综合质谱法对生物活性多肽解析表征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代质谱技术具备高灵敏度、高精确度、高通量、高度自动化等诸多优势,在蛋白质组学、神经化学、生理学、核酸化学、细胞信号转导等生命科学领域得到了广泛应用。本文采用综合质谱法及其相关技术,对六类具有复杂结构的生物活性多肽样品:抗癌海洋环肽(第二章)、环肽线性前体(第三章)、二硫键神经肽(第四章)、大型神经肽(第五章)、合成消旋肽(第六章)、酶解肽(第七章)进行解析研究,旨在开发基于综合质谱法的新颖肽谱分析方法学,并深入研究与质谱学密切相关的多肽质谱碎裂机理,同时在各章中穿插介绍了环肽的合成、交联酶聚体的制备、反相色谱保留机理、神经肽生理学测试等辅助性研究工作。
     综合质谱法有效地整合、运用多种样品前处理、样品分离等手段,质谱电离源、离子分离器、质量分析器等技术,数据分析、肽测序软件、数据库搜索等工具,气相离子化学、酶学、MALDI基质化学、MALDI成像学等学科;并将这些相关技术、手段、工具、理论应用于复杂多肽样品的表征及其生理学活性的研究。本研究所建立的方法学与理论体系以及具体研究内容与结论如下:
     第一,采用多级质谱法对具有抗癌活性的海洋环肽进行序列测定,依据bx→bx-1断裂路径,每一级MS由b离子的C端碰撞掉一个氨基酸残基,得到2套b离子序列信息,由此测得环肽序列;利用半经验量子化学计算了断裂与重排的路径和机理,并尝试提出过渡结构假设;研究了环肽CAD中选择性开环的现象,提出Asn诱导开环的碎裂路径。
     第二,针对多级质谱测序中观察到的b离子丢失中部氨基酸残基的现象,提出b离子环化碎裂路径,并设计多项实验加以验证,包括肽链N端乙酰化、多级CAD、设计重排b离子、调节CAD活化时间、CAD碎裂合成环肽;观察到由ESI产生的质子化环肽的碎裂模式与b离子环化产物的碎裂模式一致,有力证明了所提出的b离子环肽中间体以及环化路径假设的成立;尝试设计实验探索此环化路径的规律性,并提炼出反应开环过程规律性的“Pro和Asn/Gln效应”;此外,观察到a型离子丢失中部残基的现象,提出a离子环化碎裂路径;此a离子环肽中间体为固定电荷结构,故不可以被“Pro效应”影响,导致易于在肽键Pro-Xxx而不是Xxx-Pro开环。
     第三,建立还原基质法对含二硫键多肽进行扫描,结合表达序列数据库对肽序列预测,在蓝蟹围心器提取液中发现并解析了新颖的咽侧体抑制素CbAST-C1;电生理学实验结果证明此咽侧体抑制素肽都可以阶段性地抑制蓝蟹口胃神经节的幽门节律;应用肽浓度为10-6 M,当起始幽门节律大于0.8 Hz时,两个AST肽对幽门节律的影响很小;但当起始幽门节律小于0.7 Hz时,两肽均可完全抑制幽门节律。
     第四,建立多面质谱法对蓝蟹神经组织中CHH家族肽进行表征与解析;从窦腺中鉴定出了SG-CHH、SG-MIH、SG-CPRP、SG-tCPRP和SG-PPRP;从围心器中鉴定出了PO-CHH、PO-CPRP和PO-tCPRP;建立酶解后甲醛同位素标记法对SG中的CHH家族肽和相关大型肽进行定量分析,并建立质谱成像法对PO中CHH家族肽和相关大型肽进行分布分析,为今后生理学活性研究奠定了方法学基础。
     第五,针对弱疏水性合成七肽,提出“早期吸附”过程,以此优化色谱条件得到4个峰形良好的色谱峰;质谱分析表明:4谱峰具有相同的m/z 761.5 [M+H]+值,对每一消旋产物进行在线多肽测序;利用质谱、色谱相结合的方法对固相合成关键性问题进行研究,包括水杨醛法测定树脂取代率,合理搭配缩合体系提升酯化缩合效率至99%,合理选择氨基酸侧链保护剂,减少合成的预活化时间为5分钟以避免了消旋化。
     第六,基于胰蛋白酶CLEA技术的制备工艺、性质及结构形貌的系统研究,建立CLEA板上酶解法用于酶解肽谱的解析,考察了CLEA抗自水解性能、高温酶解稳定性以及CLEA颗粒对MALDI电离的影响程度;使用7种蛋白样品测试所建立的CLEA-trypsin板上酶解法,可得到同量级的多肽指纹图谱解析结果:46%的平均序列覆盖率,14个平均酶解肽段数目;与传统的14小时酶解相比,该法显著提高了分析通量(5 min),减少了样品消耗量(下至4 pmol)。
Modern mass spectrometry (MS) technology has several distinct advantages, including high sensitivity, accuracy, through-put, automation, etc, which has been applied to most of life science research fields, such as proteomics, neurochemistry, physiology, nucleic acidic chemistry, cell signaling, etc. This work focuses on establishment of comprehensive mass spectrometry and related technologies to analyze six peptide families with complicated structures, involving antitumor marine cyclic peptides, linear precursor of cyclic peptides, disulfide-linked peptides, large neuropeptides, racemized peptides, proteolytic peptides, and aims to develop novel MS-based methodology for peptide mapping. In addition, the peptide fragmentation mechanism in MS was also studied in deep, and several related research works were introduced including synthesis of cyclic peptides, preparation of cross-linked enzyme aggregates, retention mechanism of reversed-phase chromatography, physiology test of neuropeptides, etc.
     Comprehensive MS is a useful tool box that contains protocols of sample pretreatment and separation, techniques of ionization source, ion selection, and ion analyzer, strategies of data analysis, peptide sequencing programming, and database searching, theories of gas-phase ion chemistry, enzymology, matrix chemistry, MS imaging, which was combined and further used to characterization of peptides and biological functions. The research details are described as following,
     First, the multistage MS method was established for sequencing of antitumor marine cyclic peptides. Based on bx→bx-1 fragmentation pathway, the b ion can dissociate to lose one C-terminal amino acid residue in every stage of CAD, producing two sets of b ions. The cyclic peptide sequence can be determined by observation of these b ions. The semiempirical calculation was used to investigate the normal fragmentation and abnormal rearrangement pathways. The selective ring opening of cyclic peptides was studied, and Asn-induced ring opening mechanism was proposed.
     Second, during characterization of some peptides in an ion trap, it was noted that many internal amino-acid residues could be lost from singly charged b ions. The unique fragmentation consisting of multiple steps is induced by a cyclization reaction of b ions, the mechanism of which has been probed by experiments of N-acetylation, MSn, rearranged-ion design and activation-time adjustment. The fragmentation of synthetic cyclic peptides demonstrates that a cyclic peptide intermediate (CPI) formed by b ion cyclization exhibits the same fragmentation pattern as a protonated cyclic peptide. Although no rules for the cyclization reaction were discerned in the experiments of peptide modification, the fragmentations of a number of b ions indicate that the“Pro and Asn/Gln effects”can influence ring openings of CPIs. In addition, large-scale losses of internal residues from different positions of a-type ions have been observed. The fragmentation is initiated by a cyclization reaction forming an a-type ion CPI. This CPI with a fixed-charge structure cannot be influenced by the“Pro effect”, causing a selective ring opening at the amide bond Pro-Xxx rather than Xxx-Pro.
     Third, using 1,5-diaminonaphthalene (DAN) as a reductive screening matrix for matrix-assisted laser desorption/ionization (MALDI) mass spectrometric profiling of disulfide bond-containing C-type allatostatin peptides, we identified and sequenced a novel C-type allatostatin peptide (CbAST-C1), present in the pericardial organs of the crab, Cancer borealis. Electrophysiological experiments demonstrated that the AST peptides inhibited the frequency of the pyloric rhythm of the STG, in a state-dependent manner. At 10-6M, both peptides were only modestly effective when initial frequencies of the pyloric rhythm were >0.8 Hz, but almost completely suppressed the pyloric rhythm when applied to preparations with starting frequencies < 0.7Hz.
     Forth, the multifaceted MS method was established for characterization of CHH-family peptides in nervous system of blue crab. The peptides SG-CHH, SG-MIH, SG-CPRP, SG-tCPRP and SG-PPRP were identified in pericardial organ, and the peptides PO-CHH, PO-CPR and PO-tCPRP were identified in sinus gland.
