白血病耐药相关膜蛋白SFPQ的发现及其耐药机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前化学治疗仍是临床治疗白血病的主要手段,也是造血干细胞移植的基础。近年来尽管有多种新的药物和治疗方案推出,但大多数急性白血病患者最终因治疗失败而死亡。肿瘤细胞对抗癌药物产生抗药性是化疗失败的一个主要原因。导致治疗失败的原因是多方面的,其中多药耐药性(multi-drug resistance,MDR)是最重要的一种。MDR又称多药抗药性(pleiotropic durg resistnace),是指恶性肿瘤细胞对一种化疗药物产生耐药现象后,产生了对多种结构不同、作用靶点和作用机制各异的其他抗癌药物的抗药性。
     白血病耐药的产生是多因素的,随诱导药物、细胞种类、分化阶段、及细胞所处微环境的不同而表现出不同的耐药表型。虽然已有的研究揭示了一些肿瘤多药耐药的机制,但目前仍然不能完全解释肿瘤多药耐药现象并有效逆转肿瘤细胞的多药耐药。目前在白血病耐药的临床治疗方面主要以抑制P-糖蛋白功能的耐药逆转剂为主,但其临床效果也不理想,至今无一获得FDA批准上市。虽然急性白血病耐药的发生机制已经被广泛的研究,但耐药机制仍不明了,与白血病耐药相关的细胞膜新靶点的筛选方法仍未得以建立。
     事实上白血病患者耐药产生并非单一机制,此外,临床上患者间的个体差异也为治疗带来了困难。可见发现更多的白血病耐药相关的治疗靶点以实现多靶点联合检测与治疗、丰富白血病耐药机理从多角度全面阐明白血病耐药机制以综合制定白血病耐药治疗方案,建立治疗和预后指标是解决上述问题的对策。细胞膜蛋白暴露于细胞外表面,特别容易被抗体等试剂识别,作为靶点特异的检测、诊断和治疗的标志物;此外细胞膜蛋白还特别适于作为较为分散的血液肿瘤的治疗靶点。鉴于此,本文着力于寻找新的白血病耐药相关的细胞膜蛋白,考察其与白血病耐药的相关性并探讨其可能的机制。
     为寻找白血病耐药相关的细胞膜靶点,本研究首先应用消减免疫法,以人早幼粒细胞HL60活细胞作为耐受原诱导Balb/c小鼠免疫耐受,然后以阿霉素耐药株HL60/ADR细胞作为免疫原免疫小鼠,得到能特异识别差异表达的耐药株与敏感株HL60细胞膜表面蛋白的杂交瘤细胞库。通过对HL60和HL60/ADR两种靶细胞的选择性筛选和亚克隆培养、抗体的制备与纯化等过程,我们最终获得五株与两种靶细胞结合能力不同的单克隆抗体,这些抗体携带特定的耐药蛋白的标志信息。
     为了进一步获得相应抗原的信息,我们通过免疫沉淀和蛋白电泳技术分离敏感和耐药的HL60差异表达的细胞膜蛋白,并通过MALDI-TOF-MS鉴定抗原。最终我们获知单抗5D12的靶抗原为SFPQ,该蛋白高表达于敏感的HL60细胞膜表面,在阿霉素耐药株细胞膜其表达降低。通过siRNA干扰SFPQ,我们发现细胞膜高表达该蛋白的HL60细胞其膜SFPQ表达水平降低,由此确认SFPQ确为单抗5D12的靶抗原。此结果系首次发现SFPQ可表达在肿瘤细胞膜表面。
     通过实验我们发现5D12为有生物学活性的细胞膜蛋白SFPQ的特异性抗体。在以5D12作为研究SFPQ的功能的实验中我们发现,细胞膜SFPQ可增强细胞对阿霉素的敏感性。进一步的研究显示,细胞膜SFPQ可能通过抑制细胞增殖和克隆形成能力而减缓细胞生长,从而维持HL60细胞对阿霉素的敏感性。在对影响细胞增殖能力可能机制的研究中我们发现,细胞膜SFPQ通过诱导细胞凋亡和减少细胞S期比例减少DNA复制而抑制细胞增殖。该结果系首次报道HL60细胞膜表面蛋白SFPQ为一耐药相关蛋白。
     综上结果,我们认为细胞膜SFPQ可作为人早幼粒细胞白血病阿霉素耐药的新的细胞膜靶点,并且该靶点有可能成为检测和诊断该类白血病阿霉素耐药的新指标,为针对多因素耐药而采取的多靶点治疗和新的耐药机制的研究奠定基础。
Now chemotherapy is the primary treatment of leukemia, and is also the basis for hematopoietic stem cell transplantation. In recent years, though a number of new drugs and treatment programs are applied, most acute leukemia patients died of treatment failure and death eventually. MDR (multi-drug resistance) which is also known as pleiotropic durg resistnace is one of the major obstacles for an effective treatment on tumors. MDR describes a phenomenon of cross-resistance of tumor cells to several structurally unrelated chemotherapeutic agents after exposing to a single cytotoxic drug.
