若干仿生黏性两性离子聚合物的合成及用于制备功能化超低污染表面的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有效抵抗生物分子和微生物在表面的非特异性吸附是诸多领域(例如生物仪器和船舶等)的巨大挑战。例如蛋白的非特异性吸附既会降低基于表面的诊断仪器的性能又会在植入的生物材料的愈合过程中引起不良反应。本文使用一系列两性离子聚合物和黏性儿茶酚基团进行表面改性以制备超低污染表面,并对其应用进行了研究。实验中使用SPR传感器对表面蛋白吸附进行测量,使用层流流动室原位观察表面细菌粘附/生物膜形成情况。
     本文首先研究了将含有黏性儿茶酚基团的引发剂粘接到表面后引发聚合磺酸甜菜碱聚合物(“graft from”方法),从而制备出了超低污染表面。改性后的表面可以高度抵抗单一蛋白溶液和人体血浆、血清的非特异性吸附,并且在PBS中浸泡42天后依然保持其抗污染性能。进而,实验对假单胞菌在改性的氨基玻璃片表面的生长、聚集状况进行了原位观测研究,时间为9天。实验结果表明使用这种方法连接的两性离子聚合物涂层可以显著减少假单胞菌的粘附和生物膜的形成,从而证明了儿茶酚基团粘接两性离子聚合物的高效性和稳定性。
     基于上述“graft from”表面改性研究,本文进而研发了带有一个儿茶酚基团的磺酸甜菜碱聚合物。实验考察了该黏性聚合物在不同表面化学和酸碱条件下的粘接效果。在优化条件之下,改性后的表面可以有效抵抗来自单一蛋白溶液和人体血液、血清的非特异性吸附。同时,对假单胞菌在改性表面上生长、聚集进行了为期3天的评价。实验结果表明,改性表面可以有效抵抗细菌粘附和生物膜的形成。本章研发的黏性磺酸甜菜碱聚合物可以进行简便、高效的表面改性从而获得超低污染表面,并可以应用于复杂体系。
     进而,设计、合成了两种不同类型的带有两个儿茶酚基团的引发剂。然后通过这两种引发剂和离子对单体的聚合得到的两种电性均衡的黏性聚电解质:其中一种聚电解质由ATRP得到、分子中带有两个儿茶酚粘接基团和两个抗污染聚合物臂;另一种则由简单的自由基聚合制得。实验研究表明两种聚电解质不但可以有效地粘接到金表面而且在表面上可以实现电性均衡。进而,测量了改性后的表面对纤维蛋白原、溶菌酶和牛血清白蛋白溶液的非特异性吸附。结果表明,两种黏性聚电解质改性后的表面都具有很好的抗污染性能。同时研究中使用离子对制备黏性聚电解质的策略不需要调节带电单体的比例即可使其电性均衡。
     为了快速、高效地制备可功能化的超低污染表面,本文进而研发了一种可功能化的黏性两性离子聚合物(pCB2-catechol2)。该聚合物由具有双臂双功能(超低污染和可功能化)的羧酸甜菜碱聚合物部分和具有表面粘接功能的双儿茶酚部分组成。实验考察了该黏性聚合物在各种条件下(pH值和溶剂)在金表面的粘接效果。在优化条件下,pCB2-catechol2的表面改性结果同其他两种聚合物(即pCB-catechol和pCB-catechol2)进行了比较。结果表明pCB2-catechol2在制备超低污染表面上具有明显的优势。进而,将抗活化白细胞黏附分子(anti-ALCAM)直接固定在pCB2-catechol2改性后的表面上。结果显示固定抗体后的表面保持了其超低污染性能。同时固定的抗体也显示了很好的生物活性,该表面可以对100%人体血浆中的活化白细胞黏附分子(ALCAM)进行高灵敏度和高特异性的的检测。这一工作阐述了一种制备可功能化和超低污染表面的简便和有效的方法,且该方法将来极有希望用于医学检测中。
A great challenge in many applications, ranging from biomedical devices to ship hulls, is the prevention of nonspecific biomolecular and microorganism attachment on surfaces. For example, nonspecific protein adsorption degrades the performance of surface-based diagnostic devices and causes an adverse effect on the healing process for implanted biomaterials. Herein ultralow-fouling zwitterionic surfaces were prepared via adhesive mussel mimetic linkages. Protein adsorption was measured using a surface plasmon resonance (SPR) sensor, and the accumulation of Pseudomonas aeruginosa on the surfaces was studied in situ using a laminar flow chamber.