     The isotopic labeling strategy and MS imaging strategy were established for quantitation and distribution analysis of CHH-family peptides and homologous large peptides, which laid the foundation for future study on physiological function. Fifth, the retention characteristic of hydrophilic heptapeptide on RP-HPLC was discussed, and the process of‘pre-adsorption’was proposed in order to take full advantage of contributions of both retention mechanisms of partition and adsorption to separation. Thus by this method four ideal RP-HPLC peaks were detected. Meanwhile, the MS information indicated that the four peaks had the same value of m/z 761.5[M + H]+. Then through simultaneous peptide sequencing of each racemization products and figure superposition of tandem MS (MSn), the two sets of segment ions, b and y, were observed except b1 and y1, which showed that the four racemization products of synthetic heptapeptide were successfully identified.
     Sixth, immobilized enzymes have been utilized in proteomics due to several distinct advantages. However, most immobilization methods require an inactive medium to support the enzyme, which occupies 90–99% enzymatic volume, lowering effective enzyme concentration. Herein, we introduce a carrier-free enzyme immobilization technology into proteomics for rapid proteolysis. Cross-linked trypsin aggregates (CLEA-trypsin) were prepared by a simple and low-cost method, showing excellent proteolysis efficiency, improved thermal stability, and reduced enzyme autolysis. A high throughput proteomic strategy was developed by incorporating on-plate CLEA-tryptic digestion and high-accurate MALDI-FTMS peptide mass fingerprinting, and an average sequence coverage of 46% was obtained by digestion of seven protein standards for 5 min at 77°C.
引文
[1] Stoppini, M., L. Obici, F. Lavatelli, et al. Proteomics in protein misfolding diseases[J]. Clinical Chemistry and Laboratory Medicine, 2009, 47(6): 627-635
    [2] Pan, S., R. Aebersold, R. Chen, et al. Mass Spectrometry Based Targeted Protein Quantification: Methods and Applications[J]. Journal of Proteome Research, 2009, 8(2): 787-797
    [3] Oeljeklaus, S., H.E. Meyer,B. Warscheid. Advancements in plant proteomics using quantitative mass spectrometry[J]. Journal of Proteomics, 2009, 72(3): 545-554
    [4] Heeren, R.M.A., D.F. Smith, J. Stauber, et al. Imaging Mass Spectrometry: Hype or Hope?[J]. Journal of the American Society for Mass Spectrometry, 2009, 20(6): 1006-1014
    [5] Lee, J., S.A. Soper,K.K. Murray. Microfluidic chips for mass spectrometry-based proteomics[J]. Journal of Mass Spectrometry, 2009, 44(5): 579-593
    [6] Griffiths, W.J.,Y.Q. Wang. Mass spectrometry: from proteomics to metabolomics and lipidomics[J]. Chemical Society Reviews, 2009, 38(7): 1882-1896
    [7] Gant-Branum, R.L., T.J. Kerr,J.A. McLean. Labeling strategies in mass spectrometry-based protein quantitation[J]. Analyst, 2009, 134(8): 1525-1530
    [8] Findeisen, P.,M. Neumaier. Mass spectrometry based proteomics profiling as diagnostic tool in oncology: current status and future perspective[J]. Clinical Chemistry and Laboratory Medicine, 2009, 47(6): 666-684
    [9] Ezan, E., M. Dubois,F. Becher. Bioanalysis of recombinant proteins and antibodies by mass spectrometry[J]. Analyst, 2009, 134(5): 825-834
    [10] Li, L.J.,J.V. Sweedler. Peptides in the Brain: Mass Spectrometry-Based Measurement Approaches and Challenges[J]. Annual Review of Analytical Chemistry, 2008, 1: 451-483
    [11] Demirev, P.A.,C. Fenselau. Mass Spectrometry for Rapid Characterization of Microorganisms[J]. Annual Review of Analytical Chemistry, 2008, 1: 71-93
    [12] Nguyen, H.P.,K.A. Schug. The advantages of ESI-MS detection in conjunction with HILIC mode separations: Fundamentals and applications[J]. Journal of Separation Science, 2008, 31(9): 1465-1480
    [13] Herrero, M., E. Ibanez,A. Cifuentes. Capillary electrophoresis-electrospray-massspectrometry in peptide analysis and peptidomics[J]. Electrophoresis, 2008, 29(10): 2148-2160
    [14] Vogeser, M.,K.G. Parhofer. Liquid chromatography tandem-mass spectrometry (LC-MS/MS) - Technique and applications in endocrinology[J]. Experimental and Clinical Endocrinology & Diabetes, 2007, 115(9): 559-570
    [15] Smyth, W.F.,V. Rodriguez. Recent studies of the electrospray ionisation behaviour of selected drugs and their application in capillary electrophoresis-mass spectrometry and liquid chromatography-mass spectrometry[J]. J. Chromatogr. A, 2007, 1159(1-2): 159-174
    [16] Haselberg, R., G.J. de Jong,G.W. Somsen. Capillary electrophoresis-mass spectrometry for the analysis of intact proteins[J]. J. Chromatogr. A, 2007, 1159(1-2): 81-109
    [17] Sparbier, K., T. Wenzel, H. Dihazi, et al. Immuno-MALDI-TOF MS: New perspectives for clinical applications of mass spectrometry[J]. Proteomics, 2009, 9(6): 1442-1450
    [18] Kaletas, B.K., I.M. van der Wiel, J. Stauber, et al. Sample preparation issues for tissue imaging by imaging MS[J]. Proteomics, 2009, 9(10): 2622-2633
    [19] Walch, A., S. Rauser, S.O. Deininger, et al. MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology[J]. Histochemistry and Cell Biology, 2008, 130(3): 421-434
    [20] Goodwin, R.J.A., S.R. Pennington,A.R. Pitt. Protein and peptides in pictures: Imaging with MALDI mass spectrometry[J]. Proteomics, 2008, 8(18): 3785-3800
    [21] Fournier, I., M. Wisztorski,M. Salzet. Tissue imaging using MALDI-MS: a new frontier of histopathology proteomics[J]. Expert Review of Proteomics, 2008, 5(3): 413-424
    [22] Batoy, S., E. Akhmetova, S. Miladinovic, et al. Developments in MALDI mass spectrometry: The quest for the perfect matrix[J]. Applied Spectroscopy Reviews, 2008, 43(6): 485-550
    [23] Hernandez, F., S. Grimalt, O.J. Pozo, et al. Use of ultra-high-pressure liquid chromatography-quadrupole time-of-flight MS to discover the presence of pesticide metabolites in food samples[J]. Journal of Separation Science, 2009, 32(13): 2245-2261
    [24] Zhou, Y., Q.B. Han, J.Z. Song, et al. Characterization of polyprenylatedxanthones in Garcinia xipshuanbannaensis using liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry[J]. J. Chromatogr. A, 2008, 1206(2): 131-139
    [25] Wang, Y., T. Liu, C. Wu, et al. A strategy for direct identification of protein S-nitrosylation sites by quadrupole time-of-flight mass spectrometry[J]. Journal of the American Society for Mass Spectrometry, 2008, 19(9): 1353-1360
    [26] Zuberovic, A., M. Wetterhall, J. Hanrieder, et al. CE MALDI-TOF/TOF MS for multiplexed quantification of proteins in human ventricular cerebrospinal fluid[J]. Electrophoresis, 2009, 30(10): 1836-1843
    [27] Schafer, R. ultrafleXtreme: Redefining MALDI-TOF-TOF Mass Spectrometry Performance[J]. Lc Gc Europe, 2009: 26-27
    [28] Sachon, E., G. Clodic, C. Galanth, et al. D-Amino Acid Detection in Peptides by MALDI-TOF-TOF[J]. Analytical Chemistry, 2009, 81(11): 4389-4396
    [29] Nielsen-Marsh, C.M., C. Stegemann, R. Hoffmann, et al. Extraction and sequencing of human and Neanderthal mature enamel proteins using MALDI-TOF/TOF MS[J]. Journal of Archaeological Science, 2009, 36(8): 1758-1763
    [30] Li, Y., L.J. Sokoll, J. Rush, et al. Targeted detection of prostate cancer proteins in serum using heavy-isotope-labeled-peptide standards and MALDI-TOF/TOF[J]. Proteomics Clinical Applications, 2009, 3(5): 597-608
    [31] Kuzyk, M.A., L.B. Ohlund, M.H. Elliott, et al. A comparison of MS/MS-based, stable-isotope-labeled, quantitation performance on ESI-quadrupole TOF and MALDI-TOF/TOF mass spectrometers[J]. Proteomics, 2009, 9(12): 3328-3340