     The mechanisms of cellular resistance are very complicated and might vary by different cell types, induced drugs, and differentiation stages as well as by the cellular microenvironment. The MDR mechanisms in tumor cells have been broadly explored, however, exact mechanism is still unclear and the effective reversal agents are also lacking. Up to now, the main strategy for leukemia drug resistance is used to reversal agents based on P-glycoprotein mechanism. Unfortunately, the clinical applicability of these reversal agents was disappointing and on one has been listed on FDA approval.
     MDR is very complex. Indeed, owing to the complexity and individual differences among patients, a single indicator can only predict the partial resistance in patients and fails to effectively fit in curative clinic use at present. Therefore, for the pursuit of new drug-resistance associated proteins will have important value for the comprehensive diagnosis and treatment of leukemia MDR. Cell surface molecules are inherently accessible to intravenously injected biological agents such as antibodies and appear to be particularly attractive as site-directed targets. This accessibility of surface proteins is a good fit for hematological neoplasms. Thus, it is significant for leukemia drug resistance to search for new leukemia drug resistance associated membrane proteins and further explore the roles of these membrane proteins.
     To find novel membrane protein targeting leukemia resistance, this study applicated subtractive immunization strategy to induce Balb/c mouse to obtain a hybridoma library which could identify the proteins expressed discrepantly between on HL60 and HL60/ADR cell surface. We finally obtain five monocle onal antibodies binding to the two target cell types differently, after some processes including a selective screening through, subcloning culture, antibody preparation and purification.
     To reveal the antigen of McAb, we separated the discrepant proteins by immunoprecipitation and protein gel electrophoresis, and further identified the proteins by MALDI-TOF-MS. Finally, a recognized nuclear and cytoplasm protein-SFPQ (polylpyrimidine tract binding protein associated splicing factor) was found as the antigen of McAb 5D12. The membrane SFPQ overexpressed on the cellular surface of HL60 cells compared with HL60/ADR cells. We found that a reduced expression of SFPQ on HL60 cell surface after an interference SFPQ by specific siRNA. We thus confirm that membrane SFPQ is indeed the specific target antigen for monoclonal antibody 5D12, which is the first report that SFPQ expressed on tumor cell surface.
     With the billogical activity, McAb 5D12 is specific for membrane SFPQ of HL60 cell. In this study, we found that SFPQ was overexpressed on HL60 cell membranes compared with that on MDR HL60/ADR cells. Furthermore, using the discrepant antibody 5D12, we confirmed that membrane SFPQ contributed to the sensitive phenotype of HL60 cells by inhibiting cellular proliferation and colonization, as well as by inducing cellular apoptosis, reducing the proportion of HL60 cells in S phase and decreasing DNA replication. This is the first report that SFPQ is a drug-resistance associated membrane protein.
     From the results described above we believe that membrane SFPQ is likely not only the potentially clinical indicator of human promyelocytic leukemia drug resistance, but also a basis for the study of new MDR mechanisms.
引文
1. Tsurou T, Harumil L, Shigenu T, et al. Overcoming of vincrinstine in P338 leukemia in Vitro and Vivo through enhanded cycotoxicity of vincrinstine and vinblastine by verapamail. Cancer Res,1981; 41(5):1967-1969.
    2. Varma MV, Ashokraj Y, Dey CS, Panchagnula R. P-glycoprotein inhibitors and their screening:a perspective from bioavailability enhancement. Pharmacol Res. 2003; 48(4):347-59.
    3. Dantzig AH, de Alwis DP, Burgess M. Considerations in the design and evelopment of transport inhibitors as adjuncts to drug therapy. Adv Drug Deliv Rev.2003; 55(1):133-150.
    4. Liscovitch M, Lavie Y. Cancer multidrug resistance:a review of recent drug discovery research. IDrugs.2002; 5(4):349-355.13. Zijlstra A, Testa,JE, Quigley JP.
    5. Targeting the proteome/epitome, implementation of subtractive immunization. Biochem Biophys Res Commun.2003; 303(3):733-744.
    6. Brendel C, Scharenberg C, Dohse M et al. Imatinib mesylate and nilotinib (AMN107) exhibit high-affinity interaction with ABCG2 on primitive hematopoietic stem cells. Leukemia.2007; 21(6):1267-1275.