     Nonfouling sulfobetaine polymers were first grafted via surface-initiated atom transfer radical polymerization (ATRP) from surfaces covered with an adhesive catechol initiator. The nonfouling performances of the resulting polymer brushes on gold and NH2-gold surfaces were compared. Under optimal conditions, ultralow protein adsorption from both single protein solutions and blood plasma/serum was achieved. Furthermore, the 9-day accumulation of Pseudomonas aeruginosa on the treated glass surfaces was studied. The results showed that these sulfobetaine coatings dramatically reduced the biofilm formation of P. aeruginosa as compared to the reference bare glass.
     Biomimetic polymers with a poly(sulfobetaine) (pSB) moiety for ultralow fouling and a catechol end group for surface anchoring have been developed. Binding tests of the adhesive polymer on various surfaces, including amino (NH2), hydroxyl (OH), and methyl (CH3) terminated self-assembled monolayers (SAMs) along with bare gold, were performed under acidic and basic conditions. Under optimized conditions, the coated surfaces are highly resistant to non-specific protein adsorption from both single protein solutions and blood serum/plasma. Furthermore, the 3-day accumulation of Pseudomonas aeruginosa on the coated surfaces was evaluated. Results show that the coated surfaces are highly resistant to biofilm formation. This work demonstrates a convenient and efficient method for using zwitterionic polymers to achieve ultralow fouling surfaces via surface modification, for applications in complex media.
     Furthermore, two kinds of nonfouling polyampholytes with biomimetic adhesive groups were synthesized by the polymerization of a cationic-anionic comonomer using two types of catecholic initiators. One polyampholyte with two catechol anchoring groups and two nonfouling zwitterionic arms was obtained by ATRP, and the other one was got by free radical polymerization. Results showed that the surfaces modified with both of these polymers had excellent nonfouling properties.
     Finally, a biomimetic polymer (pCB2-catechol2), with two zwitterionic poly(carboxybetaine) (pCB) arms for ultralow fouling and two adhesive catechol groups for surface anchoring, was developed. Binding tests of pCB2-catechol2 were performed on a gold surface under a range of conditions (various pH values and solvents). Protein adsorption from single protein solutions blood plasma/serum was evaluated. Results were compared with those from two other polymers (i.e., pCB-catechol and pCB-catechol2). Furthermore, the direct immobilization of anti-activated leukocyte cell adhesion molecule (anti-ALCAM) was carried out on the pCB2-catechol2 modified surface. Results showed that the antibody-immobilized surface maintained its excellent ultralow fouling properties. The detection of activated leukocyte cell adhesion molecule (ALCAM) in 100% blood plasma with high sensitivity and specificity was achieved. This work demonstrates an effective and convenient strategy to obtain functionalizable and ultralow fouling surfaces.