    [32] Condina, M.R., M.A. Guthridge, S.R. McColl, et al. A sensitive magnetic bead method for the detection and identification of tyrosine phosphorylation in proteins by MALDI-TOF/TOF MS[J]. Proteomics, 2009, 9(11): 3047-3057
    [33] Xie, J.P., J. Yin, S.H. Sun, et al. Extraction and derivatization in single drop coupled to MALDI-FTICR-MS for selective determination of small molecule aldehydes in single puff smoke[J]. Analytica Chimica Acta, 2009, 638(2): 198-201
    [34] van Kampen, J.J.A., P.C. Burgers, R. de Groot, et al. Quantitative analysis of HIV-1 protease inhibitors in cell lysates using MALDI-FTICR mass spectrometry[J]. Analytical Chemistry, 2008, 80(10): 3751-3756
    [35] Jing, L., C.Y. Li, R.L. Wong, et al. Improved mass accuracy for higher mass peptides by using SWIFT excitation for MALDI-FTICR mass spectrometry[J].Journal of the American Society for Mass Spectrometry, 2008, 19(1): 76-81
    [36] Taban, I.M., A.F.M. Altelaar, Y.E.M. Van der Burgt, et al. Imaging of peptides in the rat brain using MALDI-FTICR mass spectrometry[J]. Journal of the American Society for Mass Spectrometry, 2007, 18(1): 145-151
    [37] Dodds, E.D., J.B. German,C.B. Lebrilla. Enabling MALDI-FTICR-MS/MS for high-performance proteomics through combination of infrared and collisional activation[J]. Analytical Chemistry, 2007, 79(24): 9547-9556
    [38] Albach, C., E. Damoc, T. Denzinger, et al. Identification of N-glycosylation sites of the murine neural cell adhesion molecule NCAM by MALDI-TOF and MALDI-FTICR mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2004, 378(4): 1129-1135
    [39] Mize, T.H.,I.J. Amster. Broad-band ion accumulation with an internal source MALDI-FTICR-MS[J]. Analytical Chemistry, 2000, 72(24): 5886-5891
    [40] Roepstorff, P.,J. Fohlman. Proposal for a common nomenclature for sequence ions in mass spectra of peptides[J]. Biomedical Mass Spectrometry 1984, 11(11): 601
    [41] Paizs, B.,M. Van Stipdonk. Focus Issue on Peptide Fragmentation[J]. Journal of the American Society for Mass Spectrometry, 2008, 19(12): 1717-1718
    [42] Hamuro, Y., J.C. Tomasso,S.J. Coales. A simple test to detect hydrogen/deuterium scrambling during gas-phase peptide fragmentation[J]. Analytical Chemistry, 2008, 80(17): 6785-6790
    [43] Falth, M., M.M. Savitski, M.L. Nielsen, et al. SwedCAD, a database of annotated high-mass accuracy MS/MS spectra of tryptic peptides[J]. Journal of Proteome Research, 2007, 6(10): 4063-4067
    [44] Harrison, A.G., A.B. Young, C. Bleiholder, et al. Scrambling of sequence information in collision-induced dissociation of peptides[J]. Journal of the American Chemical Society, 2006, 128(32): 10364-10365
    [45] Polfer, N.C., B. Paizs, L.C. Snoek, et al. Infrared fingerprint spectroscopy and theoretical studies of potassium ion tagged amino acids and peptides in the gas phase[J]. Journal of the American Chemical Society, 2005, 127(23): 8571-8579
    [46] Paizs, B.,S. Suhai. Fragmentation pathways of protonated peptides[J]. Mass Spectrometry Reviews, 2005, 24(4): 508-548
    [47] Paizs, B.,S. Suhai. Towards understanding the tandem mass spectra of protonated oligopeptides. 1: Mechanism of amide bond cleavage[J]. Journal of the AmericanSociety for Mass Spectrometry, 2004, 15(1): 103-113
    [48] Jegorov, A., B. Paizs, M. Kuzma, et al. Extraribosomal cyclic tetradepsipeptides beauverolides: profiling and modeling the fragmentation pathways[J]. Journal of Mass Spectrometry, 2004, 39(8): 949-960
    [49] Paizs, B., Z. Szlavik, G. Lendvay, et al. Formation of a(2)(+) ions of protonated peptides. An ab initio study[J]. Rapid Communications in Mass Spectrometry, 2000, 14(9): 746-755
    [50] Newsome, G.A.,G.L. Glish. Improving IRMPD in a Quadrupole Ion Trap[J]. Journal of the American Society for Mass Spectrometry, 2009, 20(6): 1127-1131
    [51] Li, X.X., G.Y. Jiang, C. Luo, et al. Ion Trap Array Mass Analyzer: Structure and Performance[J]. Analytical Chemistry, 2009, 81(12): 4840-4846
    [52] Guna, M.,T.A. Biesenthal. Performance Enhancements of Mass Selective Axial Ejection from a Linear Ion Trap[J]. Journal of the American Society for Mass Spectrometry, 2009, 20(6): 1132-1140
    [53] Ngoka, L.C.M.,M.L. Gross. A nomenclature system for labeling cyclic peptide fragments[J]. Journal of the American Society for Mass Spectrometry, 1999, 10(4): 360-363
    [54] Ngoka, L.C.M.,M.L. Gross. Multistep tandem mass spectrometry for sequencing cyclic peptides in an ion-trap mass spectrometer[J]. Journal of the American Society for Mass Spectrometry, 1999, 10(8): 732-746
    [55] Hekmat, O., S.M. He, R.A.J. Warren, et al. A mechanism-based ICAT strategy for comparing relative expression and activity levels of glycosidases in biological systems[J]. Journal of Proteome Research, 2008, 7(8): 3282-3292
    [56] Guaragna, A., A. Amoresano, V. Pinto, et al. Synthesis and proteomic activity evaluation of a new isotope-coded affinity tagging (ICAT) reagent[J]. Bioconjugate Chemistry, 2008, 19(5): 1095-1104
    [57] Cannataro, M., G. Cuda, M. Gaspari, et al. The EIPeptiDi tool: enhancing peptide discovery in ICAT-based LC MS/MS experiments[J]. Bmc Bioinformatics, 2007, 8
    [58] Walther, P., S. Schrimpf, D. Rutishauser, et al. Identification of neurotrypsin-dependent synaptic changes by isotope-coded affinity tag (ICAT) technology[J]. Molecular & Cellular Proteomics, 2005, 4(8): S195-S195
    [59] Goodchild, A., M. Raftery, N.F.W. Saunders, et al. Cold adaptation of the Antarctic archaeon, Methanococcoides burtonii assessed by proteomics using ICAT[J].Journal of Proteome Research, 2005, 4(2): 473-480
    [60] Ramus, C., A.G. de Peredo, C. Dahout, et al. An optimized strategy for ICAT quantification of membrane proteins.1st Annual Symposium on Proteome Fractionation.Cambridge, MA: 200468-78
    [61] Stoeckli, M., P. Chaurand, D.E. Hallahan, et al. Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues[J]. Nature Medicine, 2001, 7(4): 493-496
    [62] Patel, S.A., A. Barnes, N. Loftus, et al. Imaging mass spectrometry using chemical inkjet printing reveals differential protein expression in human oral squamous cell carcinoma[J]. Analyst, 2009, 134(2): 301-307
    [63] Nakata, Y., Y. Honda, S. Ninomiya, et al. Matrix-free high-resolution imaging mass spectrometry with high-energy ion projectiles[J]. Journal of Mass Spectrometry, 2009, 44(1): 128-136
    [64] MacAleese, L., J. Stauber,R.M.A. Heeren. Perspectives for imaging mass spectrometry in the proteomics landscape[J]. Proteomics, 2009, 9(4): 819-834
    [65] Chen, R.B., L.M. Hui, R.M. Sturm, et al. Three Dimensional Mapping of Neuropeptides and Lipids in Crustacean Brain by Mass Spectral Imaging[J]. Journal of the American Society for Mass Spectrometry, 2009, 20(6): 1068-1077
    [66] Chan, K., P. Lanthier, X. Liu, et al. MALDI mass spectrometry imaging of gangliosides in mouse brain using ionic liquid matrix[J]. Analytica Chimica Acta, 2009, 639(1-2): 57-61
    [67] Benabdellah, F., D. Touboul, A. Brunelle, et al. In Situ Primary Metabolites Localization on a Rat Brain Section by Chemical Mass Spectrometry Imaging[J]. Analytical Chemistry, 2009, 81(13): 5557-5560
    [68] Burnum, K.E., S.L. Frappier,R.M. Caprioli. Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry for the Investigation of Proteins and Peptides[J]. Annual Review of Analytical Chemistry, 2008, 1: 689-705
    [69] Huybrechts, J., M.P. Nusbaum, L.V. Bosch, et al. Neuropeptidomic analysis of the brain and thoracic ganglion from the Jonah crab, Cancer borealis[J]. Biochem. Biophys. Res. Commun., 2003, 308(3): 535-544
    [70] Schultz, A.W., D.C. Oh, J.R. Carney, et al. Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin[J]. Journal of the American Chemical Society, 2008, 130(13): 4507-4516
