环境友好与快速高效的可见光活化室温水溶液RAFT聚合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可逆加成断裂链转移自由基聚合(RAFT聚合),集自由基聚合和活性聚合方法的优势于一体,备受关注。正发展成为制备结构精确聚合物的强有力工具。室温条件下水溶液活性自由基聚合研究有着重要的学术价值和潜在的应用前景。本论文探索并实现了在水溶液中可见光照下快速高效和活性可控的室温水溶液RAFT聚合。考察了S-乙基-S '-(α,α'-二甲基-α"-乙酸基)三硫代碳酸酯(EDMAT)链转移剂的紫外可见吸收光谱。考察了在30 oC和可见光照下,不同水溶液pH中EDMAT的稳定性。研究了可见光活化聚乙二醇单甲醚丙烯酸酯(PEGA)单体的室温水溶液RAFT聚合反应特征。通过2-羟乙基丙烯酸酯(HEA),N-(丙烯酰氧乙基)吡咯烷酮(NAP)的可见光活化室温水溶液RAFT聚合,考察了该聚合方法的单体普适性,并研究了可见光活化室温水溶液RAFT聚合的热活化效应。通过一个周期性的光开关过程,研究了可见光对该聚合反应的作用。研究结果表明,链转移剂EDMAT在可见波段存在一个弱吸收,使聚合反应的可见光活化成为可能。碱性或中性条件下,EDMAT水解,而偏酸性条件下其水解反应则明显抑制。在偏酸性的水溶液中,可见光活化室温RAFT聚合反应具有快速高效和活性可控的特点。而且,该聚合反应具有良好的单体普适性。低温下(7 oC)的聚合反应与室温下(25 oC)聚合反应的反应动力学特征相类似,体现出相同的引发期和聚合反应速率,说明该聚合反应在室温下的热活化效应可以忽略。周期性的可见光开关导致了该聚合反应周期性的快速启动和终止。聚合反应引发期过后,停止光照,则聚合反应终止。说明体系中的活性自由基浓度极低,绝大多数以中间体自由基形式存在。再次光照导致一个与前一光照时期相同的快速聚合反应过程,说明可见光明显加速了中间体自由基的断裂反应,使反应体系的活性自由基浓度明显提高。以上实验结果表明,可见光不仅促使TPO光解产生初级自由基,引发聚合反应,同时还兼具活化中间体自由基断裂反应的功能。这一特异的光开关控制过程可用于聚合反应的实时启动和终止。
Reversible Addition Fragmentation chain Transfer radical polymerization or RAFT polymerization has got much attention since its discovery. It has become a powerful technique for the synthesis of well-defined polymers or copolymers with both low polydispersity and functionalized end groups. From both academic and industrial standpoints, it is desirable to develop a rapid and well-controlled RAFT polymerization under mild aqueous conditions. This thesis describes the RAFT polymerization of acrylic monomers, including poly(ethylene glycol) methyl ether acrylate (PEGA), N-(2-acryloyloxyethyl) pyrrolidone (NAP), 2-hydroxyethyl acrylate (HEA) in acidic aqueous solution under mild visible light radiation at 25 oC. The thermo-activating effect of this aqueous RAFT polymerization was investigated. A periodic light-on-off process was employed for this aqueous RAFT polymerization to investigate the effect of visible light. The experimental results demonstrate that EDMAT exhibits an absorption covering a wide visible light wave range of 388-520 nm, which makes it possible that this RAFT polymerization may be accelerated by the visible light. This chain transfer agent is stable in acidic aqueous solution, but liable to hydrolysis in alkali or neutral solution. This RAFT polymerization proceeds rapidly and well-controlled in acidic aqueous solution at 25 oC, simply upon radiation with visible light. The kinetic character of this RAFT polymerization at 7 oC is quite similar to what observed at 25 oC, which also proceeded rapidly and keeping living character. This suggests the negligible thermo-activating effect of this aqueous RAFT polymerization. A periodic light-on-off process leads to a corresponding repeatable periodic polymerization-on-off process. The essentially polymerization-standstill state in the light-off period indicated the negligible concentration of active radicals and the significantly slow intermediate fragmentation reaction. Further turning on this visible light leads to another rapid polymerization process with the same kinetic character as what observed in the former light-on process. This suggests that the intermediate fragmentation reaction of this aqueous RAFT polymerization was significantly activated upon radiation with this visible light.