引文
[1] Ratner BD, Hoffman AS, Schoen FJ, Biomaterials science, an introduction to materials in medicine, 2nd ed. Amsterdam: Elsevier, 2004
    [2] Horbett TA, The role of adsorbed proteins in animal cell adhesion, Colloids and Surfaces B: Biointerfaces, 1994, 2(1-3):225-240
    [3] Tsai WB, Grunkemeier JM, Horbett TA, Human plasma fibrinogen adsorption and platelet adhesion to polystyrene, Journal of Biomedical Materials Research, 1999, 44(2):130-139
    [4] Ratner BD, Bryant SJ, Biomaterials: Where we have been and where we are going, Annual Review of Biomedical Engineering, 2004, 6:41-75
    [5] Anderson JM, Biological responses to materials, Annual Review of Materials Research, 2001, 31:81-110
    [6] Salthouse TN, Some aspects of macrophage behavior at the implant interface, Journal of Biomedical Materials Research, 1984, 18(4):395-401
    [7] Harris JM, Poly(ethylene glycol) chemistry: Biotechnical and biomedical applications. New York and London: Plenum Press, 1992
    [8] Ostuni E, Chapman RG, Holmlin RE, et al., A survey of structure-property relationships of surfaces that resist the adsorption of protein, Langmuir, 2001, 17(18):5605-5620
    [9] Jeon SI, Lee JH, Andrade JD, et al., Protein--surface interactions in the presence of polyethylene oxide: I. Simplified theory, Journal of Colloid and Interface Science, 1991, 142(1):149-158
    [10] McPherson T, Kidane A, Szleifer I, et al., Prevention of protein adsorption by tethered poly(ethylene oxide) layers: Experiments and single-chain mean-field analysis, Langmuir, 1998, 14(1):176-186
    [11] Harder P, Grunze M, Dahint R, et al., Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption, Journal of Physical Chemistry B, 1998, 102(2):426-436
    [12] Li L, Chen S, Zheng J, et al., Protein adsorption on oligo(ethyleneglycol)-terminated alkanethiolate self-assembled monolayers: The molecular basis for nonfouling behavior, Journal of Physical Chemistry B, 2005, 109(7):2934-2941
    [13] Zheng J, Li LY, Tsao HK, et al., Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: A molecular simulation study, Biophysical Journal, 2005, 89(1):158-166
    [14] Zheng J, Li LY, Chen SF, et al., Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers, Langmuir, 2004, 20(20):8931-8938
    [15] He Y, Chang Y, Hower JC, et al., Origin of repulsive force and structure/dynamics of interfacial water in OEG-protein interactions: a molecular simulation study, Physical Chemistry Chemical Physics, 2008, 10(36):5539-5544
    [16] Herold DA, Keil K, Bruns DE, Oxidation of polyethylene glycols by alcohol dehydrogenase, Biochemical Pharmacology, 1989, 38(1):73-76
    [17] Shen MC, Martinson L, Wagner MS, et al., PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies, Journal of Biomaterials Science-Polymer Edition, 2002, 13(4):367-390
    [18] Li LY, Chen SF, Jiang SY, Protein interactions with oligo(ethylene glycol) (OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption, Journal of Biomaterials Science-Polymer Edition, 2007, 18(11):1415-1427
    [19] Gaberc-Porekar V, Zore I, Podobnik B, et al., Obstacles and pitfalls in the PEGylation of therapeutic proteins, Current Opinion in Drug Discovery & Development, 2008, 11(2):242-250
    [20] Cao L, Chang M, Lee CY, et al., Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition, Journal of Biomedical Materials Research Part A, 2007, 81A(4):827-837
    [21] McArthur SL, McLean KM, Kingshott P, et al., Effect of polysaccharide structure on protein adsorption, Colloids and Surfaces B: Biointerfaces, 2000, 17(1):37-48
    [22] Luk YY, Kato M, Mrksich M, Self-assembled monolayers of alkanethiolatespresenting mannitol groups are inert to protein adsorption and cell attachment, Langmuir, 2000, 16(24):9604-9608
    [23] Chapman RG, Ostuni E, Liang MN, et al., Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria, Langmuir, 2001, 17(4):1225-1233
    [24] Statz AR, Meagher RJ, Barron AE, et al., New peptidomimetic polymers for antifouling surfaces, Journal of the American Chemical Society, 2005, 127:7972-7973
    [25] Chelmowski R, Koster SD, Kerstan A, et al., Peptide-based SAMs that resist the adsorption of proteins, Journal of the American Chemical Society, 2008, 130(45):14952-14953
    [26] Chen S, Zheng J, Li L, et al., Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials, Journal of the American Chemical Society, 2005, 127:14473-14478