    [71] Matthew, S., C. Ross, V.J. Paul, et al. Pompanopeptins A and B, new cyclic peptides from the marine cyanobacterium Lyngbya confervoides[J]. Tetrahedron, 2008, 64(18): 4081-4089
    [72] Tanabe, K., E. Lamping, K. Adachi, et al. Inhibition of fungal ABC transporters by unnarmicin A and unnarmicin C, novel cyclic peptides from marine bacterium[J]. Biochemical and Biophysical Research Communications, 2007, 364(4): 990-995
    [73] Hamada, Y.,T. Shioiri. Recent progress of the synthetic studies of biologically active marine cyclic peptides and depsipeptides[J]. Chemical Reviews, 2005, 105(12): 4441-4482
    [74] Berer, N., A. Rudi, I. Goldberg, et al. Callynormine A, a new marine cyclic peptide of a novel class[J]. Organic Letters, 2004, 6(15): 2543-2545
    [75] Shin, J., Y. Seo, H.S. Lee, et al. A new cyclic peptide from a marine-derived bacterium of the genus Nocardiopsis[J]. Journal of Natural Products, 2003, 66(6): 883-884
    [76] Erickson, K.L., K.R. Gustafson, D.J. Milanowski, et al. Myriastramides A-C, new modified cyclic peptides from the Philippines marine sponge Myriastra clavosa[J]. Tetrahedron, 2003, 59(51): 10231-10238
    [77] De Rosa, S., M. Mitova,G. Tommonaro. Marine bacteria associated with sponge as source of cyclic peptides. International Symposium on Marine Biotechnology. Almonte, Spain: 2003311-316
    [78] Renner, M.K., Y.C. Shen, X.C. Cheng, et al. Cyclomarins A-C, new antiinflammatory cyclic peptides produced by a marine bacterium (Streptomyces sp.)[J]. Journal of the American Chemical Society, 1999, 121(49): 11273-11276
    [79] Malmstrom, J. Unguisins A and B: New cyclic peptides from the marine-derived fungus Emericella unguis[J]. Journal of Natural Products, 1999, 62(5): 787-789
    [80] Schilling, B., W. Wang, J.S. McMurray, et al. Fragmentation and sequencing of cyclic peptides by matrix-assisted laser desorption/ionization post-source decay mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 1999, 13(21): 2174-2179
    [81] Cruz-Bermudez, N.D., Q. Fu, K.K. Kutz-Naber, et al. Mass spectrometric characterization and physiological actions of GAHKNYLRFamide, a novel FMRFamide-like peptide from crabs of the genus Cancer[J]. Journal of Neurochemistry, 2006, 97(3): 784-799
    [82] Fu, Q.,L.J. Li. Neutral loss of water from the b ions with histidine at the C-terminus and formation of the c ions involving lysine side chains[J]. Journal of Mass Spectrometry, 2006, 41(12): 1600-1607
    [83] Fu, Q.,L.J. Li. Fragmentation of peptides with N-terminal dimethylation and imine/methylol adduction at the tryptophan side-chain[J]. Journal of the American Society for Mass Spectrometry, 2006, 17(6): 859-866
    [84] Fu, Q.,L.J. Li. Investigation of several unique tandem mass spectrometric fragmentation patterns of NFDEIDR, an orcokinin analog, and its N-terminal dimethylated form[J]. Rapid Communications in Mass Spectrometry, 2006, 20(4): 553-562
    [85] Fukuyama, Y., S. Iwamoto,K. Tanaka. Rapid sequencing and disulfide mapping of peptides containing disulfide bonds by using 1,5-diaminonaphthalene as a reductive matrix[J]. Journal of Mass Spectrometry, 2006, 41(2): 191-201
    [86] Harrison, A.G. Fragmentation reactions of some peptide b(3) ions: an energy-resolved study[J]. Rapid Communications in Mass Spectrometry, 2009, 23(9): 1298-1302
    [87] Hsu, J.L., S.Y. Huang,S.H. Chen. Dimethyl multiplexed labeling combined with microcolumn separation and MS analysis for time course study in proteomics[J]. Electrophoresis, 2006, 27(18): 3652-3660
    [88] Hsu, Y.-W.A., D.I. Messinger, J.S. Chung, et al. Members of the crustacean hyperglycemic hormone (CHH) peptide family are differentially distributed both between and within the neuroendocrine organs of Cancer crabs: implications for differential release and pleiotropic function[J]. Journal of Experimental Biology, 2006, 209(16): 3241-3256
    [89] Li, Y., S. Hernandez-Martinez, F. Fernandez, et al. Biochemical, Molecular, and Functional Characterization of PISCF-Allatostatin, a Regulator of Juvenile Hormone Biosynthesis in the Mosquito Aedes aegypti[J]. J. Biol. Chem., 2006, 281(45): 34048-34055
    [90] Lopez-Ferrer, D., B. Canas, J. Vazquez, et al. Sample treatment for protein identification by mass spectrometry-based techniques[J]. Trac-Trends Anal. Chem., 2006, 25(10): 996-1005
    [91] Saideman, S.R., M.M. Ma, K.K. Kutz-Naber, et al. Modulation of rhythmic motor activity by pyrokinin peptides[J]. Journal of Neurophysiology, 2007, 97(1):579-595
    [92] Zhang, C.S., B.R. Griffith, Q. Fu, et al. Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions[J]. Science, 2006, 313(5791): 1291-1294
    [93] Yew, J.Y., K.K. Kutz, S. Dikler, et al. Mass spectrometric map of neuropeptide expression in Ascaris suum[J]. Journal of Comparative Neurology, 2005, 488(4): 396-413
    [94] Proekt, A., F.S. Vilim, V. Alexeeva, et al. Identification of a new neuropeptide precursor reveals a novel source of extrinsic modulation in the feeding system of Aplysia[J]. Journal of Neuroscience, 2005, 25(42): 9637-9648
    [95] Messinger, D.I., K.K. Kutz, T. Le, et al. Identification and characterization of a tachykinin-containing neuroendocrine organ in the commissural ganglion of the crab Cancer productus[J]. Journal of Experimental Biology, 2005, 208(17): 3303-3319
    [96] Fu, Q., M.F. Goy,L.J. Li. Identification of neuropeptides from the decapod crustacean sinus glands using nanoscale liquid chromatography tandem mass spectrometry[J]. Biochemical and Biophysical Research Communications, 2005, 337(3): 765-778
    [97] Fu, Q., A.E. Christie,L.J. Li. Mass spectrometric characterization of crustacean hyperglycemic hormone precursor-related peptides (CPRPs) from the sinus gland of the crab, Cancer productus[J]. Peptides, 2005, 26(11): 2137-2150
    [98] Fu, Q., K.K. Kutz, J.J. Schmidt, et al. Hormone Complement of the Cancer productus Sinus Gland and Pericardial Organ: An Anatomical and Mass Spectrometric Investigation[J]. J. Comp. Neurol., 2005, 493: 607-626
    [99] Fu, Q.,L.J. Li. De novo sequencing of neuropeptides using reductive isotopic methylation and investigation of ESI QTOF MS/MS fragmentation pattern of neuropeptides with N-terminal dimethylation[J]. Analytical Chemistry, 2005, 77(23): 7783-7795
    [100] Ji, C.J., N. Guo,L. Li. Differential dimethyl labeling of N-termini of peptides after guanidination for proteome analysis[J]. Journal of Proteome Research, 2005, 4(6): 2099-2108
    [101] Ji, C.J., L.J. Li, M. Gebre, et al. Identification and quantification of differentially expressed proteins in E-cadherin deficient SCC9 cells and SCC9 transfectants expressing E-cadherin by dimethyl isotope labeling, LC-MALDI MSand MS/MS[J]. Journal of Proteome Research, 2005, 4(4): 1419-1426
    [102] Nogueira, R., M. Lammerhofer,W. Lindner. Alternative high-performance liquid chromatographic peptide separation and purification concept using a new mixed-mode reversed-phase/weak anion-exchange type stationary phase[J]. J. Chromatogr. A, 2005, 1089(1-2): 158-169
    [103] Vailaya, A. Fundamentals of reversed phase chromatography: Thermodynamic and exothermodynamic treatment[J]. J. Liq. Chromatogr. Relat. Technol., 2005, 28(7-8): 965-1054
    [104] Kutz, K.K., J.J. Schmidt,L.J. Li. In situ tissue analysis of neuropeptides by MALDI FTMS in-cell accumulation[J]. Analytical Chemistry, 2004, 76(19): 5630-5640
    [105] Birmingham, J.T., C.P. Billimoria, T.R. DeKlotz, et al. Differential and History-Dependent Modulation of a Stretch Receptor in the Stomatogastric System of the Crab, Cancer borealis.[J]. J Neurophysiol, 2003, 90: 3608-3616
    [106] Behrens, H.L., R.B. Chen,L.J. Li. Combining microdialysis, nanoLC-MS, and MALDI-TOF/TOF to detect neuropeptides secreted in the crab, Cancer borealis[J]. Analytical Chemistry, 2008, 80(18): 6949-6958