引文
[1]. Szwarc, M.; Levey M.; Milkovich R. Polymerization Initiated by Electron Transfer to Monomer: A New Method to Block Polymers. [J]. J. Am. Chem. Soc. 1956, 78: 2656-2657
    [2] Wang, J. S.; Matyjaszewski, K. Controlled/"Living" Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes [J]. J. Am. Chem. Soc. 1995, 117: 5614-5615.
    [3] Moad, G.; Rizzardo, E.; Thang, S. H. Living Radical Polymerization by the RAFT Process [J]. Aust. J. Chem. 2005, 58: 379–410.
    [4] Moad, G.; Rizzardo, E.; Thang, S. H. Toward Living Radical Polymerization [J]. Acc. Chem. Res. 2008, 41:1133-1142.
    [5] Moad, G.; Rizzardo, E.; Thang, S. H. Radical addition–fragmentation chemistry in polymer synthesis [J]. Polymer 2008, 49: 1079-1131.
    [6] Barner-Kowollik, C.; Perrier, S. The future of reversible addition fragmentation chain transfer polymerization [J]. J. Polym. Sci. Polym. Chem. 2008, 46: 5715-5723
    [7] Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process [J]. Macromolecules 1998, 31: 5559-5562.
    [8] Chong, Y. K.; Le, T. P. T.; Moad, G.; Rizzardo, E.; Thang, S. H. A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization: The RAFT Process [J]. Macromolecules 1999, 32: 2071-2074.
    [9] Shim, S. E.; Jung, H.; Lee, H.; Biswas J.; Choe, S. Living Radical Dispersion Photopolymerization of Styrene by a Reversible Addition–Fragmentation Chain Transfer (RAFT) Agent [J]. Polymer 2003, 44: 5563-5572.
    [10] Quinn, J. F.; Barner, L.; Rizzardo, E.; Davis, R. P. Living Free-radical Polymerization of Styrene under a Constant Source ofγ-Radiation [J]. J. Polym. Sci. Part A: Polym. Chem. 2002, 40: 19-25.
    [11] You, Y. Z.; Hong, C. Y.; Bai, R. K.; Pan, C.Y.; Wang, J. Photo-Initiated Living free Radical Polymerization in the Presence of Dibenzyl Trithiocarbonate [J]. Macromol. Chem. Phys. 2002, 203: 477-483.
    [12] Chen, G.; Zhu, X.; Zhu, J.; Cheng, Z. Plasma-Initiated Controlled/Living Radical Polymerization of Methyl Methacrylate in the Presence of 2-Cyanoprop-2-yl 1-dithionaphthalate (CPDN) [J]. Macromol Rapid Comnum. 2004, 25: 818-824.
    [13] Zhu, J.; Zhu, X.; Zhang, Z.; Cheng, Z. Reversible addition-fragmentation chain transfer polymerization of styrene under microwave irradiation [J]. Polym Sci Part A: Polym Chem 2006, 44(23):6810–6816.
    [14] Zhang, Z.; Zhu, X.; Zhu, J.; Cheng, Z.; Zhu, S. Thermal-initiated reversible addition-fragmentation chain transfer polymerization of methyl methacrylate in the presence of oxygen [J]. Polym Sci Part A: Polym Chem 2006, 44(10): 3343–3354.
    [15] Quinn, J. F.; Rizzardo, E,; Davis, T. P. Ambient temperature reversible addition–fragmentationchain transfer polymerisation [J]. Chem Commun 2001, 1044-1045.
    [16] Convertine, A. J.; Ayres, N.; C. Scales, W.; Lowe, A. B.; C. McCormick, L.; Facile, Controlled, Room-Temperature RAFT Polymerization of N-Isopropylacrylamide [J]. Biomacromolecules 2004, 5:1177-1180.
    [17] Convertine, A. J.; Lokitz, B. S.; Lowe, A. B.; Scales, C. W.; Myrick, L. J.; McCormick, C. L. Aqueous RAFT Polymerization of Acrylamide and N,N-Dimethylacrylamide at Room Temperature [J]. Macromol Rapid Commun 2005: 791-795.
    [18] Convertine, A. J.; Lokitz, B. S.; Vasileva, Y.; Myrick, L. J.; Scales, C. W.; Lowe, A. B.; McCormick, C. L. Direct Synthesis of Thermally Responsive DMA/NIPAM Diblock and DMA/NIPAM/DMA Triblock Copolymers via Aqueous, Room Temperature RAFT Polymerization [J]. Macromolecules 2006, 39: 1724-1730.