    7. Frank NY, Margaryan A, Huang Y, et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res.2005; 65(10):4320-33.
    8. Wringa SA,Kilpatrickb KE,Hutchinsb JT,Witherspoonb SM,Ellisb B,Jennerc WN, Serabjit-Singh C,Shorter development of immunoassay for drugs:application of thenovel RIMMS technique enables rapid production of monoclonal antibodies to ranitidine J Pharm Biomed Ana,1999,19(5):695-707
    9. Sleister HM, Rao AG.Subtractive immunization:a tool for the generation of discriminatory antibodies to proteins of similar sequence. Immunol Meth,2002,261:213-220
    10. McOrist S, Gebhart CJ, Lawson GH, Polymerase chain reaction for diagnosis of porcine proliferative enteropathy.Vet Microbiol.1994; 41(3):205-212.
    11. Trefzer U,Rietz N,Chen Y.SM5-1:a new monoclonal antibody which is highly sensitive and specific for melanocytic lesions.Arch Dermatol Res.2000; 292(12):583-589.
    12. Trefzer U,Chen YW,Audring H.The monoclonal antibody SM5-1 recognizes a fibronectinvariant which is widely expressed in melanoma. BMC Cancer.2006, 6:8-20.
    13. Villavedrra M, Lemke S. To J.Carbohydrate epitopes are immunodominant at the surface of infectious Neoparamoeba spp.J Fish Diseases.2007; 30(4):191-199.
    14. Yunshan Ning, Weina Situ, Yan li. Construction of Monoclonal Antibody Bank of Human Plasma Proteins and Its Applacation in Proteomic Research. Beijing: Molecular&Cellular Proteomics.2004; 25-27.
    15. Andries Zijlstra, Jacqueline E. Testa, James P Quigley. Targeting the proteome/epitome, implementation of subtractive immunization.2003; 303: 733-744.
    16. Hopper E, Belinsky MG, Zeng H, Tosolini A,Testa JR, Kruh GD. Analysis of the structure and expression pattern of MRP7(ABCC10),a new member of the MRP subfamily. Cancer Lett.2001; 162(2):181-191.
    17. Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters:themultidrug resistance-associated proteins. J Natl Cancer Inst.2000; 92(16):1295-1302.
    18. Chow KC, Lu MP, Wu MT. Expression of dihydrodiol dehydrogenase plays important roles in apoptosis and drug-resistance of A431 squamous cell carcinoma. Dermatol Sci.2006; 41(3):205-12.
    19. Mansilla S, Rojas M, Bataller M, Priebe W, Portugal J. Circumvention of the multidrug-resistance protein (MRP-1) by an antitumor drug through specific inhibition of gene transcription in breast tumor cells.Biochem Pharmacol.2007; 73(7):934-942.
    20. Raymond L, Mernaugh c, Heping Yan, Dong Chen, Jennifer Edl, Gregory Hanley, Ambra Pozzi, Roy Zent. Production and characterization of mouse ureteric bud cell-specific rat hybridoma antibodies utilizing subtractive immunization and high-throughput screening. Journal of Immunological Methods.2005; 306:115-127.
    21. Zhou YM,Yang RQ, Tao SC,Li Z, Zhang Q, Gao HF,Zhang ZW, Du JY, Zhu PX, Ren LL et al.The design and application of DNA chips for early detection of SARS-CoV from clinical samples. J Clin Virol.2005; 33(2):123-131.
    22. Afzelius BA.The ultrastructure of the nuclear membrane of the sea urchin oocyte as studied with the electron microscope.Exp Cell Res,1955,8(1):147-158.
    23. Nicolaj Rasmussen and Henrik J. Ditzel. Scanning the Cell Surface Proteome of Cancer Cells and Identification of Metastasis-Associated Proteins Using a Subtractive Immunization Strategy. Journal of Proteome Research 2009; 8, 5048-5059.
    24. Nelson RW, Nedelkov D, Tubbs KA, etal.Biosensor chip mass Pectrometry:a chip-based Proteomics approach. ElectrOPhoresis,2000,21:1155-1163.
    25. Leth-Larsen, R.; Lund, R.; Hansen, H. V.; Laenkholm, A. V.; Tarin, D.; Jensen, O. N.; Ditzel, H. J. Metastasis-related plasma membrane proteins of human breast cancer cells identified by comparative quantitative mass spectrometry. Mol. Cell. Proteomics 2009,8,1436-1449.
    26. Lund, R.; Leth-Larsen, R.; Jensen, O. N.; Ditzel, H. J. Efficient Isolation and Quantitative Proteomic Analysis of Cancer Cell Plasma Membrane Proteins for Identification of Metastasis-Associated Cell Surface Markers. J. Proteome Res. 2009,8 (6),3078-3079.