    [107] DeKeyser, S.S., K.K. Kutz-Naber, J.J. Schmidt, et al. Imaging mass spectrometry of neuropeptides in decapod crustacean neuronal tissues[J]. Journal of Proteome Research, 2007, 6(5): 1782-1791
    [108] Yew, J.Y., Y. Wang, N. Barteneva, et al. Analysis of Neuropeptide Expression and Localization in Adult Drosophila melanogaster Central Nervous System by Affinity Cell-Capture Mass Spectrometry[J]. Journal of Proteome Research, 2009, 8(3): 1271-1284
    [109] Ma, M.M., R.B. Chen, Y. Ge, et al. Combining Bottom-Up and Top-Down Mass Spectrometric Strategies for De Novo Sequencing of the Crustacean Hyperglycemic Hormone from Cancer borealis[J]. Analytical Chemistry, 2009, 81(1): 240-247
    [110] Ma, M.M., E.K. Bors, E.S. Dickinson, et al. Characterization of the Carcinus maenas neuropeptidome by mass spectrometry and functional genomics[J]. General and Comparative Endocrinology, 2009, 161(3): 320-334
    [111] Chen, R.B., M.M. Ma, L.M. Hui, et al. Measurement of Neuropeptides in Crustacean Hemolymph via MALDI Mass Spectrometry[J]. Journal of the American Society for Mass Spectrometry, 2009, 20(4): 708-718
    [112] Schmidt, J.J., S. McLlwain, D. Page, et al. Combining MALDI-FTMS and bioinformatics for rapid peptidomic comparisons[J]. Journal of Proteome Research, 2008, 7(3): 887-896
    [113] Cape, S.S., K.J. Rehm, M. Ma, et al. Mass spectral comparison of the neuropeptide complement of the stomatogastric ganglion and brain in the adult and embryonic lobster, Homarus americanus[J]. Journal of Neurochemistry, 2008, 105(3): 690-702
    [114] Billimoria, C.P., R.A. DiCaprio, J.T. Birmingham, et al. Neuromodulation of spike-timing precision in sensory neurons[J]. J. Neurosci., 2006, 26: 5910
    [115] Goaillard, J.-M., D.J. Schulz, V.L. Kilman, et al. Octopamine Modulates the Axons of Modulatory Projection Neurons[J]. J. Neurosci., 2004, 24(32): 7063-7073
    [116] Nusbaum, M.P., D.M. Blitz, A.M. Swensen, et al. The roles of cotransmission in neural network modulation[J]. Trends Neurosci., 2001, 24: 146
    [117] Jorge-Rivera, J.,E. Marder. Allatostatin decreases stomatogastric neuromuscular transmission in the crab Cancer borealis[J]. J Exp Biol, 1997, 200(23): 2937-2946
    [118] Covi, J.A., E.S. Chang,D.L. Mykles. Conserved role of cyclic nucleotides in the regulation of ecdysteroidogenesis by the crustacean molting gland[J]. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology, 2009, 152(4): 470-477
    [119] Chung, J.S., S. Bembe, S. Tamone, et al. Molecular cloning of the crustacean hyperglycemic hormone (CHH) precursor from the X-organ and the identification of the neuropeptide from sinus gland of the Alaskan Tanner crab, Chionoecetes bairdi[J]. General and Comparative Endocrinology, 2009, 162(2): 129-133
    [120] Tsai, K.W., S.J. Chang, H.J. Wu, et al. Molecular cloning and differential expression pattern of two structural variants of the crustacean hyperglycemic hormone family from the mud crab Scylla olivacea[J]. General and Comparative Endocrinology, 2008, 159(1): 16-25
    [121] Sanchez-Castrejon, E., E. Ponce-Rivas, M.B. Aguilar, et al. Molecular cloning and expression of a putative crustacean hyperglycemic hormone of Litopenaeus vannamei in Pichia pastoris[J]. Electronic Journal of Biotechnology, 2008, 11(4)
    [122] Hsu, Y.W.A., J.R. Weller, A.E. Christie, et al. Molecular cloning of four cDNAs encoding prepro-crustacean hyperglycemic hormone (CHH) from the eyestalk of the red rock crab Cancer productus: Identification of two genetically encoded CHHisoforms and two putative post-translationally derived CHH variants[J]. General and Comparative Endocrinology, 2008, 155(3): 517-525
    [123] Chung, J.S.,N. Zmora. Functional studies of crustacean hyperglycemic hormones (CHHs) of the blue crab, Callinectes sapidus - the expression and release of CHH in eyestalk and pericardial organ in response to environmental stress[J]. Febs Journal, 2008, 275(4): 693-704
    [124] Tsutsui, N., T. Ohira, I. Kawazoe, et al. Purification of sinus gland peptides having vitellogenesis-inhibiting activity from the whiteleg shrimp Litopenaeus vannamei[J]. Marine Biotechnology, 2007, 9(3): 360-369
    [125] Tiu, S.H.K.,S.M. Chan. The use of recombinant protein and RNA interference approaches to study the reproductive functions of a gonad-stimulating hormone from the shrimp Metapenaeus ensis[J]. Febs Journal, 2007, 274(17): 4385-4395
    [126] Lee, K.J., R.M. Doran,D.L. Mykles. Crustacean hyperglycemic hormone from the tropical land crab, Gecarcinus lateralis: Cloning, isoforms, and tissue expression[J]. General and Comparative Endocrinology, 2007, 154(1-3): 174-183
    [127] Fuchs, R.,H. Budzikiewicz. Rearrangement reactions in the electrospray ionization mass spectra of pyoverdins[J]. International Journal of Mass Spectrometry, 2001, 210(1-3): 603-612
    [128] Yague, J., A. Paradela, M. Ramos, et al. Peptide rearrangement during quadrupole ion trap fragmentation: Added complexity to MS/MS spectra[J]. Analytical Chemistry, 2003, 75(6): 1524-1535
    [129] Vachet, R.W., K.L. Ray,G.L. Glish. Origin of product ions in the MS/MS spectra of peptides in a quadrupole ion trap[J]. Journal of the American Society for Mass Spectrometry, 1998, 9(4): 341-344
    [130] Vachet, R.W., B.M. Bishop, B.W. Erickson, et al. Novel peptide dissociation: Gas-phase intramolecular rearrangement of internal amino acid residues[J]. Journal of the American Chemical Society 1997, 119(24): 5481-5488
    [131] Vachet, R.W., M.R. Asam,G.L. Glish. Secondary interactions affecting the dissociation patterns of arginine-containing peptide ions [J]. Journal of the American Chemical Society 1996, 118(26): 6252-6256
    [132] Harrison, A.G.,A.B. Young. Fragmentation of protonated oligoalanines: Amide bond cleavage and beyond[J]. Journal of the American Society for Mass Spectrometry, 2004, 15(12): 1810-1819
    [133] Taylor, S.W., D.B. Kassel, J.A. Tincu, et al. Fragmentation of tunichrome Sp-1 is dominated by an unusual gas-phase intramolecular rearrangement[J]. Journal of Mass Spectrometry, 2003, 38(10): 1105-1109
    [134] Craig, A.G.,S.W. Taylor. Fragmentation of a novel marine peptide, plicatamide, involves an unusual gas-phase intramolecular rearrangement[J]. Journal of the American Society for Mass Spectrometry, 2001, 12(4): 470-474
    [135] Brinkworth, C.S., J.H. Bowie, D. Bilusich, et al. The rothein peptides from the skin secretion of Roth's tree frog Litoria rothii. Sequence determination using positive and negative ion electrospray mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2005, 19(18): 2716-2724
    [136] Brinkworth, C.S., D. Bilusich,J.H. Bowie. The unusual loss of an internal Val residue from the (M-H)(-) parent anions of the antimicrobial peptide citropin 1.1 and synthetically modified analogues - Fragmentations which require a specific conformation of the decomposing anion[J]. International Journal of Mass Spectrometry, 2004, 236(1-3): 43-53
    [137] Wu, S.L., H.T. Jiang, Q.Z. Lu, et al. Mass Spectrometric Determination of Disulfide Linkages in Recombinant Therapeutic Proteins Using Online LC-MS with Electron-Transfer Dissociation[J]. Analytical Chemistry, 2009, 81(1): 112-122
    [138] Kim, H.I.,J.L. Beauchamp. Mapping Disulfide Bonds in Insulin with the Route 66 Method: Selective Cleavage of S-C Bonds Using Alkali and Alkaline Earth Metal Enolate Complexes[J]. Journal of the American Society for Mass Spectrometry, 2009, 20(1): 157-166
    [139] Zhang, L., H. Xu, C.L. Chen, et al. Mass Spectrometry Profiles Superoxide-Induced Intramolecular Disulfide in the FMN-Binding Subunit of Mitochondrial Complex I[J]. Journal of the American Society for Mass Spectrometry, 2008, 19(12): 1875-1886
