation, and may provide a new target for clinics.
引文
[1]CASTRO-MENDOZA H J, RAPADO A, DE LA PIEDRA C, et al. Xanthinuria:the cause of hypouricemia in hepatic disease. Adv Exp Med Biol, 1980,122A(247-50.
    [2]HOUSTON M, CHUMLEY P, RADI R, et al. Xanthine oxidase reaction with nitric oxide and peroxynitrite. Arch Biochem Biophys,1998,355(1):1-8.
    [3]JOHNSON R J, KANG D H, FEIG D, et al. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease?. Hypertension, 2003,41(6):1183-90.
    [4]FEIG D I, KANG D H, JOHNSON R J. Uric acid and cardiovascular risk. N Engl J Med,2008,359(17):1811-21.
    [5]PINTON P, RIMESSI A, MARCHI S, et al. Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science,2007,315(5812):659-63.
    [6]MAEDA S, KAMATA H, LUO J L, et al. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell,2005,121(7):977-90.
    [7]PHAM C G, BUBICI C, ZAZZERONI F, et al. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell,2004,119(4):529-42.
    [8]TISLER A, PIERRATOS A, HONEY J D, et al. High urinary excretion of uric acid combined with high excretion of calcium links kidney stone disease to familial hypertension. Nephrol Dial Transplant,2002,17(2):253-9.
    [9]WANG X, SCHWARZ T L. The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell,2009,136(1):163-74.
    [10]LUCIANI D S, GWIAZDA K S, YANG T L, et al. Roles of IP3R and RyR Ca2+ channels in endoplasmic reticulum stress and beta-cell death. Diabetes, 2009,58(2):422-32.
    [11]DURHAM W J, ARACENA-PARKS P, LONG C, et al. RyR1 S-nitrosylation underlies environmental heat stroke and sudden death in Y522S RyR1 knockin mice. Cell,2008,133(1):53-65.
    [12]FENG Z, WEI C, CHEN X, et al. Essential role of Ca2+ release channels in angiotensin Ⅱ-induced Ca2+ oscillations and mesangial cell contraction. Kidney Int,2006,70(1):130-8.
    [13]KIRICHOK Y, KRAPIVINSKY G, CLAPHAM D E. The mitochondrial calcium uniporter is a highly selective ion channel. Nature,2004,427(6972): 360-4.
    [14]RIZZUTO R, BRINI M, BASTIANUTTO C, et al. Photoprotein-mediated measurement of calcium ion concentration in mitochondria of living cells. Methods Enzymol,1995,260(417-28.
    [15]JUNE C H, RABINOVITCH P S. Flow cytometric measurement of intracellular ionized calcium in single cells with indo-1 and fluo-3. Methods Cell Biol,1990,33(37-58.
    [16]CLAPHAM D E. Calcium signaling. Cell,2007,131(6):1047-58.
    [17]LOUGHREY C M, MACEACHERN K E, COOPER J, et al. Measurement of the dissociation constant of Fluo-3 for Ca2+ in isolated rabbit cardiomyocytes using Ca2+ wave characteristics. Cell Calcium,2003,34(1):1-9.
    [18]TERRITO P R, HEIL J, BOSE S, et al. Fluorescence absorbance inner-filter decomposition:the role of emission shape on estimates of free Ca2+using Rhod-2. Appl Spectrosc,2007,61(2):138-47.
    [19]KRISTTANSEN K A, JENSEN P E, MOLLER I M, et al. Monitoring reactive oxygen species formation and localisation in living cells by use of the fluorescent probe CM-H(2)DCFDA and confocal laser microscopy. Physiol Plant,2009,136(4):369-83.
    [20]WANG W, FANG H, GROOM L, et al. Superoxide flashes in single mitochondria. Cell,2008,134(2):279-90.
    [21]PEZIER A, BOBKOV Y V, ACHE B W. The Na+/Ca2+exchanger inhibitor, kb-r7943, blocks a nonselective cation channel implicated in chemosensory transduction. J Neurophysiol,2009,101(3):1151-9.
    [22]SANTO-DOMINGO J, VAY L, HERNANDEZ-SANMIGUEL E, et al. The plasma membrane Na+/Ca2+exchange inhibitor KB-R7943 is also a potent inhibitor of the mitochondrial Ca2+ uniporter. Br J Pharmacol,2007,151(5): 647-54.
    [23]WARASHINA A. Mode of mitochondrial Ca2+ clearance and its influence on secretory responses in stimulated chromaffin cells. Cell Calcium,2006,39(1): 35-46.
    [24]HERNANDEZ-SANMIGUEL E, VAY L, SANTO-DOMINGO J, et al. The mitochondrial Na+/Ca2+exchanger plays a key role in the control of cytosolic Ca2+oscillations. Cell Calcium,2006,40(1):53-61.
    [25]SHINADA T, HIRAYAMA Y, MARUYAMA M, et al. Inhibition of the reverse mode of the Na+/Ca2+exchange by KB-R7943 augments arrhythmogenicity in the canine heart during rapid heart rates. J Electrocardiol,2005,38(3):218-25.
    [1]MACHIN M, SIMOYI M F, BLEMINGS K P, et al. Increased dietary protein elevates plasma uric acid and is associated with decreased oxidative stress in rapidly-growing broilers. Comp Biochem Physiol B Biochem Mol Biol,2004, 137(3):383-90.
    [2]JENKINS D J, KENDALL C W, VIDGEN E, et al. High-protein diets in hyperlipidemia:effect of wheat gluten on serum lipids, uric acid, and renal function. Am J Clin Nutr,2001,74(1):57-63.
    [3]HEDIGER M A, JOHNSON R J, MIYAZAKI H, et al. Molecular physiology of urate transport. Physiology (Bethesda),2005,20(125-33.
    [4]ZHANG Y M, SU S S, MUHU Y T. [Study on the relationship between metabolic syndrome and chronic kidney disease in 1027 patients of Han and Uyguer people]. Zhonghua Liu Xing Bing Xue Za Zhi,2008,29(5):493-6.
    [5]YU J W, LU J B, ZHANG X J, et al. [Study on hyperuricemia with hyperlipaemia, high blood sugar and hypertension in 1320 elderly people]. Zhonghua Liu Xing Bing Xue Za Zhi,2005,26(6):455-7.
    [6]TANIGUCHI A, KAMATANI N. Control of renal uric acid excretion and gout. Curr Opin Rheumatol,2008,20(2):192-7.
    [7]FEIG D I, KANG D H, JOHNSON R J. Uric acid and cardiovascular risk. N Engl J Med,2008,359(17):1811-21.
    [8]WEINER D E, TIGHIOUART H, ELSAYED E F, et al. Uric acid and incident kidney disease in the community. J Am Soc Nephrol,2008,19(6): 1204-11.
    [9]KANG D H, NAKAGAWA T. Uric acid and chronic renal disease:possible implication of hyperuricemia on progression of renal disease. Semin Nephrol, 2005,25(1):43-9.
    [10]JOHNSON R J, RIVARD C, NAKAGAWA T, et al. Uric acid:more to learn, more experiments to do. Am J Hypertens,2009,22(9):952-3.
    [11]KANELLIS J, KANG D H. Uric acid as a mediator of endothelial dysfunction, inflammation, and vascular disease. Semin Nephrol,2005,25(1): 39-42.
    [12]GURSAHANI H I, SCHAEFER S. Acidification reduces mitochondrial calcium uptake in rat cardiac mitochondria. Am J Physiol Heart Circ Physiol, 2004,287(6):H2659-65.
    [13]DUCHEN M R. Roles of mitochondria in health and disease. Diabetes,2004, 53 Suppl 1(S96-102.
    [14]DUNCAN E R, WALKER S J, EZZAT V A, et al. Accelerated endothelial dysfunction in mild prediabetic insulin resistance:the early role of reactive oxygen species. Am J Physiol Endocrinol Metab,2007,293(5):E1311-9.
    [15]NAKASHIMA H, SUZUKI H, OHTSU H, et al. Angiotensin II regulates vascular and endothelial dysfunction:recent topics of Angiotensin II type-1 receptor signaling in the vasculature. Curr Vasc Pharmacol,2006,4(1):67-78.
    [16]SZOCS K. Endothelial dysfunction and reactive oxygen species production in ischemia/reperfusion and nitrate tolerance. Gen Physiol Biophys,2004,23(3): 265-95.