    [19] You, Y.; Hong, C.; Bai, R.; Pan, C.; Wang, Photo-Initiated Living Free Radical Polymerization in the Presence of Dibenzyl Trithiocarbonate [J]. Mocromol Chem Phys. 2002, 203(3): 477-483.
    [20] Quinn, J. F.; Davis, T. P.; Barner, L.; Barner-Kowollik, C. The application of ionizing radiation in reversible additione-fragmentation chain transfer (RAFT) polymerization: Renaissance of a key synthetic and kinetic tool [J]. Polymer 2007, 48: 6467-6480.
    [21] Quinn, J. F.; Barner, L.; Barner-Kowollik, C.; Rizzardo, E.; Davis, T. P. Reversible Addition-Fragmentation Chain Transfer Polymerization Initiated with Ultraviolet Radiation [J]. Macromolecules 2002, 35: 7620-7627.
    [22] Lu, L.; Yang, N.; Cai, Y. Well-controlled reversible addition–fragmentation chain transfer radical polymerisation under ultraviolet radiation at ambient temperature [J]. Chem Commun 2005, 5287-5288.
    [23] Lu, L.; Zhang, H.;Yang, N.; Cai, Y. Toward Rapid and Well-Controlled Ambient Temperature RAFT Polymerization under UV-Vis Radiation: Effect of Radiation Wave Range [J]. Macromolecules 2006, 39: 3770-3776.
    [24] Yin, H.; Zheng, H.; Lu, L.; Liu, P.; Cai. Y. Highly Efficient and Well-Controlled Ambient Temperature RAFT Polymerization of Glycidyl Methacrylate under Visible Light Radiation [J]. J. Polym. Sci. Part A: Polym. Chem. 2007, 22: 5091-5102.
    [25] Jiang, W.; Lu, L.; Cai, Y. Highly Efficient and Well-Controlled Ambient Temperature RAFT Polymerization under Solar Radiation [J]. Macromol. Rapid Commun. 2007, 28: 725-728.
    [26] Zhang, H.; Deng, J.; Lu, L.; Cai, Y. Ambient-Temperature RAFT Polymerization of Styrene and Its Functional Derivatives under Mild Long-Wave UV-vis Radiation [J]. Macromolecules 2007, 40: 9252-9261.
    [27] McCormick, C. L.; Lowe, A. B. Aqueous RAFT polymerization: Recent developments in synthesis of functional water-soluble (co)polymers with controlled structures [J]. Acc. Chem. Res. 2004, 37: 312-325.
    [28] Sumerlin, B. S.; Lowe, A. B.; Thomas, D. B.; McCormick, C. L. Aqueous Solution PorPerties of pH-Responsive AB Diblock Copolymers Synthesized via Aqueous RAFT [J]. Macromolecules 2003, 36: 5982-5987.
    [29] Yuting Li, Brad S. Lokitz, and Charles L. McCormick RAFT Synthesis of a Thermally Responsive ABC Triblock Copolymer Incorporating N-Acryloxysuccinimide for Facile in Situ Formation of Shell Cross-Linked Micelles in Aqueous Media [J]. Macromolecules 2006, 39:81-89.
    [30] Yuting Li, Brad S. Lokitz, Steven P. Armes, and Charles L. McCormick,Synthesis of Reversible Shell Cross-Linked Micelles for Controlled Release of Bioactive Agents [J]. Macromolecules 2006, 39: 2726-2728.
    [31] Convertine, A. J.; Ayres, N. A.; Scales, C. W.; Lowe, A. B. McCormick, C. L. Facile, Controlled, Room-Temperatuer RAFT Polymerization of N-Isopropylacrylamide [J]. Biomacromolecules 2004, 5: 1177-1180.
    [32] Anthony, J.; Convertine, B. S.; Vasileva, L. Y.; Myrick, L. J.; Scales, C. W.; Lowe, A. B.; M cCormick, C. L. Direct Synthesis of Thermally Responsive DMA/NIAPM Diblock and DMA/NIAPM/DMA Triblock Copolymers via Aqueous, Room Temperatuer RAFT PoIymerizationt [J]. Macromolecules 2006, 39: 1724-1730.