    [140] Huang, S.Y., C.H. Wen, D.T. Li, et al. Assignment of Disulfide-Linked Peptides Using Automatic a(1) Ion Recognition[J]. Analytical Chemistry, 2008, 80(23): 9135-9140
    [141] Mihalca, R., Y.E.M. van der Burgt, A.J.R. Heck, et al. Disulfide bond cleavages observed in SORI-CID of three nonapeptides complexed vdth divalent transition-metal cations[J]. Journal of Mass Spectrometry, 2007, 42(4): 450-458
    [142] Qiu, X.Y., M. Cui, Z.Q. Liu, et al. Protein disulfide bond determination and itsanalysis by mass spectrometry[J]. Progress in Chemistry, 2008, 20(6): 975-983
    [143] Kalkhof, S., S. Haehn, C. Ihling, et al. Determination of disulfide bond patterns in laminin beta 1 chain N-terminal domains by nano-high-performance liquid chromatography/matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2008, 22(12): 1933-1940
    [144] de Hoog, C.L.,M. Mann. Proteomics[J]. Annual Review of Genomics and Human Genetics, 2004, 5: 267-293
    [145] Zhu, H., M. Bilgin,M. Snyder. Proteomics[J]. Annual Review of Biochemistry, 2003, 72: 783-812
    [146] Aebersold, R.,D.R. Goodlett. Mass spectrometry in proteomics[J]. Chemical Reviews, 2001, 101(2): 269-295
    [147] Yao, G.P., D.W. Qi, C.H. Deng, et al. Functionalized magnetic carbonaceous microspheres for trypsin immobilization and the application to fast proteolysis[J]. J. Chromatogr. A, 2008, 1215(1-2): 82-91
    [148] Lin, S., D. Yun, D.W. Qi, et al. Novel microwave-assisted digestion by trypsin-immobilized magnetic nanoparticles for proteomic analysis[J]. Journal of Proteome Research, 2008, 7(3): 1297-1307
    [149] Lin, S., G.P. Yao, D.W. Qi, et al. Fast and efficient proteolysis by microwave-assisted protein digestion using trypsin-immobilized magnetic silica microspheres[J]. Analytical Chemistry, 2008, 80(10): 3655-3665
    [150] Hu, F.L., H.Y. Zhang, H.Q. Lin, et al. Enzyme inhibitor screening by electrospray mass spectrometry with immobilized enzyme on magnetic silica microspheres[J]. Journal of the American Society for Mass Spectrometry, 2008, 19(6): 865-873
    [151] Hu, F.L., C.H. Deng,X.M. Zhang. Development of high performance liquid chromatography with immobilized enzyme onto magnetic nanospheres for screening enzyme inhibitor[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2008, 871(1): 67-71
    [152] Xu, X.Q., C.H. Deng, P.Y. Yang, et al. Immobilization of trypsin on superparamagnetic nanoparticles for rapid and effective proteolysis[J]. Journal of Proteome Research, 2007, 6(9): 3849-3855
    [153] Liu, J.Y., S. Lin, D.W. Qi, et al. On-chip enzymatic microreactor usingtrypsin-immobilized superparamagnetic nanoparticles for highly efficient proteolysis[J]. J. Chromatogr. A, 2007, 1176(1-2): 169-177
    [154] Li, Y., B. Yan, X.Q. Xu, et al. On-column tryptic mapping of proteins using metal-ion-chelated magnetic silica microspheres by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(14): 2263-2268
    [155] Li, Y., X.Q. Xu, B. Yan, et al. Microchip reactor packed with metal-ion chelated magnetic silica microspheres for highly efficient proteolysis[J]. Journal of Proteome Research, 2007, 6(6): 2367-2375
    [156] Gao, M.X., C.H. Deng, Z.Q. Fan, et al. A simple pathway to the synthesis of magnetic nanoparticles with immobilized metal ions for the fast removal of microcystins in water[J]. Small, 2007, 3(10): 1714-1717
    [157] Sheldon, R.A. E factors, green chemistry and catalysis: an odyssey[J]. Chem. Commun., 2008(29): 3352-3365
    [158] Sheldon, R.A., M. Sorgedrager,M.H.A. Janssen. Use of cross-linked enzyme aggregates (CLEAs) for performing biotransformations[J]. Chim. Oggi-Chem. Today, 2007, 25(1): 62-+
    [159] Sheldon, R.A. Cross-linked enzyme aggregates (CLEA (R) s): stable and recyclable biocatalysts[J]. Biochemical Society Transactions, 2007, 35: 1583-1587
    [160] Sheldon, R.A. Enzyme immobilization: The quest for optimum performance[J]. Advanced Synthesis & Catalysis, 2007, 349(8-9): 1289-1307
    [161] Sheldon, R.A., R. Schoevaart,L.M. Van Langen. Cross-linked enzyme aggregates (CLEAs): A novel and versatile method for enzyme immobilization (a review)[J]. Biocatalysis and Biotransformation, 2005, 23(3-4): 141-147
    [162] Schoevaart, R., M.W. Wolbers, M. Golubovic, et al. Preparation, optimization, and structures of cross-linked enzyme aggregates (CLEAs)[J]. Biotechnology and Bioengineering, 2004, 87(6): 754-762
    [163] Cao, L.Q., L. van Langen,R.A. Sheldon. Immobilised enzymes: carrier-bound or carrier-free?[J]. Current Opinion in Biotechnology, 2003, 14(4): 387-394
    [164]Pettit, G.R., J.W. Lippert, S.R. Taylor, et al. Synthesis of phakellistatin 11: A Micronesia (Chuuk) marine sponge cyclooctapeptide[J]. Journal of Natural Products, 2001, 64(7): 883-891
    [165] Pettit, G.R., F. Gao, R.L. Cerny, et al. Antineoplastic agents. 278. Isolation andstructure of axinastatins 2 and 3 from a Western Caroline Island marine sponge [J]. Journal of Medicinal Chemistry 1994, 37 (8): 1165-1168
    [166] Biemann, K. Contributions of mass spectrometry to peptide and protein structure [J]. Biomedical and Environmental Mass Spectrometry 1988, 16(1-12 SPEC. ISS.): 99-111
    [167] Domon, B.,R. Aebersold. Review - Mass spectrometry and protein analysis[J]. Science, 2006, 312(5771): 212-217
    [168] Wysocki, V.H., G. Tsaprailis, L.L. Smith, et al. Special feature: Commentary - Mobile and localized protons: a framework for understanding peptide dissociation[J]. Journal of Mass Spectrometry, 2000, 35(12): 1399-1406
    [169] Forbes, A.J., S.M. Patrie, G.K. Taylor, et al. Targeted analysis and discovery of posttranslational modifications in proteins from methanogenic archaea by top-down MS[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(9): 2678-2683
    [170] Zhong, H.Y., Y. Zhang, Z.H. Wen, et al. Protein sequencing by mass analysis of polypeptide ladders after controlled protein hydrolysis[J]. Nature Biotechnology, 2004, 22(10): 1291-1296
    [171] Auerswald, L., N. Birgul, G. Gade, et al. Structural, functional, and evolutionary characterization of novel members of the allatostatin receptor family from insects.[J]. Biochemical and Biophysical Research Communications, 2001, 282: 904-909.
    [172] Eckart, K. Mass spectrometry of cyclic peptides [J]. Mass Spectrometry Reviews 1994, 13(1): 23-55
    [173]Skiebe, P. Neuropeptides are ubiquitous chemical mediators: Using the stomatogastric nervous system as a model system[J]. J Exp Biol, 2001, 204(12): 2035-2048
    [174] Nusbaum, M.P.,M.P. Beenhakker. A small-systems approach to motor pattern generation[J]. Nature, 2002, 417: 343
    [175] Marder, E.,D. Bucher. Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs[J]. Annual Review of Physiology, 2007, 69(1): 291-316
    [176] Marder, E.,D. Bucher. Central pattern generators and the control of rhythmic movements[J]. Curr. Biol., 2001, 11: R986
    [177] Quinton, L., K. Demeure, R. Dobson, et al. New method for characterizinghighly disulfide-bridged peptides in complex mixtures: Application to toxin identification from crude venoms[J]. Journal of Proteome Research, 2007, 6(8): 3216-3223
    [178] Christie, A.E., C.R. Cashman, H.R. Brennan, et al. Identification of putative crustacean neuropeptides using in silico analyses of publicly accessible expressed sequence tags[J]. Gen. Comp. Endocrinol., 2008, 156(2): 246-264
    [179] Christie, A.E., P. Skiebe,E. Marder. Matrix of neuromodulators in neurosecretory structures of the crab, Cancer borealis[J]. Journal of Experimental Biology, 1995, 198: 2431
    [180] Dircksen, H., P. Skiebe, B. Abel, et al. Structure, distribution, and biological activity of novel members of the allatostatin family in the crayfish Orconectes limosus[J]. Peptides, 1999, 20: 695-712.