    [17]ZHANG Y, SOBOLOFF J, ZHU Z, et al. Inhibition of Ca2+ influx is required for mitochondrial reactive oxygen species-induced endoplasmic reticulum Ca2+depletion and cell death in leukemia cells. Mol Pharmacol,2006,70(4): 1424-34.
    [18]ANDERSEN K, PEDERSEN B K. The role of inflammation in vascular insulin resistance with focus on IL-6. Horm Metab Res,2008,40(9):635-9.
    [19]BAILEY S, MACARDLE P J. A flow cytometric comparison of Indo-1 to fluo-3 and Fura Red excited with low power lasers for detecting Ca(2+) flux. J Immunol Methods,2006,311(1-2):220-5.
    [20]TERRITO P R, HEIL J, BOSE S, et al. Fluorescence absorbance inner-filter decomposition:the role of emission shape on estimates of free Ca(2+) using Rhod-2. Appl Spectrosc,2007,61(2):138-47.
    [21]KRISTIANSEN K A, JENSEN P E, MOLLER I M, et al. Monitoring reactive oxygen species formation and localisation in living cells by use of the fluorescent probe CM-H(2)DCFDA and confocal laser microscopy. Physiol Plant,2009,136(4):369-83.
    [22]WANG W, FANG H, GROOM L, et al. Superoxide flashes in single mitochondria. Cell,2008,134(2):279-90.
    [23]KANG D H, PARK S K, LEE I K, et al. Uric acid-induced C-reactive protein expression:implication on cell proliferation and nitric oxide production of human vascular cells. J Am Soc Nephrol,2005,16(12):3553-62.
    [24]DOUGHAN A K, HARRISON D G, DIKALOV S I. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction:linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res,2008, 102(4):488-96.
    [25]DEVARAJ S, YUN J M, ADAMSON G, et al. C-reactive protein impairs the endothelial glycocalyx resulting in endothelial dysfunction. Cardiovasc Res, 2009,84(3):479-84.
    [26]VICTOR V M, APOSTOLOVAN, HERANCE R, et al. Oxidative stress and mitochondrial dysfunction in atherosclerosis:mitochondria-targeted antioxidants as potential therapy. Curr Med Chem,2009,16(35):4654-67.
    [27]RUEDA-CLAUSEN C F, LOPEZ-JARAMILLO P, LUENGAS C, et al. Inflammation but not endothelial dysfunction is associated with the severity of coronary artery disease in dyslipidemic subjects. Mediators Inflamm,2009, 2009(469169.
    [28]KLEIN B E, KNUDTSON M D, TSAI M Y, et al. The relation of markers of inflammation and endothelial dysfunction to the prevalence and progression of diabetic retinopathy:Wisconsin epidemiologic study of diabetic retinopathy. Arch Ophthalmol,2009,127(9):1175-82.
    [29]SKALSKA A, GASOWSKI J, STEPNIEWSKI M, et al. Antioxidative protection in hypertensive patients treated with diuretics. Am J Hypertens, 2005,18(8):1130-2.
    [30]PINES A, FISMAN E Z. ACE Inhibition with moexipril:a review of potential effects beyond blood pressure control. Am J Cardiovasc Drugs,2003,3(5): 351-60.
    [31]DEDKOVA E N, JI X, LIPSIUS S L, et al. Mitochondrial calcium uptake stimulates nitric oxide production in mitochondria of bovine vascular endothelial cells. Am J Physiol Cell Physiol,2004,286(2):C406-15.
    [32]CLAPHAM D E. Calcium signaling. Cell,2007,131(6):1047-58.
    [33]GERASIMENKO J, MARUYAMA Y, TEPIKIN A, et al. Calcium signalling in and around the nuclear envelope. Biochem Soc Trans,2003,31(Pt 1):76-8.
    [34]CHINOPOULOS C, ADAM-VIZI V. Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme. FEBS J, 2006,273(3):433-50.
    [35]WU Z, ZHANG J, ZHAO B. Superoxide anion regulates the mitochondrial free Ca2+ through uncoupling proteins. Antioxid Redox Signal,2009,11(8): 1805-18.
    [36]LUCCARDINI C, YAKOVLEV A V, PASCHE M, et al. Measuring mitochondrial and cytoplasmic Ca2+in EGFP expressing cells with a low-affinity calcium Ruby and its dextran conjugate. Cell Calcium,2009, 45(3):275-83.
    [37]GRIFFITHS E J. Mitochondrial calcium transport in the heart:physiological and pathological roles. J Mol Cell Cardiol,2009,46(6):789-803.
    [38]SZALAI G, CSORDAS G, HANTASH B M, et al. Calcium signal transmission between ryanodine receptors and mitochondria. J Biol Chem, 2000,275(20):15305-13.
    [39]VOSLER P S, GRAHAM S H, WECHSLER L R, et al. Mitochondrial targets for stroke:focusing basic science research toward development of clinically translatable therapeutics. Stroke,2009,40(9):3149-55.
    [40]VICTOR V M, ESPULGUES J V, HERNANDEZ-MIJARES A, et al. Oxidative stress and mitochondrial dysfunction in sepsis:a potential therapy with mitochondria-targeted antioxidants. Infect Disord Drug Targets,2009, 9(4):376-89.
    [41]WANG S H, SHIH Y L, KO W C, et al. Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway. Cell Mol Life Sci, 2008,65(22):3640-52.
    [42]HE Y, GE J, TOMBRAN-TINK J. Mitochondrial defects and dysfunction in calcium regulation in glaucomatous trabecular meshwork cells. Invest Ophthalmol Vis Sci,2008,49,(11):4912-22.
    [43]FENG Z, WEI C, CHEN X, et al. Essential role of Ca2+ release channels in angiotensin Ⅱ-induced Ca2+oscillations and mesangial cell contraction. Kidney Int,2006,70(1):130-8.
    [1]CLAPHAM D E. Calcium signaling. Cell,2007,131(6):1047-58.
    [2]TAMPO A, HOGAN C S, SEDLIC F, et al. Accelerated inactivation of cardiac L-type calcium channels triggered by anaesthetic-induced preconditioning. Br J Pharmacol,2009,156(3):432-43.
    [3]MAEDA T, LEE S M, HOVDA D A. Restoration of cerebral vasoreactivity by an L-type calcium channel blocker following fluid percussion brain injury. J Neurotrauma,2005,22(7):763-71.
    [4]SHUTTLEWORTH T J, THOMPSON J L, MIGNEN O. ARC channels:a novel pathway for receptor-activated calcium entry. Physiology (Bethesda), 2004,19(355-61.
    [5]LEWIS R S. The molecular choreography of a store-operated calcium channel. Nature,2007,446(7133):284-7.
    [6]ELIAS C L, LUKAS A, SHURRAW S, et al. Inhibition of Na+/Ca2+ exchange by KB-R7943:transport mode selectivity and antiarrhythmic consequences. Am J Physiol Heart Circ Physiol,2001,281(3):H1334-45.
    [7]SMETS I, CAPLANUSI A, DESPA S, et al. Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells. Am J Physiol Renal Physiol,2004,286(4):F784-94.
    [8]STAINS J P, GAY C V. Inhibition of Na+/Ca2+exchange with KB-R7943 or bepridil diminished mineral deposition by osteoblasts. J Bone Miner Res, 2001,16(8):1434-43.
    [9]JOU M J, JOU S B, GUO M J, et al. Mitochondrial reactive oxygen species generation and calcium increase induced by visible light in astrocytes. Ann N Y Acad Sci,2004,1011(45-56.
    [10]PARTHASARATHI K, ICHIMURA H, QUADRI S, et al. Mitochondrial reactive oxygen species regulate spatial profile of proinflammatory responses in lung venular capillaries. J Immunol,2002,169(12):7078-86.
    [11]WAYPA G B, MARKS J D, MACK M M, et al. Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res,2002,91(8):719-26.
    [12]MAACK C, CORTASSA S, AON M A, et al. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ Res,2006,99(2): 172-82.
    [13]BARON K T, THAYER S A. CGP37157 modulates mitochondrial Ca2+ homeostasis in cultured rat dorsal root ganglion neurons. Eur J Pharmacol, 1997,340(2-3):295-300.
    [14]CAMELLO C, LOMAX R, PETERSEN O H, et al. Calcium leak from intracellular stores-the enigma of calcium signalling. Cell Calcium,2002, 32(5-6):355-61.