    [33] Convertine, A. J.; Lokitz, B. S.; Lowe, A. B.; Scales, C. W.; Myrick, L. J.; McCormick, C. L. Aqueous RAFT polymerization of acrylamide and N,N-dimethylacrylamide at room temperature [J]. Macromol. Rapid Commun. 2005, 26: 791-795.
    [34] Millard, P.-E.; Barner, L.; Stenzel, M. H.; Davis, T. P.; Barner-Kowollik, C.; Müller, A. H. E. RAFT polymerization of N-isopropylacrylamide and acrylic acid under gamma-irradiation in aqueous media [J]. Macromol. Rapid Commun. 2006, 27: 821-828.
    [35] Muthukrishnan, S.; Pan, E. H.; Stenzel, M. H.; Barner-Kowollik, C.; Davis, T. P.; Lewis, D.; Barner, L. Ambient Temperature RAFT Polymerization of Acrylic Acid Initiated with Ultraviolet Radiation in Aqueous Solution [J]. Macromolecules 2007, 40: 2978-2980.
    [36] Bai, W.; Zhang, L.; Bai, R.; Zhang, G. A Very Useful Redox Initiator for Aqueous RAFT Polymerization of N-Isopropylacrylamide and Acrylamide at Room Temperature [J]. Macromol. Rapid Commun. 2008, 29: 562-566.
    [37] Lowe, A. B.; McCormick, C. L. Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media [J]. Prog. Polym. Sci. 2007, 32: 283-351.
    [38] Schilli, C.; Lanzendoerfer, M. G.; Müller, A. H. E. Benzyl and Cumyl Dithiocarbamates as Chain Transfer Agents in the RAFT Polymerization of N-Isopropylacrylamide. In Situ FT-NIR and MALDI?TOF MS Investigation [J]. Macromolecules 2002, 35: 6819-6827.
    [39] Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Krstina, J.; Moad, G.; Postma, A.; Thang, S. H. Living Polymers by the Use of Trithiocarbonates as Reversible Addition?Fragmentation Chain Transfer (RAFT) Agents: ABA Triblock Copolymers by Radical Polymerization in Two Steps [J]. Macromolecules 2000, 33: 243-245.
    [40] Sumerlin, B. S.; Lowe, A. B.; Stroud, P. A.; Zhang, P.; Urban, M. W.; McCormick, C. L. Modification of Gold Surfaces with Water-Soluble (Co)polymers Prepared via Aqueous Reversible Addition?Fragmentation Chain Transfer (RAFT) Polymerization. Langmuir 2003, 19: 5559-5562.
    [41] Thomas, D. B.; Convertine, A. J.; Myrick, L. J.; Scales, C. W.; Smith, A. E.; Lowe, A. B.; Vasilieva, Y. A.; Ayres, N.; McCormick, C. L. Kinetics and Molecular Weight Control of the Polymerization of Acrylamide via RAFT [J]. Macromolecules 2004, 37: 8941-8950.
    [42] Levesque, G.; Arsene, P.; Fanneau-Bellenger, V.; Pham, T.-N. Protein Thioacylation: 2. Reagent Stability in Aqueous Media and Thioacylation Kinetics [J]. Biomacromolecules 2000, 1: 400-406.
    [43] Thomas, D. B.; Convertine, A. J.; Hester, R. D.; Lowe, A. B.; McCormick, C. L. HydrolyticSusceptibility of Dithioester Chain Transfer Agents and Implications in Aqueous RAFT Polymerizations [J]. Macromolecules 2004, 37: 1735-1741.
    [44] Lutz, J.-F. Akdemir, ?.; Hoth, A. Point by Point Comparison of Two Thermosensitive Polymers Exhibiting a Similar LCST: Is the Age of Poly(NIPAM) Over? [J]. J. Am. Chem. Soc. 2006, 128: 13046-13047; J.-F. Lutz, Polymerization of Oligo(Ethylene Glycol) (Meth)Acrylates: Toward New Generations of Smart Biocompatible Materials J. Polym. Sci. Polym. Chem. 2008, 46: 3459-3470.