    [181] Kreissl, S., T. Weiss, S. Djokaj, et al. Allatostatin modulates skeletal muscle performance in crustaceans through pre- and postsynaptic effects[J]. Eur J Neurosci, 1999, 11: 2519-2530.
    [182] Skiebe, P.,O. Ganeshina. Synaptic neuropil in nerves of the crustacean stomatogastric nervous system: an immunocytochemical and electron microscopical study.[J]. Journal of Comparative Neurology, 2000, 420: 373-397.
    [183] Skiebe, P.,H. Schneider. Allatostatin peptides in the crab stomatogastric nervous system: inhibition of the pyloric motor pattern and distribution of allatostatin-like immunoreactivity[J]. J Exp Biol, 1994, 194(1): 195-208
    [184] Skiebe, P. Allatostatin-like immunoreactivity in the stomatogastric nervous system and the pericardial organs of the crab Cancer pagurus, the lobster Homarus americanus, and the crayfish Cherax destructor and Procambarus clarkii.[J]. Journal of Comparative Neurology, 1999, 403: 85-105.
    [185] Skiebe, P. Neuropeptides in the crayfish stomatogastric nervous system[J]. Microscopy Res. Technique, 2003, 60(302-312)
    [186] Pulver, S.R.,E. Marder. Neuromodulatory complement of the pericardial organs in the embryonic lobster, Homarus americanus[J]. J. Comp. Neurol., 2002, 451: 79
    [187] Panchan, N., W.G. Bendena,P.e.a. Bowser. Immunolocalization of allatostatin-like neuropeptides and their putative receptor in eyestalks of the tiger prawn, Penaeus monodon. [J]. Peptides, 2003, 24: 1563-1570.
    [188] Yasuda-Kamatani, Y.,A. Yasuda. Characteristic expression patterns ofallatostatin-like peptide, FMRFamide-related peptide, orcokinin, tachykinin-related peptide, and SIFamide in the olfactory system of crayfish Procambarus clarkii. [J]. Journal of Comparative Neurology, 2006, 496: 135-147.
    [189] Hummon, A.B., T.A. Richmond,P.e.a. Verleyen. From the genome to the proteome: uncovering peptides in the Apis brain. [J]. Science, 2006, 314: 647-649.
    [190] Gard, A.L., P.H. Lenz, J.R. Shaw, et al. Identification of putative peptide paracrines/hormones in the water flea Daphnia pulex (Crustacea; Branchiopoda; Cladocera) using transcriptomics and immunohistochemistry[J]. Gen Comp Endocrinol, 2009, 160(3): 271-87
    [191] Dickinson, P.S., T. Wiwatpanit, E.R. Gabranski, et al. Identification of SYWKQCAFNAVSCFamide: a broadly conserved crustacean C-type allatostatin-like peptide with both neuromodulatory and cardioactive properties[J]. Journal of Experimental Biology, 2009, 212(8): 1140-1152
    [192] Veenstra, J.A. Allatostatin C and its paralog allatostatin double C: The arthropod somatostatins[J]. Insect Biochemistry and Molecular Biology, 2009, 39(3): 161-170
    [193] Fu, Q., L.S. Tang, E. Marder, et al. Mass spectrometric characterization and physiological actions of VPNDWAHFRGSWamide, a novel B type allatostatin in the crab, Cancer borealis[J]. J. Neurochem., 2007, 101: 1099-1107
    [194] Stay, B.,S.S. Tobe. The role of allatostatins in juvenile hormone synthesis in insects and crustaceans.[J]. Annu. Rev. Entomol., 2007, 52(1): 277-299
    [195] Kwok, R., J.R. Zhang,S.S. Tobe. Regulation of methyl farnesoate production by mandibular organs in the crayfish, Procambarus clarkii: a possible role for allatostatins.[J]. J. Insect Physiol. , 2005, 51: 367–78
    [196] Birgul, N., C. Weise, H.J. Kreienkamp, et al. Reverse physiology in Drosophila: identification of a novel allatostatin-like neuropeptide and its cognate receptor structurally related to the mammalian somatostatin/galanin/opioid receptor family. [J]. EMBO Journal, 1999, 18: 5892-5900.
    [197] Kreienkamp, H.J., H.J. Larusson, I. Witte, et al. Functional annotation of two orphan G-protein-coupled receptors, Drostar1 and -2, form Drosophila melanogaster and their ligands by reverse pharmacology. [J]. Journal of Biological Chemistry, 2002, 277: 39937-39943.
    [198] Lechner, H.A.E., E.S. Lein,E.M. Callaway. A genetic method for selective and quickly reversible silencing of mammalian neurons. [J]. Journal of Neuroscience,2002, 22: 5287-5290.
    [199] Bendena, W.G., B.C. Donly,S.S. Tobe. Allatostatins: a growing family of neuropeptides with structural and functional diversity. [J]. Annals of the New York Academy of Sciences, 1999, 897: 311-329.
    [200] Tan, E.M., Y. Yamaguchi, G.D. Horwitz, et al. Selective and quickly reversible inactivation of mammalian neurons in vivo using the Drosophila allatostatin receptor. [J]. Neuron, 2006, 51: 157-170.
    [201] Jacobs, S.,S. Schulz. Intracellular trafficking of somatostatin receptors. [J]. Molecular and Cellular Endocrinology, 2008, 286: 58-62.
    [202] Wang, J.H., R.B. Chen, M.M. Ma, et al. MALDI MS sample preparation by using paraffin wax film: Systematic study and application for peptide analysis[J]. Analytical Chemistry, 2008, 80(2): 491-500
    [203] Ma, M.M., J.H. Wang, R.B. Chen, et al. Expanding the Crustacean Neuropeptidome Using a Multifaceted Mass Spectrometric Approach[J]. Journal of Proteome Research, 2009, 8(5): 2426-2437
    [204] Katayama, H.,J.S. Chung. The specific binding sites of eyestalk- and pericardial organ-crustacean hyperglycaemic hormones (CHHs) in multiple tissues of the blue crab, Callinectes sapidus[J]. Journal of Experimental Biology, 2009, 212(4): 542-549
    [205] Montagne, N., D. Soyez, D. Gallois, et al. New insights into evolution of crustacean hyperglycaemic hormone in decapods - first characterization in Anomura[J]. Febs Journal, 2008, 275(5): 1039-1052
    [206] Bulau, P., A. Okuno, E. Thome, et al. Characterization of a molt-inhibiting hormone (MIH) of the crayfish, Orconectes limosus, by cDNA cloning and mass spectrometric analysis[J]. Peptides, 2005, 26(11): 2129-2136
    [207] Boscameric, M., D. Gallois, N. Kamech, et al. D-amino acid residues in crustacean neuropeptides[J]. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology, 2005, 141(3): S158-S158
    [208] Chung, J.S.,S.G. Webster. Moult cycle-related changes in biological activity of moult-inhibiting hormone (MIH) and crustacean hyperglycaemic hormone (CHH) in the crab, Carcinus maenasi - From target to transcript[J]. European Journal of Biochemistry, 2003, 270(15): 3280-3288
    [209] Wilcockson, D.C., J.S. Chung,S.G. Webster. Is crustacean hyperglycaemic hormone precursor-related peptide a circulating neurohormone in crabs?[J]. Cell andTissue Research, 2002, 307(1): 129-138
    [210] Giulianini, P.G., N. Pandolfelli, S. Lorenzon, et al. An antibody to recombinant crustacean hyperglycaemic hormone of Nephrops norvegicus cross-reacts with neuroendocrine organs of several taxa of malacostracan Crustacea[J]. Cell and Tissue Research, 2002, 307(2): 243-254
    [211] Escamllla-Chimal, E.G., F. Van Herp,M.L. Fanjul-Moles. Daily variations in crustacean hyperglycaemic hormone and serotonin immunoreactivity during the development of crayfish[J]. Journal of Experimental Biology, 2001, 204(6): 1073-1081
    [212] Dircksen, H., D. Bocking, U. Heyn, et al. Crustacean hyperglycaemic hormone (CHH)-like peptides and CHH-precursor-related peptides from pericardial organ neurosecretory cells in the shore crab, Carcinus maenas, are putatively spliced and modified products of multiple genes[J]. Biochemical Journal, 2001, 356: 159-170