    [15]DUMAN J G, CHEN L, HILLE B. Calcium transport mechanisms of PC12 cells. J Gen Physiol,2008,131(4):307-23.
    [16]CHEN D, ZHANG Z, WHEATLY M G, et al. Cloning and characterization of the heart muscle isoform of sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) from crayfish. J Exp Biol,2002,205(Pt 17):2677-86.
    [17]JOHNSON J D, LUCIANI D S, YANG T, et al. Effects of IP3R and RyR Ca2+-release channels on beta cell ER-stress. Diabetologia,2006,49(263-4.
    [18]ZIEGELSTEIN R C, SPURGEON H A, PILI R, et al. A functional ryanodine-sensitive intracellular Ca2+ store is present in vascular endothelial cells. Circ Res,1994,74(1):151-6.
    [19]WANG X, LAU F, LI L, et al. Acetylcholine-sensitive intracellular Ca2+ store in fresh endothelial cells and evidence for ryanodine receptors. Circ Res, 1995,77(1):37-42.
    [20]FEIG D I, KANG D H, JOHNSON R J. Uric acid and cardiovascular risk. N Engl J Med,2008,359(17):1811-21.
    [21]WEINER D E, TIGHIOUART H, ELSAYED E F, et al. Uric acid and incident kidney disease in the community. J Am Soc Nephrol,2008,19(6): 1204-11.
    [22]KANG D H, NAKAGAWA T. Uric acid and chronic renal disease:possible implication of hyperuricemia on progression of renal disease. Semin Nephrol, 2005,25(1):43-9.
    [23]JOHNSON R J, KANG D H, FEIG D, et al. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease?. Hypertension, 2003,41(6):1183-90.
    [24]KANG D H, PARK S K, LEE I K, et al. Uric acid-induced C-reactive protein expression:implication on cell proliferation and nitric oxide production of human vascular cells. J Am Soc Nephrol,2005,16(12):3553-62.
    [25]OLEXA P, OLEXOVA M, GONSORCIK J, et al. Uric acid-a marker for systemic inflammatory response in patients with congestive heart failure?. Wien Klin Wochenschr,2002,114(5-6):211-5.
    [26]KANELLIS J, WATANABE S, LI J H, et al. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension,2003, 41(6):1287-93.
    [27]HAYDEN M R, TYAGI S C. Intimal redox stress:accelerated atherosclerosis in metabolic syndrome and type 2 diabetes mellitus. Atheroscleropathy. Cardiovasc Diabetol,2002,1(3.
    [28]KANG D H, NAKAGAWA T, FENG L, et al. A role for uric acid in the progression of renal disease. J Am Soc Nephrol,2002,13(12):2888-97.
    [29]MARTINI A, BRUNO R, MAZZULLA S, et al. Angiotensin Ⅱ regulates endothelial cell migration through calcium influx via T-type calcium channel in human umbilical vein endothelial cells. Acta Physiol (Oxf),2009,
    [30]KIRICHOK Y, KRAPIVINSKY G, CLAPHAM D E. The mitochondrial calcium uniporter is a highly selective ion channel. Nature,2004,427(6972): 360-4.
    [31]SARIS N E, ALLSHIRE A. Calcium ion transport in mitochondria. Methods Enzymol,1989,174(68-85.
    [32]GUNTER T E, BUNTINAS L, SPARAGNA G, et al. Mitochondrial calcium transport:mechanisms and functions. Cell Calcium,2000,28(5-6):285-96.
    [33]MALLI R, FRIEDEN M, TRENKER M, et al. The role of mitochondria for Ca2+refilling of the endoplasmic reticulum. J Biol Chem,2005,280(13): 12114-22.
    [34]MALLI R, FRIEDEN M, HUNKOVA M, et al. Ca2+ refilling of the endoplasmic reticulum is largely preserved albeit reduced Ca2+ entry in endothelial cells. Cell Calcium,2007,41(1):63-76.
    [35]CSORDAS G, THOMAS A P, HAJNOCZKY G. Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBOJ,1999,18(1):96-108.
    [36]RIZZUTO R, BRINI M, MURGIA M, et al. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science,1993,262(5134):744-7.
    [37]RIZZUTO R, PINTON P, CARRINGTON W, et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+responses. Science,1998,280(5370):1763-6.
    [38]TRENKER M, MALLI R, FERTSCHAI I, et al. Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport. Nat Cell Biol,2007,9(4): 445-52.
    [39]ARNAUDEAU S, KELLEY W L, WALSH J V, JR., et al. Mitochondria recycle Ca2+ to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J Biol Chem,2001,276(31): 29430-9.
    [40]MALLI R, FRIEDEN M, OSIBOW K, et al. Sustained Ca2+ transfer across mitochondria is Essential for mitochondrial Ca2+ buffering, sore-operated Ca2+ entry, and Ca2+ store refilling. J Biol Chem,2003,278(45):44769-79.
    [41]HERNANDEZ-SANMIGUEL E, VAY L, SANTO-DOMINGO J, et al. The mitochondrial Na+/Ca2+ exchanger plays a key role in the control of cytosolic Ca2+ oscillations. Cell Calcium,2006,40(1):53-61.
    [42]VISCH H J, RUTTER G A, KOOPMAN W J, et al. Inhibition of mitochondrial Na+-Ca2+ exchange restores agonist-induced ATP production and Ca2+ handling in human complex I deficiency. J Biol Chem,2004, 279(39):40328-36.
    [43]BILMEN J G, WOOTTON L L, MICHELANGELI F. The mechanism of inhibition of the sarco/endoplasmic reticulum Ca2+ATPase by paxilline. Arch Biochem Biophys,2002,406(1):55-64.
    [44]WANG W, FANG H, GROOM L, et al. Superoxide flashes in single mitochondria. Cell,2008,134(2):279-90.
    [45]BANFI C, BRIOSCHI M, BARBIERI S S, et al. Mitochondrial reactive oxygen species:a common pathway for PAR1-and PAR2-mediated tissue factor induction in human endothelial cells. J Thromb Haemost,2009,7(1): 206-16.
    [46]YAMAGISHI S, NAKAMURAK, MATSUI T. Role of oxidative stress in the development of vascular injury and its therapeutic intervention by nifedipine. Curr Med Chem,2008,15(2):172-7.
    [47]ROGALSKA A, KOCEVA-CHYLA A, JOZWIAK Z. Aclarubicin-induced ROS generation and collapse of mitochondrial membrane potential in human cancer cell lines. Chem Biol Interact,2008,176(1):58-70.
    [48]HEINEN A, CAMARA A K, ALDAKKAK M, et al. Mitochondrial Ca2+ -induced K+ influx increases respiration and enhances ROS production while maintaining membrane potential. Am J Physiol Cell Physiol,2007, 292(1):C148-56.
    [49]CASTRO-MENDOZA H J, RAPADO A, DE LA PIEDRA C, et al. Xanthinuria:the cause of hypouricemia in hepatic disease. Adv Exp Med Biol, 1980,122A(247-50.
    [50]HOUSTON M, CHUMLEY P, RADI R, et al. Xanthine oxidase reaction with nitric oxide and peroxynitrite. Arch Biochem Biophys,1998,355(1):1-8.
    [1]NEUPERT W. Protein import into mitochondria. Annu Rev Biochem,1997, 66(863-917.
    [2]ER E, OLIVER L, CARTRON P F, et al. Mitochondria as the target of the pro-apoptotic protein Bax. Biochim Biophys Acta,2006,1757(9-10): 1301-11.
    [3]SCHWARZ M, ANDRADE-NAVARRO M A, GROSS A. Mitochondrial carriers and pores:key regulators of the mitochondrial apoptotic program?. Apoptosis,2007,12(5):869-76.
    [4]SCORRANO L, OAKES S A, OPFERMAN J T, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+:a control point for apoptosis. Science,2003,300(5616):135-9.
    [5]DEMAUREX N, DISTELHORST C. Cell biology. Apoptosis-the calcium connection. Science,2003,300(5616):65-7.
    [6]HAJNOCZKY G, CSORDAS G, DAS S, et al. Mitochondrial calcium signalling and cell death:approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium,2006,40(5-6):553-60.
    [7]ARMSTRONG J S. The role of the mitochondrial permeability transition in cell death. Mitochondrion,2006,6(5):225-34.
    [8]CHAN D C. Mitochondria:dynamic organelles in disease, aging, and development. Cell,2006,125(7):1241-52.