    27. Prokhorova, T. A.; Rigbolt, K. T.; Johansen, P. T.; Henningsen, J.; Kratchmarova, I.; Kassem, M.; Blagoev, B. Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells. Mol. Cell. Proteomics 2009,8 (5),959-970.
    28. Qiu, H.; Wang, Y. Quantitative analysis of surface plasma membrane proteins of primary and metastatic melanoma cells. J. Proteome Res.2008,7 (5),1904-1915.
    29. Zhao, Y.; Zhang, W.; Kho, Y.; Zhao, Y. Proteomic analysis of integral plasma membrane proteins. Anal. Chem.2004,76 (7),1817-1823.
    30. Joseph E, Ganem B, Eiseman JL, etal. Seleetive inhibition of MCF-7 (PiGST) breast tumors using glutathione transferase-derived 2-methylene-eycloalkenones. J Med Chem,2005,48:6549-6552.
    31. DePeille P, Cuq P, Passagnel, etal. Comblned effects of GST1 and MRP1 in melanoma drug resistane. Br J Caneer,2005,93:216-223.
    32.架凤君,杨纯正,马建国,等一株人红白血病多药耐药细胞系(心62/A02)的建立及其耐药特性的研究.中华肿瘤杂志,1993,15:101—103.
    33. Candiano Q Bruschi M, Musante L etal. Blue silver:a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis,2004,25: 1327-1333.
    34. Norman BH, Lander PA, Gruber JM, et al. Cyclohexyl-linker tricyclic isoxazoles are potent and selective modulators of the multidrug resistance protein (MRP1). Bioorg Med Chem Lett,2005,15:5526-5530.
    35. Yeh JJ, Hsu NY, Hsu WH, et al. Comparison of chenmotherapy response with P-glycoprotein, multidrug resistance-related protein-1, and lung resistance-related protein expression in untreated small cell lung cancer. Lung,2005,183:177-183.
    36. Gower H J, Moore SE, Dickson G, Elsom VL, Nayak R, Walsh FS. Cloning and characterization of a myoblast cell surface antigen defined by 24.1D5 monoclonal antibody. Development.1989; 105:723-731.
    37. Zou Y, He L, Wu CH, Cao H, Xie ZH, Ouyang Y, Wang Y, Jong A, Huang SH. PSF is an IbeA-binding protein contributing to meningitic Escherichia coli Kl invasion of human brain microvascular endothelial cells. Med Microbiol Immunol. 2007; 196:135-143.
    38. Zhang W, Chait BT. ProFound:an expert system for protein identification using mass spectrometric peptide mapping information. Anal Chem.2000; 72:2482-2489
    39. Patton JG, Porro EB, Galceran J, Tempst P, Nadal-Ginard B. Cloning and characterization of PSF, a novel pre-mRNA splicing factor. Genes Dev. 1993;7:393-406
    40. Meissner M, Dechat T, Gerner C, Grimm R, Foisner R, Sauermann G. Differential nuclear localization and nuclear matrix association of the splicing factors PSF and PTB. J Cell Biochem.2000;76:559-566.
    41. Dye BT, Patton JG. An RNA recognition motif (RRM) is required for the localization of PTBassociated splicing factor (PSF) to subnuclear speckles. Exp Cell Res.2001;263:131-144.
    42. Cronshaw J M, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ. Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol.2002; 158:915-927.
    43.67. Peng R, Dye BT, Perez Ⅰ, Barnard DC, Thompson AB, Patton JG. PSF and p54nrb bind a conserved stem in U5 snRNA. RNA.2002;8:1334-1347.
    44. Gozani O, Patton JG, Reed R. A novel set of spliceosome-associated proteins and the essential splicing factor PSF bind stably to pre-mRNA prior to catalytic step Ⅱ of the splicing reaction. EMBO J.1994;13:3356-3367.
    45. Mathur M, Tucker PW, Samuels HH. PSF is a novel corepressor that mediates its effect through Sin3A and the DNAbinding domain of nuclear hormone receptors. Mol Cell Biol.2001;21:2298-2311
    46. Emili A, Shales M, McCracken S, et al. Splicing and transcription-associated proteins PSF and p54nrb/nonO bind to the RNA polymerase Ⅱ CTD. RNA.2002; 8:1102-1111.
    47. Urban RJ, Bodenburg Y, Kurosky A, Wood TG, Gasic S. Polypyrimidine tract-binding protein-associated splicing factor is a negative regulator of transcriptional activity of the porcine p450scc insulin-like growth factor response element. Mol Endocrinol.2000; 14:774-782.