    [45] Robinson, D. N.; Peppas, N. A. Preparation and Characterization of pH-Responsive Poly(methacrylic acid-g-ethylene glycol) Nanospheres [J]. Macromolecules 2002, 35: 3668-3674; Mantovani, G.; Lecolley, F.; Tao, L.; Haddleton, D. M.; Clerx, J.; Cornelissen, J. J.; Velonia, K. Design and Synthesis of N-Maleimido-Functionalized Hydrophilic Polymers via Copper-Mediated Living Radical Polymerization: A Suitable Alternative to PEGylation Chemistry [J]. J. Am. Chem. Soc. 2005, 127: 2966-2973.
    [46] Popescu, D. C.; Lems, R.; Rossi, N. A. A.; Yeoh, C.-T.; Loos, J.; Holder, S. J.; Bouten, C. V. C.; Sommerdijk, N. A. J. M. The Patterning and Alignment of Muscle Cells Using the Selective Adhesion of Poly(oligoethylene glycol methyl ether methacrylate)-based ABA Block Copolymers [J]. Adv. Mater. 2005, 17, 2324-2329.
    [47] Oyane, A.; Ishizone, T.; Uchida, M.; Furukawa, K.; Ushida, T.; Yokoyama, H. Spontaneous Formation of Blood-Compatible Surfaces on Hydrophobic Polymers: Surface Enrichment of a Block Copolymer with a Water-Soluble Block [J]. Adv. Mater. 2005, 17, 2329-2323.
    [48] Chen, G..; Wright, P. M.; Geng, J.; Mantovani, G..; Haddleton, D. M. Tunable thermoresponsive water-dispersed multiwalled carbon nanotubes [J]. Chem. Commun. 2008, 1097-1099.
    [49] Edwards, E. W.; Chanana, M.; Wang, D.; M?hwald, H. Stimuli-responsive reversible transport of nanoparticles across water/oil interfaces. [J]. Angew. Chem. Int. Ed. 2008, 47: 326-329.
    [50] Wang, X. S. ; Lascelles, S. F. ; Jackson, R. A. ; Armes, S. P. Facile synthesis of well-defined water-soluble polymers via atom transfer radical polymerization in aqueous media at ambient temperature [J]. Chem. Commun. 1999, 1817-1818; Wang, X. S.; Malet, F. L. G..; Armes, S.; Haddleton, P. D.; Perrier, M. S. Unexpected Viability of Pyridyl Methanimine-Based Ligands for Transition-Metal-Mediated Living Radical Polymerization in Aqueous Media at Ambient Temperature [J]. Macromolecules, 2001, 34: 162-164.
    [51] Garnier, S.; Laschewsky, A. Synthesis of New Amphiphilic Diblock Copolymers and Their Self-Assembly in Aqueous Solution. [J]. Macromolecules 2005, 38: 7580-7592.
    [52] Mertoglua, M.; Garniera, S.; Laschewsky, A.; Skrabaniaa,K.; Storsberg, J. Stimuli responsive amphiphilic block copolymers for aqueous media synthesised via reversible addition fragmentation chain transfer polymerisation (RAFT) [J]. Polymer 2005, 46: 7726-7740.
    [53] Heredia, K. L.; Nguyen, T. H.; Chang, C.-W.; Bulmus,V.; Davis, T. P.; Maynard,H. D. Reversible siRNA–polymer conjugates by RAFT polymerization [J]. Chem. Commun. 2008, 3245-3247.
    [54] Mühlebach, A.; Gaynor, S. G.; Matyjaszewski, K. Synthesis of Amphiphilic Block Copolymers by Atom Transfer Radical Polymerization (ATRP) [J]. Macromolecules 1998, 31: 6046–6052.
    [55] Xu, F. J.; Li, Y. L.; Kang, E. T.; Neoh, K. G. Heparin-Coupled Poly(poly(ethylene glycol) monomethacrylate)-Si(111) Hybrids and Their Blood Compatible Surfaces [J]. Biomacromolecules 2005, 6: 1759-1768.
    [56] Tao, L.; Mantovani, G.; Lecolley, F.; Haddleton, D. M.α-Aldehyde Terminally FunctionalMethacrylic Polymers from Living Radical Polymerization: Application in Protein Conjugation “Pegylation”[J]. J. Am. Chem. Soc. 2004, 126: 13220-13221.
    [57] Zhang, F.; Kang, E. T.; Neoh, K. G.; Wang, P.; Tan, K. L. Surface modification of stainless steel by grafting of poly(ethylene glycol) for reduction in protein adsorption. [J]. Biomaterials 2001, 22: 1541-1548.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700