    [9]BERRIDGE M J, LIPP P, BOOTMAN M D. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol,2000,1(1):11-21.
    [10]DHALLA N S. Excitation-contraction coupling in heart. I. Comparison of calcium uptake by the sarcoplasmic reticulum and mitochondria of the rat heart. Arch Int Physiol Biochim,1969,77(5):916-34.
    [11]RIZZUTO R, BRINI M, PIZZO P, et al. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr Biol,1995, 5(6):635-42.
    [12]RIZZUTO R, PINTON P, CARRINGTON W, et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+responses. Science,1998,280(5370):1763-6.
    [13]CSORDAS G, THOMAS A P, HAJNOCZKY G. Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBOJ,1999,18(1):96-108.
    [14]MALLI R, FRIEDEN M, OSIBOW K, et al. Mitochondria efficiently buffer subplasmalemmal Ca2+ elevation during agonist stimulation. J Biol Chem, 2003,278(12):10807-15.
    [15]RIZZUTO R, PINTON P, BRINI M, et al. Mitochondria as biosensors of calcium microdomains. Cell Calcium,1999,26(5):193-9.
    [16]PINTON P, LEO S, WIECKOWSKI M R, et al. Long-term modulation of mitochondrial Ca2+ signals by protein kinase C isozymes. J Cell Biol,2004, 165(2):223-32.
    [17]MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature,1961,191(144-8.
    [18]PALTAUF-DOBURZYNSKA J, MALLI R, GRAIER W F. Hyperglycemic conditions affect shape and Ca2+ homeostasis of mitochondria in endothelial cells. J Cardiovasc Pharmacol,2004,44(4):423-36.
    [19]SHOSHAN-BARMATZ V, KEINAN N, ZAID H. Uncovering the role of VDAC in the regulation of cell life and death. J Bioenerg Biomembr,2008, 40(3):183-91.
    [20]SHOSHAN-BARMATZ V, ISRAELSON A, BRDICZKA D, et al. The voltage-dependent anion channel (VDAC):function in intracellular signalling, cell life and cell death. Curr Pharm Des,2006,12(18):2249-70.
    [21]RAPIZZI E, PINTON P, SZABADKAI G, et al. Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J Cell Biol,2002,159(4):613-24.
    [22]CSORDAS G, MADESH M, ANTONSSON B, et al. tcBid promotes Ca2+ signal propagation to the mitochondria:control of Ca2+permeation through the outer mitochondrial membrane. EMBO J,2002,21(9):2198-206.
    [23]BATHORI G, CSORDAS G, GARCIA-PEREZ C, et al. Ca2+-dependent control of the permeability properties of the mitochondrial outer membrane and voltage-dependent anion-selective channel (VDAC). J Biol Chem,2006, 281(25):17347-58.
    [24]KIRICHOK Y, KRAPIVINSKY G, CLAPHAM D E. The mitochondrial calcium uniporter is a highly selective ion channel. Nature,2004,427(6972): 360-4.
    [25]SARIS N E, ALLSHIRE A. Calcium ion transport in mitochondria. Methods Enzymol,1989,174(68-85.
    [26]GUNTER T E, BUNTINAS L, SPARAGNA G, et al. Mitochondrial calcium transport:mechanisms and functions. Cell Calcium,2000,28(5-6):285-96.
    [27]GUNTER K K, GUNTER T E. Transport of calcium by mitochondria. J Bioenerg Biomembr,1994,26(5):471-85.
    [28]GUNTER T E, PFEIFFER D R. Mechanisms by which mitochondria transport calcium. Am J Physiol,1990,258(5 Pt 1):C755-86.
    [29]REED K C, BYGRAVE F L. The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochem J,1974,140(2): 143-55.
    [30]MATLIB M A, ZHOU Z, KNIGHT S, et al. Oxygen-bridged dinuclear ruthenium amine complex specifically inhibits Ca2+ uptake into mitochondria in vitro and in situ in single cardiac myocytes. J Biol Chem,1998,273(17): 10223-31.
    [31]CROMPTON M, ANDREEVA L. On the interactions of Ca2+ and cyclosporin A with a mitochondrial inner membrane pore:a study using cobaltammine complex inhibitors of the Ca2+ uniporter. Biochem J,1994, 302 (Pt 1)(181-5.
    [32]SANTO-DOMINGO J, VAY L, HERNANDEZ-SANMIGUEL E, et al. The plasma membrane Na+/Ca2+ exchange inhibitor KB-R7943 is also a potent inhibitor of the mitochondrial Ca2+ uniporter. Br J Pharmacol,2007,151(5): 647-54.
    [33]LENZEN S, HICKETHIER R, PANTEN U. Interactions between spermine and Mg2+on mitochondrial Ca2+ transport. J Biol Chem,1986,261(35): 16478-83.
    [34]LITSKY M L, PFEIFFER D R. Regulation of the mitochondrial Ca2+ uniporter by external adenine nucleotides:the uniporter behaves like a gated channel which is regulated by nucleotides and divalent cations. Biochemistry, 1997,36(23):7071-80.
    [35]NICCHITTA C V, WILLIAMSON J R. Spermine. A regulator of mitochondrial calcium cycling. J Biol Chem,1984,259(21):12978-83.
    [36]PALMI M, YOUMBI G T, FUSI F, et al. Potentiation of mitochondrial Ca2+ sequestration by taurine. Biochem Pharmacol,1999,58(7):1123-31.
    [37]MONTERO M, LOBATON C D, MORENO A, et al. A novel regulatory mechanism of the mitochondrial Ca2+ uniporter revealed by the p38 mitogen-activated protein kinase inhibitor SB202190. FASEB J,2002, 16(14):1955-7.
    [38]LOBATON C D, VAY L, HERNANDEZ-SANMIGUEL E, et al. Modulation of mitochondrial Ca2+ uptake by estrogen receptor agonists and antagonists. Br J Pharmacol,2005,145(7):862-71.
    [39]MONTERO M, LOBATON C D, HERNANDEZ-SANMIGUEL E, et al. Direct activation of the mitochondrial calcium uniporter by natural plant flavonoids. Biochem J,2004,384(Pt 1):19-24.
    [40]DUCHEN M R. Mitochondria in health and disease:perspectives on a new mitochondrial biology. Mol Aspects Med,2004,25(4):365-451.
    [41]DUCHEN M R. Roles of mitochondria in health and disease. Diabetes,2004, 53 Suppl1(S96-102.
    [42]SARIS N E, CARAFOLI E. A historical review of cellular calcium handling, with emphasis on mitochondria. Biochemistry (Mosc),2005,70(2):187-94.
    [43]TRENKER M, MALLI R, FERTSCHAI I, et al. Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport. Nat Cell Biol,2007,9(4): 445-52.
    [44]RICQUIER D, BOUILLAUD F. The uncoupling protein homologues:UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J,2000,345 Pt 2(161-79.
    [45]BRAND M D, ESTEVES T C. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab,2005,2(2):85-93.
    [46]JOHNSON-CADWELL L I, JEKABSONS M B, WANG A, et al.'Mild Uncoupling' does not decrease mitochondrial superoxide levels in cultured cerebellar granule neurons but decreases spare respiratory capacity and increases toxicity to glutamate and oxidative stress. J Neurochem,2007, 101(6):1619-31.
    [47]BRAND M D, AFFOURTIT C, ESTEVES T C, et al. Mitochondrial superoxide:production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med,2004,37(6):755-67.
    [48]KRAUSS S, ZHANG C Y, LOWELL B B. The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol,2005,6(3):248-61.
    [49]DEJEAN L, CAMARA Y, SIBILLE B, et al. Uncoupling protein-3 sensitizes cells to mitochondrial-dependent stimulus of apoptosis. J Cell Physiol,2004, 201(2):294-304.
    [50]KRAUSS S, ZHANG C Y, SCORRANO L, et al. Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction. J
    Clin Invest,2003,112(12):1831-42.
    [51]HARPER M E, DENT R, MONEMDJOU S, et al. Decreased mitochondrial proton leak and reduced expression of uncoupling protein 3 in skeletal muscle of obese diet-resistant women. Diabetes,2002,51(8):2459-66.
    [52]MOZO J, FERRY G, STUDENY A, et al. Expression of UCP3 in CHO cells does not cause uncoupling, but controls mitochondrial activity in the presence of glucose. Biochem J,2006,393(Pt 1):431-9.