    48. Urban RJ, Bodenburg Y. PTB-associated splicing factor regulates growth factor-stimulated gene expression in mammalian cells. Am J Physiol Endocrinol Metab.2002;283:E794-798.
    49. Bladen CL, Udayakumar D, Takeda Y, Dynan WS. Identification of the polypyrimidine tract binding protein-associated splicing factor.p54(nrb) complex as a candidate DNAdouble-strand break rejoining factor. J Biol Chem.2005; 280:5205-5210.
    50. Akhmedov AT, Lopez BS. Human 100-kDa homologous DNA-pairing protein is the splicing factor PSF and promotes DNA strand invasion. Nucleic Acids Res. 2000;28:3022-3030.
    51. Straub T, Grue P, Uhse A, et al. The RNA-splicing factor PSF/p54 controls DNA-topoisomerase I activity by a direct interaction. J Biol Chem.1998; 273:26261-26264.
    52. Zolotukhin AS, Michalowski D, Bear J, et al. PSF acts through the human immunodeficiency virus type 1 mRNA instability elements to regulate virus expression. Mol Cell Biol.2003;23:6618-6630.
    53. Salton M, Lerenthal Y, Wang SY, Chen DJ, Shiloh Y. Involvement of matrin 3 and SFPQ/NONO in the DNA damage response. Cell Cycle.2010; 9(8).
    54. Dong B, Horowitz DS, Kobayashi R, Krainer AR. Purification and cDNA cloning of HeLa cell p54nrb, a nuclear protein with two RNA recognition motifs and extensive homology to human splicing factor PSF and Drosophila NONA/BJ6. Nucleic Acids Res.1993;21:4085-4092.
    55. Deloulme JC, Prichard L, Delattre O, Storm DR. The prooncoprotein EWS binds calmodulin and is phosphorylated by protein kinase C through an IQ domain. J Biol Chem.1997;272:27369-27377.
    56. Annamaria GaliettaRosalind H., Gunby, Sara Redaelli, Paola Stano et al. NPM/ALK binds and phosphorylates the RNA/DNA-binding protein PSF in anaplastic large-cell lymphoma. Blood.2007; 10:2600-2609.
    57. Mukul, Mathur, Sharmistha Das and Herbert H Samuels. PSF-TFE3 oncoprotein in papillary renal cell carcinoma inactivates TFE3 and p53 through cytoplasmic sequestration. Oncogene.2003; 22:5031-5044.
    58. Clark SE and Schiefelbein JW. Expanding insights into the role of cell proliferation in plant development. Trends Cell Biol.1997; (11):454-458.
    59. Tanaka M, Kato K, Gomi K, Matsumoto M, Kudo H, Shinkai M, Ohama Y, Kigasawa H, Tanaka Y. Perivascular epithelioid cell tumor with SFPQ/PSF-TFE3 gene fusion in a patient with advanced neuroblastoma. Am J Surg Pathol.2009: 9:1416-1420.
    60. Bkedler JL, Riehm H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro; cross-resistance, radioartographic, and cytogenetic studies. Cancer Res,1970;30:1174-1184.
    61. Borst p, Evers R, Kool M et al. A family fo drug transporters:the multidrug resistance-associated proteins. J Natl Cancer Inst.2000;92:1295-1302.
    62. Scheper RJ, Broxterman HJ, Scheffer GL, et al. Overexpression of a Mr 110000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance.Cancer Res.1993; 53:1474-1479.
    63. Maliepaard M, van Gastelen MA, et al. Overexpression of the BCRP/MXP/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res. 1999;59;4559-4563.
    64. Gadducci A, Cosio S, Muraca S, et al. Molecular mechanisms of apoptosis and chemosensitivity to platimum and paclitaxel in ovarian cancer:billogical data and clinical implications. Eur J Gynaecol Oncol.2002; 23;390-396.
    65. Saleem A, Ibrahim N, Patel M, Li XG, et al. Mechanisms of resistance in a human cell line exposed to sequential topoisomerase poisoning. Cancer Res,1997;57:5100-5106.
    66. Hotta T, Saito Y, Mikami T, et al. Interrelationship between O6-alkylguanine-DNA alkltransferaqse activity and susceptibility to chloroethylnitrosoureas in several glioma cell lines. J Neurooncol.1993; 17:1-8.
    67. Xu Song, Ying Sun, and Alan Garen。 Roles of PSF protein and VL30 RNA in reversible gene regulation. PNAS.2005; 102(34):12189-12193.
    68. Ghods AJ, Irvin D, Liu G, et al. Spheres isolated from 9L glio-sarcoma rat cell line possess chemoresistant and aggressive cancer stem-like cells. Stem Cells,2007,25:1645-1654.