    [213] Webster, S.G., H. Dircksen,J.S. Chung. Endocrine cells in the gut of the shore crab Carcinus maenas immunoreactive to crustacean hyperglycaemic hormone and its precursor-related peptide[J]. Cell and Tissue Research, 2000, 300(1): 193-205
    [214] Marco, H.G.,G. Gade. A comparative immunocytochemical study of the hyperglycaemic, moult-inhibiting and vitellogenesis-inhibiting neurohormone family in three species of decapod Crustacea[J]. Cell and Tissue Research, 1999, 295(1): 171-182
    [215] Subramoniam, T.P., B. Reichwein, H. Dircksen, et al. On the isolation and characterisation of a crustacean hyperglycaemic hormone in the eyestalk of the shrimp Penaeus indicus[J]. Aquaculture, 1998, 162(1-2): 99-111
    [216] Marco, H.G., W. Brandt,G. Gade. Elucidation of the amino acid sequence of a crustacean hyperglycaemic hormone from the spiny lobster, Jasus lalandii[J]. Biochemical and Biophysical Research Communications, 1998, 248(3): 578-583
    [217] Khayat, M., W.J. Yang, K. Aida, et al. Hyperglycaemic hormones inhibit protein and mRNA synthesis in in vitro-incubated ovarian fragments of the marine shrimp Penaeus semisulcatus[J]. General and Comparative Endocrinology, 1998, 110(3): 307-318
    [218] de Kleijn, D.P.V., K.P.C. Janssen, S.L. Waddy, et al. Expression of the crustacean hyperglycaemic hormones and the gonad-inhibiting hormone during the reproductive cycle of the female American lobster Homarus americanus[J]. Journal ofEndocrinology, 1998, 156(2): 291-298
    [219] Shen, P.T., J.L. Hsu,S.H. Chen. Dimethyl isotope-coded affinity selection for the analysis of free and blocked N-termini of proteins using LC-MS/MS[J]. Analytical Chemistry, 2007, 79(24): 9520-9530
    [220] Hsu, J.L., S.Y. Huang, N.H. Chow, et al. Stable-isotope dimethyl labeling for quantitative proteomics[J]. Analytical Chemistry, 2003, 75(24): 6843-6852
    [221] Zivec, M., Z. Jakopin,S. Gobec. Recent Advances in the Synthesis and Applications of Reduced Amide Pseudopeptides[J]. Current Medicinal Chemistry, 2009, 16(18): 2289-2304
    [222] Jamieson, A.G., N. Boutard, K. Beauregard, et al. Positional Scanning for Peptide Secondary Structure by Systematic Solid-Phase Synthesis of Amino Lactam Peptides[J]. Journal of the American Chemical Society, 2009, 131(22): 7917-7927
    [223] Isidro-Llobet, A., M. Alvarez,F. Albericio. Amino Acid-Protecting Groups[J]. Chemical Reviews, 2009, 109(6): 2455-2504
    [224] Boas, U., J. Brask,K.J. Jensen. Backbone Amide Linker in Solid-Phase Synthesis[J]. Chemical Reviews, 2009, 109(5): 2092-2118
    [225] Jiang, S., Z. Li, K. Ding, et al. Recent Progress of Synthetic Studies to Peptide and Peptidomimetic Cyclization[J]. Current Organic Chemistry, 2008, 12(17): 1502-1542
    [226] Bertram, A.,G. Pattenden. Marine metabolites: metal binding and metal complexes of azole-based cyclic peptides of marine origin[J]. Natural Product Reports, 2007, 24(1): 18-30
    [227] Zhang, L., X.J. Wang, J. Wang, et al. An improved method of amide synthesis using acyl chlorides[J]. Tetrahedron Letters, 2009, 50(24): 2964-2966
    [228] Yoshiya, T., Y. Sohma, Y. Hamada, et al. Racemization-free segment condensation based on the O-acyl isopeptide method: Toward a chemical protein synthesis on solid support[J]. Peptides for Youth, 2009, 611: 161-162
    [229] Sandhya, K.,B. Ravindranath. A protocol for racemization-free loading of Fmoc-amino acids to Wang resin[J]. Tetrahedron Letters, 2008, 49(15): 2435-2437
    [230] Yoshida, T. Peptide separation by Hydrophilic-Interaction Chromatography: a review[J]. Journal of Biochemical and Biophysical Methods, 2004, 60(3): 265-280
    [231] Garcia, I.R., K. Giles, R.H. Bateman, et al. Studies of Peptide a- and b-Type Fragment Ions Using Stable Isotope Labeling and Integrated Ion Mobility/TandemMass Spectrometry[J]. Journal of the American Society for Mass Spectrometry, 2008, 19(12): 1781-1787
    [232] Grewal, R.N., H. El Aribi, A.G. Harrison, et al. Fragmentation of protonated tripeptides: The proline effect revisited[J]. Journal of Physical Chemistry B, 2004, 108(15): 4899-4908
    [233] Zubarev, R.,M. Mann. On the proper use of mass accuracy in proteomics[J]. Molecular & Cellular Proteomics, 2007, 6(3): 377-381
    [234] Liu, T., M.E. Belov, N. Jaitly, et al. Accurate mass measurements in proteomics[J]. Chemical Reviews, 2007, 107(8): 3621-3653
    [235] Yates, J.R. Mass spectral analysis in proteomics[J]. Annual Review of Biophysics and Biomolecular Structure, 2004, 33: 297-316
    [236] Vukovic, J., H. Loftheim, B. Winther, et al. Improving off-line accelerated tryptic digestion - Towards fast-lane proteolysis of complex biological samples[J]. J. Chromatogr. A, 2008, 1195(1-2): 34-43
    [237] Migneault, I., C. Dartiguenave, J. Vinh, et al. Two glutaraldehyde-immobilized trypsin preparations for peptide mapping by capillary zone electrophoresis, liquid chromatography, and mass spectrometry[J]. J. Liq. Chromatogr. Relat. Technol., 2008, 31(6): 789-806
    [238] Ma, J., L. Zhang, Z. Liang, et al. Monolith-based immobilized enzyme reactors: Recent developments and applications for proteome analysis[J]. Journal of Separation Science, 2007, 30(17): 3050-3059
    [239] Jeng, J.Y., M.F. Lin, F.Y. Cheng, et al. Using high-concentration trypsin-immobilized magnetic nanoparticles for rapid in situ protein digestion at elevated temperature[J]. Rapid Communications in Mass Spectrometry, 2007, 21(18): 3060-3068
    [240] Feng, S., M.L. Ye, X.G. Jiang, et al. Coupling the immobilized trypsin microreactor of monolithic capillary with mu RPLC-MS/MS for shotgun proteome analysis[J]. Journal of Proteome Research, 2006, 5(2): 422-428
    [241] Massolini, G.,E. Calleri. Immobilized trypsin systems coupled on-line to separation methods: Recent developments and analytical applications[J]. Journal of Separation Science, 2005, 28(1): 7-21
    [242] Slysz, G.W.,D.C. Schriemer. On-column digestion of proteins in aqueous-organic solvents[J]. Rapid Communications in Mass Spectrometry, 2003,17(10): 1044-1050
    [243] Krogh, T.N., T. Berg,P. Hojrup. Protein analysis using enzymes immobilized to paramagnetic beads[J]. Analytical Biochemistry, 1999, 274(2): 153-162
    [244] Lasch, J., L. Bessmertnaya, L.V. Kozlov, et al. Thermal-stability of immobilized enzymes circular-dichroism, fluorescence and kinetic mesurement of alpha-chymotrypsin attached to soluble carriers[J]. European Journal of Biochemistry, 1976, 63(2): 591-598
    [245] Harris, W.A.,J.P. Reilly. On-probe digestion of bacterial proteins for MALDI-MS[J]. Analytical Chemistry, 2002, 74(17): 4410-4416
    [246] Harris, W.A., D.J. Janecki,J.P. Reilly. Use of matrix clusters and trypsin autolysis fragments as mass calibrants in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2002, 16(18): 1714-1722
    [247] Russell, W.K., Z.Y. Park,D.H. Russell. Proteolysis in mixed organic-aqueous solvent systems: Applications for peptide mass mapping using mass spectrometry[J]. Analytical Chemistry, 2001, 73(11): 2682-2685
    [248] Park, Z.Y.,D.H. Russell. Thermal denaturation: A useful technique in peptide mass mapping[J]. Analytical Chemistry, 2000, 72(11): 2667-2670

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700