    [53]JEZEK P. Fatty acid interaction with mitochondrial uncoupling proteins. J Bioenerg Biomembr,1999,31(5):457-66.
    [54]JEZEK P. Possible physiological roles of mitochondrial uncoupling proteins-UCPn. Int J Biochem Cell Biol,2002,34(10):1190-206.
    [55]ZHANG B X, MA X, ZHANG W, et al. Polyunsaturated fatty acids mobilize intracellular Ca2+in NT2 human teratocarcinoma cells by causing release of Ca2+from mitochondria. Am J Physiol Cell Physiol,2006,290(5):C1321-33.
    [56]JEZEK P, ZACKOVA M, RUZICKA M, et al. Mitochondrial uncoupling proteins-facts and fantasies. Physiol Res,2004,53 Suppl 1(S199-211.
    [57]ERLANSON-ALBERTSSON C. Uncoupling proteins-a new family of proteins with unknown function. Nutr Neurosci,2002,5(1):1-11.
    [58]CHAN S L, LIU D, KYRIAZIS G A, et al. Mitochondrial uncoupling protein-4 regulates calcium homeostasis and sensitivity to store depletion-induced apoptosis in neural cells. J Biol Chem,2006,281(49): 37391-403.
    [59]COATESWORTH W, BOLSOVER S. Spatially organised mitochondrial calcium uptake through a novel pathway in chick neurones. Cell Calcium, 2006,39(3):217-25.
    [60]WIECKOWSKI M R, SZABADKAI G, WASILEWSKI M, et al. Overexpression of adenine nucleotide translocase reduces Ca2+ signal transmission between the ER and mitochondria. Biochem Biophys Res Commun,2006,348(2):393-9.
    [61]DE MEIS L, ARRUDA A P, DA COSTA R M, et al. Identification of a Ca2+-ATPase in brown adipose tissue mitochondria:regulation of thermogenesis by ATP and Ca2+. J Biol Chem,2006,281(24):16384-90.
    [62]MALLI R, FRIEDEN M, OSIBOW K, et al. Sustained Ca2+transfer across mitochondria is Essential for mitochondrial Ca2+buffering, sore-operated Ca2+ entry, and Ca2+ store refilling. J Biol Chem,2003,278(45):44769-79.
    [63]OSIBOW K, MALLI R, KOSTNER G M, et al. A new type of non-Ca2+ -buffering Apo(a)-based fluorescent indicator for intraluminal Ca2+ in the endoplasmic reticulum. J Biol Chem,2006,281(8):5017-25.
    [64]YU X X, LEWIN D A, ZHONG A, et al. Overexpression of the human 2-oxoglutarate carrier lowers mitochondrial membrane potential in HEK-293 cells:contrast with the unique cold-induced mitochondrial carrier CGI-69. Biochem J,2001,353(Pt 2):369-75.
    [65]SMETS I, CAPLANUSI A, DESPA S, et al. Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells. Am J Physiol Renal Physiol,2004,286(4):F784-94.
    [66]EDER P, POTESER M, ROMANIN C, et al. Na+ entry and modulation of Na+/Ca2+ exchange as a key mechanism of TRPC signaling. Pflugers Arch, 2005,451(1):99-104.
    [67]BEUTNER G, SHARMA V K, GIOVANNUCCI D R, et al. Identification of a ryanodine receptor in rat heart mitochondria. J Biol Chem,2001,276(24): 21482-8.
    [68]BEUTNER G, SHARMA V K, LIN L, et al. Type 1 ryanodine receptor in cardiac mitochondria:transducer of excitation-metabolism coupling. Biochim Biophys Acta,2005,1717(1):1-10.
    [69]NICHOLLS D G. The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J,1978,176(2):463-74.
    [70]NICHOLLS D G, SCOTT I D. The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms. Biochem J,1980,186(3):833-9.
    [71]ZOCCARATO F, NICHOLLS D. The role of phosphate in the regulation of the independent calcium-efflux pathway of liver mitochondria. Eur J Biochem,1982,127(2):333-8.
    [72]CHALMERS S, NICHOLLS D G. The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem,2003,278(21):19062-70.
    [73]BERNARDI P. Mitochondrial transport of cations:channels, exchangers, and permeability transition. Physiol Rev,1999,79(4):1127-55.
    [74]NICHOLLS D G. Mitochondria and calcium signaling. Cell Calcium,2005, 38(3-4):311-7.
    [75]DUCHEN M R. Contributions of mitochondria to animal physiology:from homeostatic sensor to calcium signalling and cell death. J Physiol,1999,516 (Pt 1)(1-17.
    [76]MALLI R, FRIEDEN M, HUNKOVA M, et al. Ca2+refilling of the endoplasmic reticulum is largely preserved albeit reduced Ca2+entry in endothelial cells. Cell Calcium,2007,41(1):63-76.
    [77]MALLI R, FRIEDEN M, TRENKER M, et al. The role of mitochondria for Ca2+ refilling of the endoplasmic reticulum. J Biol Chem,2005,280(13): 12114-22.
    [78]CROMPTON M, KUNZI M, CARAFOLI E. The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium-calcium carrier. Eur J Biochem,1977,79(2):549-58.
    [79]BARON K T, THAYER S A. CGP37157 modulates mitochondrial Ca2+ homeostasis in cultured rat dorsal root ganglion neurons. Eur J Pharmacol,
    1997,340(2-3):295-300.
    [80]SEDOVA M, BLATTER L A. Intracellular sodium modulates mitochondrial calcium signaling in vascular endothelial cells. J Biol Chem,2000,275(45): 35402-7.
    [81]GUNTER T E, YULE D I, GUNTER K K, et al. Calcium and mitochondria. FEBS Lett,2004,567(1):96-102.
    [82]PFEIFFER D R, GUNTER T E, ELISEEV R, et al. Release of Ca2+ from mitochondria via the saturable mechanisms and the permeability transition. IUBMB Life,2001,52(3-5):205-12.
    [83]EVTODIENKO Y V. Sustained oscillations of transmembrane Ca2+ fluxes in mitochondria and their possible biological significance. Membr Cell Biol, 2000,14(1):1-17.
    [84]MIRONOV S L, IVANNIKOV M V, JOHANSSON M. [Ca2+]i signaling between mitochondria and endoplasmic reticulum in neurons is regulated by microtubules. From mitochondrial permeability transition pore to Ca2+-induced Ca2+ release. J Biol Chem,2005,280(1):715-21.
    [85]RIZZUTO R, BRIM M, MURGIA M, et al. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science,1993,262(5134):744-7.
    [86]RIZZUTO R, DUCHEN M R, POZZAN T. Flirting in little space:the ER/mitochondria Ca2+ liaison. Sci STKE,2004,2004(215):rel.
    [87]SZABADKAI G, SIMONI A M, RIZZUTO R. Mitochondrial Ca2+ uptake requires sustained Ca2+ release from the endoplasmic reticulum. J Biol Chem, 2003,278(17):15153-61.
    [88]FILIPPIN L, MAGALHAES P J, DI BENEDETTO G, et al. Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria. J Biol Chem, 2003,278(40):39224-34.
    [89]MANNELLA C A. Conformational changes in the mitochondrial channel protein, VDAC, and their functional implications. J Struct Biol,1998,121(2): 207-18.
    [90]MANNELLA C A, PFEIFFER D R, BRADSHAW P C, et al. Topology of the mitochondrial inner membrane:dynamics and bioenergetic implications. IUBMB Life,2001,52(3-5):93-100.
    [91]CSORDAS G, RENKEN C, VARNAI P, et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol,2006,174(7):915-21.
    [92]MILLS R D, SIM C H, MOK S S, et al. Biochemical aspects of the neuroprotective mechanism of PTEN-induced kinase-1 (PINK1). J Neurochem,2008,105(1):18-33.
    [93]SZABADKAI G, BIANCHI K, VARNAI P, et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol,2006,175(6):901-11.
    [94]ARNAUDEAU S, KELLEY W L, WALSH J V, JR., et al. Mitochondria recycle Ca2+ to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J Biol Chem,2001,276(31): 29430-9.
    [95]BEREITER-HAHN J, VOTH M. Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech,1994,27(3):198-219.
    [96]FRANK S, GAUME B, BERGMANN-LEITNER E S, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell,2001,1 (4):515-25.