    69. Zijlstra A, Testa,JE, Quigley JP. Targeting the proteome/epitome, implementation of subtractive immunization. Biochem Biophys Res Commun.2003; 303, 733-744.
    70. Mernaugh RL, Yan H, Chen D, Edl J, Hanley G, Pozzi A, Zent R. Production and characterization of mouse ureteric bud cell-specific rat hybridoma antibodies utilizing sub tractive immunization and high-throughput screening. J. Immunol Methods.2005; 306,115-127.
    71. H.W Dickerson, TG. Clark and RC Findly. Ichthyophthirius multifiliis Has Membrane-Associated Immobilization Antigens, The Journal of Protozoology, 1989; 36(2):159-164.
    72. Reynolds JA, Tanford C. Binding of dodecyl sulfate to proteins at high binding ratios. Possible implications for the state of proteins in biological membranes. PNAS.1970; 66(3):1002-1007.
    73. Mathur M, Tucker PW, Samuels HH. PSF is a novel corepressor that mediates its effect through Sin3 A and the DNA binding domain of nuclear hormone receptors. Mol Cell Biol.2001; 21(7):2298-2311.
    [1]D.G. Schatz, M.A. Oettinger, M.S. Schlissel, Annu. Rev. Immunol.10 (1992) 359-383
    [2]J.A. Lebron, H. Shen, P.J. Bjorkman, S. Ou, J. Immunol.Methods 222 (1999) 59-63
    [3]W.D. Matthew, P.H. Patterson, Cold Spring Harb. Symp. Quant. Biol.48 (1983) 625-631
    [4]P.C. Brooks, J.M. Lin, D.L. French, J.P. Quigley, J. Cell Biol.122 (1993) 1351-1359
    [5]S.W. King, K.J. Morrow Jr., Biotechniques 6 (1988) 856-861
    [6]M.J. Riggott, W.D. Matthew, J. Neurosci. Methods 68 (1996) 235-245
    [7]R. Schwartz, W. Dameshek, Nature 183 (1959) 1682-1683
    [8]Schwartz and Dameschek,J clin Invest 1959 38:2197-201
    [9]Berenbaum and Brown, Br Med Bull 1964 20:159-64
    [10]Many and Schwartz et al,Proc Soc Exp Biol Med 1970; 133(3):754-7
    [11]Turk Parker et al, Immunology 1972,23(4):493-501
    [12]Lagrange Mackaness et al J Exp Med 1974; 139(6):1529-39
    [13]Askenase Haynes JD et al., Nature 1975,256(5512):52-4
    [14]Matthew Sandrock et al, B1987 10;425(2):360-3
    [15]Ahmed Hombal et al, J Commun Dis 1984,16(4):330-1
    [16]Brooks Georqiou A et al, J Immunol 1993,151(12):6645-56
    [17]T.J. Kipps, B. Benacerraf, M.E. Dorf, Proc. Natl. Acad. Sci. USA 75 (1978) 2914-2917
    [18]W.D. Matthew, P.H. Patterson, Cold Spring Harb. Symp. Quant. Biol.48 (1983) 625-631
    [19]P.H. Lagrange, G.B. Mackaness, T.E. Miller, J. Exp. Med.139(1974) 1529-1539
    [20]J.L. Turk, D. Parker, A.E. Cameron, Int. J. Tissue React.6 (1984)205-211
    [21]W.D. Matthew, P.H. Patterson, Cold Spring Harb. Symp. Quant. Biol.48 (1983) 625-631
    [22]W.D. Matthew, A.W. Sandrock Jr., J. Immunol. Methods 100 (1987) 73-82
    [23]R.A. Salata, I.J. Malhotra, R.K. Hampson, D.F. Ayers, C.S. Tomich, F.M. Rottman, Anal. Biochem.207 (1992) 142-149
    [24]H.M. Sleister, A.G. Rao, J. Immunol. Methods 252 (2001) 121-129
    [25]E. Weiland, H.J. Thiel, G. Hess, F. Weiland, J. Virol. Methods 24(1989) 237-243.
    [26]M. Wieczorek-Krohmer, F. Weiland, K. Conzelmann, D. Kohl,N. Visser, P. van Woensel, H.J. Thiel, E. Weiland, Vet. Microbiol.51 (1996) 257-266
    [27]Y. Matsuura, Y. Tohya, M. Mochizuki, K. Takase, T. Sugimura,J. Gen. Virol.82 (2001)1695-1702.
    [28]E. Vareckova, T. Betakova, V. Mucha, L. Solarikova, F. Kostolansky, M. Waris, G. Russ, J. Immunol. Methods 180 (1995) 107-116
    [29]P. Sithigorngul, C. Cowden, J. Guastella, A.O. Stretton, J. Comp. Neurol.284 (1989) 389-397
    [30]Matthew and Sandrock, J Immunol Methods 100(1-2):73-82,1987.
    [31]Sleister and Rao, J Immunol Methods,261(1-2):213-202001
    [32]Riggott and Matthew,6(6):581-91996
    [33]Pioneer Journal of Immunological Methods 261 (2002) 213-220
    [1]Lapidot T, Pflumioio F, Doedens M, et al. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice J. Science,1992,255(5048):1137-1141.
    [2]Krysta Levaca, Pablo Menendez, Mickie Bhatia, Intra-bone marrow transplantation facilitates pauci-clonal human hematopoietic repopulation of NOD/SCID/b2m2/2 mice. Experimental Hematology 2005,33:1417-1426
    [3]Shultz LD.Lang P A, Christianson SW et al. NOD/LtSz-RaglnullMice:an immunodeficient and radioresistant model for engraftment of human hematolymphoid cells,HIV infection,and adoptive transfer of NOD mouse P diabetogenie T cells J] lmmunnol,2000,164(5):2496-2507.
    [4]Christianson S w, Greiner DL, Hesslton R A, et al. Enhanced human CD4+T cell engraftment in beta2-microglobulin-deficient NOD/SCID mice J.Immunol,1997.158(8):3578-3586.
    [5]lshikawa F,LiningstonA G, wingard J R, et al. An assay for long-term engrafting human hematopoletic cells based on newborn NOD/SCID/β2 micro-globulin(null) mice[J]. Exp Hematol,2002,30(5):488-494.
    [6]Ito M, Hiranmtsu H, Kobayashi K, et al. NOD/SCIDγcnull mouse:an excellent recipient mouse model for engraftment of human cells 1 J]. Blood, 2002,100(9):3175-3182.
    [7]Mosier DE, GIllizia 1U, Baird SM, et al. Transfer of a functional human immune system to mice with severe coinbined immuno-deficiency.Nature, 1988,335:256-259
    [8]黄嘉凌,刘燕燕等.腹腔注射人淋巴细胞建立人肝癌PBL-SCID嵌合模型.中华肝胆外科杂志 2005,11(2):121-125
    [9]李国,刘军等.免疫重建荷PAa肺癌SCID小鼠模型.中华实验外科杂志,2006,23(7):867-868
    [10]Storek J, Joseph A, Dawson M A, et al. Factors influencing T-lylIP phopoiesis after allogeneic hematopoietic cell transplantation [J] Transplantation,2002, 73(7):1154-1158.
    [11]Sarzotti M, Patel D D, Li X, et al. T cell repertoire development in humans with SCID after nonablative allogeneic marow transplantation. J Immunol, 2003,170(5):2711-2718.
    [12]Guo Y, Lubbert M, Engelhanh CD34-hematopoieptic stem cells:current concepts and controversies J.Stem cell 2003,21(1):15-20
    [13]Talvensaari K, Clave E, Douay C, et al. A broad T-cell repertoire diversity and an efficient thymic 21 function indicate a-vorable longterm immune reeonstitution after cord blod stem cell transplantation. Blood,2002,99(4): 1458-1464.
    [14]Traggiai E, Chicha L, Mazzucchelli L, et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science. 2004;304:104-107.
    [15]Yahata T, Ando K, Nakamura Y, et al. Functional human T lymphocyte development from cord blood CD34_ cells in nonobese diabetic/Shi-scid,IL-2 receptor{gamma} null mice. J Immunol.2002;169:204-209.
    [16]Lisheng Wanga, Pablo Menendeza et al. Hematopoietic development from human embryonic stem cell lines. Experimental Hematology 2005 (33): 987-996
    [17]J. M. Mccune, R. Namikawa, H Kaneshima et al The SCID-hu Mouse:Murine Model for the Analysis of Human Hematolymphoid Differentiation and Function Science,1988(241):1632-1639
    [18]McCune JM, Peault B, Streeter PR, Rabin L. Preclinical evaluation of human hematolymphoid function in the SCID-hu mouse. Immunol Rev.1991;124:45-62.
    [19]Ping Lan, Noriko Tonomura, Akira Shimizu et al. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+cell transplantation Blood,2006,108 (2):487-492.
    [20]Majumdar MK, Keane-Moore M,Buyaner D, et al. Characterization and functionality of eell surface molecules on human mesenchymal stem cells. J Biomed Sci,2003,10(2):228-241.
    [21]Almeida-Porada G, Porada CD, Tran N, et al. Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone m arrow at later time points after transplantation.Blood,2000,95(11): 3620-3627.