    [97]WANG H J, GUAY G, POGAN L, et al. Calcium regulates the association between mitochondria and a smooth subdomain of the endoplasmic reticulum. J Cell Biol,2000,150(6):1489-98.
    [98]COLLINS T J, LIPP P, BERRIDGE M J, et al. Mitochondrial Ca2+ uptake depends on the spatial and temporal profile of cytosolic Ca2+ signals. J Biol Chem,2001,276(28):26411-20.
    [99]KAMISHIMA T, QUAYLE J M. Mitochondrial Ca2+uptake is important over low [Ca2+]i range in arterial smooth muscle. Am J Physiol Heart Circ Physiol,2002,283(6):H2431-9.
    [100]PITTER J G, MAECHLER P, WOLLHEIM C B, et al. Mitochondria respond to Ca2+ already in the submicromolar range:correlation with redox state. Cell Calcium,2002,31(2):97-104.
    [101]SZANDA G, KONCZ P, VARNAI P, et al. Mitochondrial Ca2+ uptake with and without the formation of high-Ca2+ microdomains. Cell Calcium, 2006,40(5-6):527-37.
    [102]LANDOLFI B, CURCI S, DEBELLIS L, et al. Ca2+ homeostasis in the agonist-sensitive internal store:functional interactions between mitochondria and the ER measured In situ in intact cells. J Cell Biol,1998,142(5): 1235-43.
    [103]MICHALAK M, BURNS K, ANDRIN C, et al. Endoplasmic reticulum form of calreticulin modulates glucocorticoid-sensitive gene expression. J Biol Chem,1996,271(46):29436-45.
    [104]MICHALAK M, LYNCH J, GROENENDYK J, et al. Calreticulin in cardiac development and pathology. Biochim Biophys Acta,2002,1600(1-2): 32-7.
    [105]MICHALAK M, ROBERT PARKER. J M, OPAS M. Ca2+signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium, 2002,32(5-6):269-78.
    [106]OSIBOW K, FRANK S, MALLI R, et al. Mitochondria maintain maturation and secretion of lipoprotein lipase in the endoplasmic reticulum. Biochem J,2006,396(1):173-82.
    [107]ZHANG Y, SOBOLOFF J, ZHU Z, et al. Inhibition of Ca2+ influx is required for mitochondrial reactive oxygen species-induced endoplasmic reticulum Ca2+ depletion and cell death in leukemia cells. Mol Pharmacol, 2006,70(4):1424-34.
    [108]SOBOLOFF J, BERGER S A. Sustained ER Ca2+ depletion suppresses protein synthesis and induces activation-enhanced cell death in mast cells. J Biol Chem,2002,277(16):13812-20.
    [109]GORLACH A, KLAPPA P, KIETZMANN T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal,2006,8(9-10):1391-418.
    [110]GILABERT J A, BAKOWSKI D, PAREKH A B. Energized mitochondria increase the dynamic range over which inositol 1,4,5-trisphosphate activates store-operated calcium influx. EMBO J,2001, 20(11):2672-9.
    [111]GILABERT J A, PAREKH A B. Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca2+ current I(CRAC). EMBO J,2000,19(23):6401-7.
    [112]HOTH M, BUTTON D C, LEWIS R S. Mitochondrial control of calcium-channel gating:a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc Natl Acad Sci U S A,2000, 97(19):10607-12.
    [113]HOTH M, FANGER C M, LEWIS R S. Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J Cell Biol,1997,137(3): 633-48.
    [114]LIAO Y, ERXLEBEN C, YILDIRIM E, et al. Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci U S A,2007,104(11):4682-7.
    [115]ONG H L, CHENG K T, LIU X, et al. Dynamic assembly of
    TRPC1-STIM1-Orail ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem,2007,282(12): 9105-16.
    [116]MONTELL C. The TRP superfamily of cation channels. Sci STKE,2005, 2005(272):re3.
    [117]MCCORMACK J G, HALESTRAP A P, DENTON R M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev, 1990,70(2):391-425.
    [118]PALTAUF-DOBURZYNSKA J, FRIEDEN M, SPITALER M, et al. Histamine-induced Ca2+ oscillations in a human endothelial cell line depend on transmembrane ion flux, ryanodine receptors and endoplasmic reticulum Ca2+-ATPase. J Physiol,2000,524 Pt 3(701-13.
    [119]TEUBL M, GROSCHNER K, KOHLWEIN S D, et al. Na+/Ca2+ exchange facilitates Ca2+-dependent activation of endothelial nitric-oxide synthase. J Biol Chem,1999,274(41):29529-35.
    [120]SZEWCZYK A, SKALSKA J, GLAB M, et al. Mitochondrial potassium channels:from pharmacology to function. Biochim Biophys Acta,2006, 1757(5-6):715-20.
    [121]LACZA Z, SNIPES J A, KIS B, et al. Investigation of the subunit composition and the pharmacology of the mitochondrial ATP-dependent K+ channel in the brain. Brain Res,2003,994(1):27-36.
    [122]WU S N. Large-conductance Ca2+-activated K+ channels:physiological role and pharmacology. Curr Med Chem,2003,10(8):649-61.
    [123]SZABO I, BOCK J, JEKLE A, et al. A novel potassium channel in lymphocyte mitochondria. J Biol Chem,2005,280(13):12790-8.
    [124]GARLID K D, PAUCEK P, YAROV-YAROVOY V, et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res,1997,81(6):1072-82.
    [125]ARDEHALI H, CHEN Z, KO Y, et al. Multiprotein complex containing succinate dehydrogenase confers mitochondrial ATP-sensitive K+ channel activity. Proc Natl Acad Sci U S A,2004,101(32):11880-5.
    [126]BRUSTOVETSKY T, SHALBUYEVA N, BRUSTOVETSKY N. Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive KATP channel in rat brain nonsynaptosomal mitochondria. J Physiol,2005,568(Pt 1):47-59.
    [127]VARADI A, GRANT A, MCCORMACK M, et al. Intracellular ATP-sensitive K+ channels in mouse pancreatic beta cells:against a role in organelle cation homeostasis. Diabetologia,2006,49(7):1567-77.
    [128]BRENNAN J P, SOUTHWORTH R, MEDINA R A, et al. Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovasc Res, 2006,72(2):313-21.
    [129]DROSE S, BRANDT U, HANLEY P J. K+-independent actions of diazoxide question the role of inner membrane KATP channels in mitochondrial cytoprotective signaling. J Biol Chem,2006,281(33): 23733-9.
    [130]HANLEY P J, DAUT J. K(ATP) channels and preconditioning:a re-examination of the role of mitochondrial K(ATP) channels and an overview of alternative mechanisms. J Mol Cell Cardiol,2005,39(1):17-50.
    [131]HANLEY P J, MICKEL M, LOFFLER M, et al. K(ATP) channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart. J Physiol,2002,542(Pt 3):735-41.
    [132]HOLMUHAMEDOV E L, JAHANGIR A, OBERLIN A, et al. Potassium channel openers are uncoupling protonophores:implication in cardioprotection. FEBS Lett,2004,568(1-3):167-70.
    [133]OVIDE-BORDEAUX S, VENTURA-CLAPIER R, VEKSLER V. Do modulators of the mitochondrial K(ATP) channel change the function of mitochondria in situ?. J Biol Chem,2000,275(47):37291-5.
    [134]GARLID K D. On the mechanism of regulation of the mitochondrial K+/H+ exchanger. J Biol Chem,1980,255(23):11273-9.
    [135]ZSURKA G, GREGAN J, SCHWEYEN R J. The human mitochondrial Mrs2 protein functionally substitutes for its yeast homologue, a candidate magnesium transporter. Genomics,2001,72(2):158-68.
    [136]KOLISEK M, ZSURKA G, SAMAJ J, et al. Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria. EMBO J,2003,22(6):1235-44.
    [137]DEL ARCO A, SATRUSTEGUI J. Identification of a novel human subfamily of mitochondrial carriers with calcium-binding domains. J Biol Chem,2004,279(23):24701-13.
    [138]HORBINSKI C, CHU C T. Kinase signaling cascades in the mitochondrion:a matter of life or death. Free Radic Biol Med,2005,38(1): 2-11.
    [139]THYAGARAJAN B, MALLI R, SCHMIDT K, et al. Nitric oxide inhibits capacitative Ca2+ entry by suppression of mitochondrial Ca2+ handling. Br J Pharmacol,2002,137(6):821-30.
    [140]GUIDARELLI A, SCIORATI C, CLEMENTI E, et al. Peroxynitrite mobilizes calcium ions from ryanodine-sensitive stores, a process associated with the mitochondrial accumulation of the cation, and the enforced formation of species mediating cleavage of genomic DNA. Free Radic Biol Med,2006,41(1):154-64.
    [141]BELOUS A E, JONES C M, WAKATA A, et al. Mitochondrial calcium transport is regulated by P2Y1-and P2Y2-like mitochondrial receptors. J Cell Biochem,2006,99(4):1165-74.
    [142]BABCOCK D F, HERRINGTON J, GOODWIN P C, et al. Mitochondrial participation in the intracellular Ca2+ network. J Cell Biol, 1997,136(4):833-44.
    [143]BABCOCK D F, HILLE B. Mitochondrial oversight of cellular Ca2+ signaling. Curr Opin Neurobiol,1998,8(3):398-404.
    [144]DUCHEN M R. Mitochondria and calcium:from cell signalling to cell death. J Physiol,2000,529 Pt 1(57-68.
    [145]HERRINGTON J, PARK Y B, BABCOCK D F, et al. Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells. Neuron,1996,16(1):219-28.
    [146]BOITIER E, REA R, DUCHEN M R. Mitochondria exert a negative feedback on the propagation of intracellular Ca2+ waves in rat cortical astrocytes. J Cell Biol,1999,145(4):795-808.
    [147]JOUAVILLE L S, ICHAS F, HOLMUHAMEDOV E L, et al. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature,1995,377(6548):438-41.
    [148]FALCKE M, HUDSON J L, CAMACHO P, et al. Impact of mitochondrial Ca2+cycling on pattern formation and stability. Biophys J, 1999,77(1):37-44.
    [149]HAJNOCZKY G, HAGER R, THOMAS A P. Mitochondria suppress local feedback activation of inositol 1,4,5-trisphosphate receptors by Ca2+. J Biol Chem,1999,274(20):14157-62.
    [150]RIZZUTO R, BASTIANUTTO C, BRINI M, et al. Mitochondrial Ca2+ homeostasis in intact cells. J Cell Biol,1994,126(5):1183-94.
    [151]ISHII K, HIROSE K,IINO M. Ca2+ shuttling between endoplasmic reticulum and mitochondria underlying Ca2+ oscillations. EMBO Rep,2006, 7(4):390-6.
    [152]MCMILLIN-WOOD J, WOLKOWICZ P E, CHU A, et al. Calcium uptake by two preparations of mitochondria from heart. Biochim Biophys Acta,1980,591(2):251-65.
    [153]CHERANOV S Y, JAGGAR J H. Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries. J Physiol,2004,556(Pt 3):755-71.
    [154]HERNANDEZ-GUIJO J M, MANEU-FLORES V E, RUIZ-NUNO A, et al. Calcium-dependent inhibition of L, N, and P/Q Ca2+ channels in chromaffin cells:role of mitochondria. J Neurosci,2001,21(8):2553-60.
    [155]TANAAMI T, ISHIDA H, SEGUCHI H, et al. Difference in propagation of Ca2+ release in atrial and ventricular myocytes. Jpn J Physiol,2005,55(2): 81-91.
    [156]MAACK C, CORTASSA S, AON M A, et al. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ Res,2006,99(2): 172-82.
    [157]POBURKO D, POTTER K, VAN BREEMEN E, et al. Mitochondria buffer NCX-mediated Ca2+-entry and limit its diffusion into vascular smooth muscle cells. Cell Calcium,2006,40(4):359-71.
    [158]PARK M K, ASHBY M C, ERDEMLI G, et al. Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J,2001,20(8):1863-74.
    [159]PETERSEN O H. Calcium signal compartmentalization. Biol Res,2002, 35(2):177-82.
    [160]PETERSEN O H. Localization and regulation of Ca2+ entry and exit pathways in exocrine gland cells. Cell Calcium,2003,33(5-6):337-44.
    [161]PETERSEN O H, BURDAKOV D, TEPIKIN A V. Polarity in intracellular calcium signaling. Bioessays,1999,21(10):851-60.
    [162]TINEL H, CANCELA J M, MOGAMI H, et al. Active mitochondria
    surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca2+ signals. EMBO J,1999, 18(18):4999-5008.
    [163]BOOTMAN M D, PETERSEN O H, VERKHRATSKY A. The endoplasmic reticulum is a focal point for co-ordination of cellular activity. Cell Calcium,2002,32(5-6):231-4.
    [164]GERASIMENKO O V, GERASIMENKO J V, RIZZUTO R R, et al. The distribution of the endoplasmic reticulum in living pancreatic acinar cells. Cell Calcium,2002,32(5-6):261-8.
    [165]PETERSEN O H, TEPIKIN A, PARK M K. The endoplasmic reticulum: one continuous or several separate Ca2+ stores?. Trends Neurosci,2001, 24(5):271-6.
    [166]PUTNEY J W, JR. A model for receptor-regulated calcium entry. Cell Calcium,1986,7(1):1-12.
    [167]PAREKH A B, PUTNEY J W, JR. Store-operated calcium channels. Physiol Rev,2005,85(2):757-810.
    [168]VARADI A, CIRULLI V, RUTTER G A. Mitochondrial localization as a determinant of capacitative Ca2+ entry in HeLa cells. Cell Calcium,2004, 36(6):499-508.
    [169]QUINTANA A, SCHWARZ E C, SCHWINDLING C, et al. Sustained activity of calcium release-activated calcium channels requires translocation of mitochondria to the plasma membrane. J Biol Chem,2006,281(52): 40302-9.
    [170]FRIEDEN M, JAMES D, CASTELBOU C, et al. Ca2+ homeostasis during mitochondrial fragmentation and perinuclear clustering induced by hFisl. J Biol Chem,2004,279(21):22704-14.
    [171]GLITSCH M D, BAKOWSKI D, PAREKH A B. Store-operated Ca2+ entry depends on mitochondrial Ca2+ uptake. EMBO J,2002,21(24): 6744-54.
    [172]AYUB K, HALLETT M B. The mitochondrial ADPR link between Ca2+ store release and Ca2+ influx channel opening in immune cells. FASEB J, 2004,18(12):1335-8.
    [173]LIOU J, KIM M L, HEO W D, et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+influx. Curr Biol,2005,15(13):1235-41.
    [174]ROOS J, DIGREGORIO P J, YEROMIN A V, et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol,2005,169(3):435-45.
    [175]VIG M, PEINELT C, BECK A, et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science,2006,312(5777): 1220-3.
    [176]YEROMIN A V, ZHANG S L, JIANG W, et al. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature, 2006,443(7108):226-9.
    [177]SHUTTLEWORTH T J, THOMPSON J L, MIGNEN O. ARC channels: a novel pathway for receptor-activated calcium entry. Physiology (Bethesda), 2004,19(355-61.
    [178]WATANABE H, VRIENS J, JANSSENS A, et al. Modulation of TRPV4 gating by intra-and extracellular Ca2+. Cell Calcium,2003,33(5-6):489-95.
    [179]PERRAUD A L, TAKANISHI C L, SHEN B, et al. Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels, J Biol Chem,2005,280(7):6138-48.
    [180]BONEH A. Regulation of mitochondrial oxidative phosphorylation by second messenger-mediated signal transduction mechanisms. Cell Mol Life Sci,2006,63(11):1236-48.
    [181]HANSFORD R G, CHAPPELL J B. The effect of Ca2+ on the oxidation of glycerol phosphate by blowfly flight-muscle mitochondria. Biochem
    Biophys Res Commun,1967,27(6):686-92.
    [182]MCCORMACK J G, DENTON R M. The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem J,1979,180(3):533-44.
    [183]DUCHEN M R. Ca2+-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. Biochem J,1992,283 (Pt 1)(41-50.
    [184]HAJNOCZKY G, ROBB-GASPERS L D, SEITZ M B, et al. Decoding of cytosolic calcium oscillations in the mitochondria. Cell,1995,82(3): 415-24.
    [185]PRALONG W F, HUNYADY L, VARNAI P, et al. Pyridine nucleotide redox state parallels production of aldosterone in potassium-stimulated adrenal glomerulosa cells. Proc Natl Acad Sci U S A,1992,89(1):132-6.
    [186]JOUAVILLE L S, PINTON P, BASTIANUTTO C, et al. Regulation of mitochondrial ATP synthesis by calcium:evidence for a long-term metabolic priming. Proc Natl Acad Sci U S A,1999,96(24):13807-12.