    [22]Angelopoulou M, Novelli E, Grove JE, et al. Cotran plantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Exp Hematol,2003,31 (5): 413-420.
    [23]Jeong DC, Chung NG, Kim SY. MSC might prevent lethal GVHD in MHC mismatched murine allogeneic bone marrow transplantation. Blood,2003, 102(11):5369.
    [24]Jean-Jacques Lataillade, Denis Clay et al Chemokine SDF-1 enhances circulating CD341 cell proliferation in synergy with cytokines:possible role in progenitor survival.Blood,2000,95 (3):756-767
    [25]Broxmeyer HE, Hangoc G, Cooper S et al. AMD 3100 and CD26 modulate mobilization, engraftment,and survival of Hematopoietic Stem and Progenitor Cells Mediated by the SDF-1/CXCL12-CXCR4 Axis. Ann N Y Acad Sci, 2007,14:
    [26]Kent W. Christopherson Ⅱ, Sherene E. Uralil, Nehal K. Porecha et al, G-CSF-and GM-CSF-induced upregulation of CD26 peptidase downregulates the functional chemotactic response of CD34+CD38- human cord blood hematopoietic cells. Experimental Hematology,2006,34:1060-1068.
    [27]Zhan X, Dravid G, Ye Z, et al. Functional antigen-presenting leucocytes derived from human embryonic stem cells in vitro. Lancet.2004; 364:163-171.
    [28]孙剑一,黎燕,冯建男,孙瑛勋,胡美茹,沈倍奋.人可溶性B淋巴细胞刺激因子基因的克隆及在大肠杆菌中的表达;细胞与分子免疫学杂志。2006;22(2):171-174.
    [29]Claudio E, Brown K. Park S et al. Nat. Immunol.2002,3:958-965.
    [30]MooreP A, Belvedere O, et al. BLyS:member of the tumor necrosis factor family and B lymphocyte stimulator.Science,1999,285:260-263.
    [31]Qiong SHEN, Su-Xia LI, Fei-Hao FU et al. Two Observed Regions in B Lymphocyte Stimulator Important for Its Biological Activity. Acta Biochim Biophys Sin 2006,38:227-232
    [32]Ettinger R, Sims GP, Robbins R. IL-21 and BAFF/BLyS Synergize in Stimulating Plasma Cell Differentiation from a Unique Population of Human Splenic Memory B Cells. Immunol.2007; 178 (5):2872-82.
    [33]Chklovskaia E, Nowbakht P, Nissen C, Gratwohl A, Bargetzi M, Wodnar-Filipowicz A. Reconstitution of dendritic and natural killer-cell subsets after allogeneic stem cell transplantation:effects of endogenous flt3 ligand. Blood.2004;103:3860-3868.
    [34]Reddy V, Iturraspe JA, Tzolas AC, Meier-Kriesche HU, Schold J,Wingard JR. Low dendritic cell count after allogeneic hematopoietic stem cell transplantation predicts relapse, death, and acute graft-versus-host disease. Blood.2004;103:4330-4335.
    [35]Fry TJ, Sinha M, Milliron M, et al. Flt3 ligand enhances thymic-dependent and thymic-independent immune reconstitution. Blood.2004; 104:2794 2800.
    [36]Peilin Zhao, Wei Liu, and Yan Cui, Rapid immune reconstitution and dendritic cell engraftment post-bone marrow transplantation with heterogeneous progenitors and GM-CSF treatment. Experimental Hematology. 2006,34:951-964
    [37]Meyerrose TE, Herrbrich P, Hess DA, Nolta JA. Immune-deficient mouse models for analysis of human stem cells. Biotechniques.2003; 35:1262-1272.
    [38]Uchida N, Tsukamoto A, He D, Friera AM, Scollay R, Weissman IL.High doses of purified stem cells cause early hematopoietic recovery in syngeneic and allogeneic hosts. J Clin Invest.1998; 101:961-966.
    [39]Chen BJ, Cui X, Sempowski GD, Domen J, Chao NJ. Hematopoietic stem cell dose correlates with the speed of immune reconstitution after stem cell transplantation. Blood.2004,103:4344-4352.
    [40]Waller E K, Rosenthal H, Jones T W, et al. Larger numbers of CD4(bright)dendritic cells in donor bone marrow are associated with increased relapse after allogeneic bone marrow transplantation. Blood,2001,97: 2948-2956
    [41]Teshima T, Ordemann R, Reddy P, et al. Acute graft versus-host disease does not require alloantigen expression on host epithelium. Nat M ed,2002, 8:575-581.
    [42]Giver C R, Li J M, Hossain M S, et al. Reconstructing immunity after allogeneic transplantation. Immunol Res,2004,29:269-282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700