    [187]HARRIS D A, DAS A M. Control of mitochondrial ATP synthesis in the heart. Biochem J,1991,280 (Pt 3)(561-73.
    [188]TERRITO P R, FRENCH S A, DUNLEAVY M C, et al. Calcium activation of heart mitochondrial oxidative phosphorylation:rapid kinetics of mV02, NADH, AND light scattering. J Biol Chem,2001,276(4):2586-99.
    [189]MORENO-SANCHEZ R. Contribution of the translocator of adenine nucleotides and the ATP synthase to the control of oxidative phosphorylation and arsenylation in liver mitochondria. J Biol Chem,1985,260(23): 12554-60.
    [190]ROBB-GASPERS L D, BURNETT P, RUTTER G A, et al. Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J, 1998,17(17):4987-5000.
    [191]LASORSA F M, PINTON P, PALMIERI L, et al. Recombinant expression of the Ca2+-sensitive aspartate/glutamate carrier increases mitochondrial ATP production in agonist-stimulated Chinese hamster ovary cells. J Biol Chem,2003,278(40):38686-92.
    [192]PALMIERI L, PARDO B, LASORSA F M, et al. Citrin and aralarl are Ca2+-stimulated aspartate/glutamate transporters in mitochondria. EMBO J, 2001,20(18):5060-9.
    [193]BERTRAM R, GRAM PEDERSEN M, LUCIANI D S, et al. A simplified model for mitochondrial ATP production. J Theor Biol,2006, 243(4):575-86.
    [194]LUCIANI D S, MISLER S, POLONSKY K S. Ca2+controls slow NAD(P)H oscillations in glucose-stimulated mouse pancreatic islets. J Physiol-London,2006,572(2):379-92.
    [195]BOVERIS A, CHANCE B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J, 1973,134(3):707-16.
    [196]BARJA G. Mitochondrial oxygen radical generation and leak:sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J Bioenerg Biomembr,1999,31(4):347-66.
    [197]LENAZ G. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life,2001, 52(3-5):159-64.
    [198]ANDREYEV A Y, KUSHNAREVA Y E, STARKOV A A. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc),2005,70(2): 200-14.
    [199]DYKENS J A. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+and Na+:implications for neurodegeneration. J Neurochem,1994,63(2):584-91.
    [200]PELICANO H, LU W, ZHOU Y, et al. Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism. Cancer Res,2009,69(6):2375-83.
    [201]REGO A C, OLIVEIRA C R. Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis:implications for the pathogenesis of neurodegenerative diseases. Neurochem Res,2003,28(10): 1563-74.
    [202]REYNOLDS I J, HASTINGS T G. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci,1995,15(5 Pt 1):3318-27.
    [203]STARKOV A A, POLSTER B M, FISKUM G. Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax. J Neurochem,2002,83(1):220-8.
    [204]VOTYAKOVA T V, REYNOLDS I J. DeltaPsi(m)-Dependent and-independent production of reactive oxygen species by rat brain mitochondria. J Neurochem,2001,79(2):266-77.
    [205]HOPPER R K, CARROLL S, APONTE A M, et al. Mitochondrial matrix phosphoproteome:effect of extra mitochondrial calcium. Biochemistry,2006, 45(8):2524-36.
    [206]YAN Y, WEI C L, ZHANG W R, et al. Cross-talk between calcium and reactive oxygen species signaling. Acta Pharmacol Sin,2006,27(7):821-6.
    [207]ZOCCARATO F, CAVALLINI L, ALEXANDRE A. Respiration-dependent removal of exogenous H2O2 in brain mitochondria: inhibition by Ca2+. J Biol Chem,2004,279(6):4166-74.
    [208]DLASKOVA A, SPACEK T, SKOBISOVA E, et al. Certain aspects of uncoupling due to mitochondrial uncoupling proteins in vitro and in vivo. Biochim Biophys Acta,2006,1757(5-6):467-73.
    [209]MADESH M, HAWKINS B J, MILOVANOVA T, et al. Selective role for superoxide in InsP3 receptor-mediated mitochondrial dysfunction and endothelial apoptosis. J Cell Biol,2005,170(7):1079-90.
    [210]MCBRIDE H M, NEUSPIEL M, WASIAK S. Mitochondria:more than just a powerhouse. Curr Biol,2006,16(14):R551-60.
    [211]KITAGAWA Y, RACKER E. Purification and characterization of two protein kinases from bovine heart mitochondrial membrane. J Biol Chem, 1982,257(8):4547-51.
    [212]SARROUILHE D, BAUDRY M. Evidence of true protein kinase CKII activity in mitochondria and its spermine-mediated translation to inner membrane. Cell Mol Biol (Noisy-le-grand),1996,42(2):189-97.
    [213]CHEN Q, LIN R Y, RUBIN C S. Organelle-specific targeting of protein kinase All (PKAII). Molecular and in situ characterization of murine A kinase anchor proteins that recruit regulatory subunits of PKAII to the cytoplasmic surface of mitochondria. J Biol Chem,1997,272(24):15247-57.
    [214]ITOH S, LEMAY S, OSAWA M, et al. Mitochondrial Dok-4 recruits Src kinase and regulates NF-kappaB activation in endothelial cells. J Biol Chem, 2005,280(28):26383-96.
    [215]PAGLIARINI D J, DIXON J E. Mitochondrial modulation:reversible phosphorylation takes center stage?. Trends Biochem Sci,2006,31(1): 26-34.
    [216]LINN T C, PETTIT F H, REED L J. Alpha-keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc Natl Acad Sci U S A,1969,62(1):234-41.
    [217]AZARASHVILI T, KRESTININA O, ODINOKOVA I, et al. Physiological Ca2+level and Ca2+-induced Permeability Transition Pore control protein phosphorylation in rat brain mitochondria. Cell Calcium, 2003,34(3):253-9.
    [218]YAFFE M P. The machinery of mitochondrial inheritance and behavior. Science,1999,283(5407):1493-7.
    [219]RUBE D A, VAN DER BLIEK A M. Mitochondrial morphology is dynamic and varied. Mol Cell Biochem,2004,256-257(1-2):331-9.
    [220]COLLINS T J, BERRIDGE M J, LIPP P, et al. Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J,2002, 21(7):1616-27.
    [221]ALIROL E, MARTINOU J C. Mitochondria and cancer:is there a morphological connection?. Oncogene,2006,25(34):4706-16.
    [222]PARONE P A, JAMES D, MARTINOU J C. Mitochondria:regulating the inevitable. Biochimie,2002,84(2-3):105-11.
    [223]PARONE P A, MARTINOU J C. Mitochondrial fission and apoptosis:an ongoing trial. Biochim Biophys Acta,2006,1763(5-6):522-30.
    [224]BROWN M R, SULLIVAN P G, GEDDES J W. Synaptic mitochondria are more susceptible to Ca2+overload than nonsynaptic mitochondria. J Biol Chem,2006,281(17):11658-68.
    [225]NUNEZ L, SENOVILLA L, SANZ-BLASCO S, et al. Bioluminescence imaging of mitochondrial Ca2+ dynamics in soma and neurites of individual adult mouse sympathetic neurons. J Physiol,2007,580(Pt.2):385-95.
    [226]TANAKA Y, KANAI Y, OKADA Y, et al. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell,1998,93(7):1147-58.
    [227]JAMES D I, PARONE P A, MATTENBERGER Y, et al. hFisl, a ncvel component of the mammalian mitochondrial fission machinery. J Biol Chem, 2003,278(38):36373-9.
    [228]ISHIHARA N, JOFUKU A, EURA Y, et al. Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochem Biophys Res Commun,2003,301(4):891-8.
    [229]SZABADKAI G, SIMONI A M, BIANCHI K, et al. Mitochondrial dynamics and Ca2+signaling. Biochim Biophys Acta,2006,1763(5-6): 442-9.
    [230]YI M, WEAVER D, HAJNOCZKY G. Control of mitochondrial motility and distribution by the calcium signal:a homeostatic circuit. J Cell Biol, 2004,167(4):661-72.
    [231]BRECKENRIDGE D G, STOJANOVIC M, MARCELLUS R C, et al. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol,2003,160(7):1115-27.
    [232]LI Z, OKAMOTO K, HAYASHI Y, et al. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell,2004,119(6):873-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700