    [27] He Y, Hower J, Chen SF, et al., Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water, Langmuir, 2008, 24(18):10358-10364
    [28] Ishihara K, Ziats NP, Tierney BP, et al., Protein adsorption from human plasma is reduced on phospholipid polymers, Journal of Biomedical Materials Research, 1991, 25(11):1397-1407
    [29] Lewis AL, Phosphorylcholine-based polymers and their use in the prevention of biofouling, Colloids and Surfaces B: Biointerfaces, 2000, 18(3-4):261-275
    [30] Tegoulia VA, Rao WS, Kalambur AT, et al., Surface properties, fibrinogen adsorption, and cellular interactions of a novel phosphorylcholine-containing self-assembled monolayer on gold, Langmuir, 2001, 17(14):4396-4404
    [31] Chung YC, Chiu YH, Wu YW, et al., Self-assembled biomimetic monolayers using phospholipid-containing disulfides, Biomaterials, 2005, 26(15):2313-2324
    [32] Feng W, Zhu SP, Ishihara K, et al., Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization, Langmuir, 2005, 21(13):5980-5987
    [33] Feng W, Brash JL, Zhu SP, Non-biofouling materials prepared by atomtransfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: Separate effects of graft density and chain length on protein repulsion, Biomaterials, 2006, 27(6):847-855
    [34] Chen SF, Liu LY, Jiang SY, Strong resistance of oligo(phosphorylcholine) self-assembled monolayers to protein adsorption, Langmuir, 2006, 22(6):2418-2421
    [35] Ueda T, Oshida H, Kurita K, et al., Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility, Polymer Journal, 1992, 24(11):1259-1269
    [36] Nakaya T, Li Y-J, Phospholipid polymers, Progress in Polymer Science, 1999, 24(1):143-181
    [37] Singh PK, Singh VK, Singh M, Zwitterionic polyelectrolytes: A review, E-Polymers, 2007:1-34
    [38] Kudaibergenov S, Jaeger W, Laschewsky A, Polymeric betaines: Synthesis, characterization, and application. Berlin: Springer-Verlag Berlin, 2006, 157-224
    [39] Costerton JW, Cheng K-J, Geesey GG, et al., Bacterial biofilms in nature and disease, Annual Review of Microbiology, 1987, 41:435-464
    [40] Wang C, Nakamura S, Synthesis of polyester and copolyesters having amino acid moieties in the main chain, Journal of Polymer Science Part A: Polymer Chemistry, 1994, 32(3):413-421
    [41] Allcock HR, Klingenberg EH, Welker MF, Alkanesulfonation of cyclic and high polymeric phosphazenes, Macromolecules, 1993, 26(20):5512-5519
    [42] Nakaya T, Yasuzawa M, Imoto M, Poly (phosphatidylcholine) analogs, Macromolecules, 1989, 22(7):3180-3181
    [43] Lowe AB, McCormick CL, Synthesis and solution properties of zwitterionic polymers, Chemical Reviews, 2002, 102(11):4177-4190
    [44] Kudaibergenov SE, polyampholytes: synthesis, characterization, and application, New York: Springer, 2002
    [45] West SL, Salvage JP, Lobb EJ, et al., The biocompatibility of crosslinkable copolymer coatings containing sulfobetaines and phosphobetaines, Biomaterials, 2004, 25(7-8):1195-1204
    [46] Zhang J, Yuan Y, Wu K, et al., Surface modification of segmented poly(ether urethane) by grafting sulfo ammonium zwitterionic monomer to improvehemocompatibilities, Colloids and Surfaces B: Biointerfaces, 2003, 28(1):1-9
    [47] Zhang Z, Chen S, Chang Y, et al., Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings, Journal of Physical Chemistry B, 2006, 110:10799-10804
    [48] Huxtable RJ, Physiological actions of taurine, Physiological Reviews, 1992, 72(1):101-163
    [49] Zhang Z, Vaisocherova H, Cheng G, et al., Nonfouling behavior of polycarboxybetaine-grafted surfaces: Structural and environmental effects, Biomacromolecules, 2008, 9(10):2686-2692
    [50] Ladd J, Zhang Z, Chen S, et al., Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma, Biomacromolecules, 2008, 9(5):1357-1361
    [51] Vaisocherova H, Yang W, Zhang Z, et al., Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma, Analytical Chemistry, 2008, 80(20):7894-7901
    [52] Nyyssola A. Pathways of glycine betaine synthesis in two extremely halophilic bacteria, Actinopolyspora Halophila and Ectothiorhodospira Halochloris, Espoo: Helsinki University of Technology, 2001
    [53] Ueland PM, Holm PI, Hustad S, Betaine: a key modulator of one-carbon metabolism and homocysteine status, Clinical Chemistry and Laboratory Medicine, 2005, 43(10):1069-1075
    [54] Zhang Z, Chen S, Jiang S, Dual-functional biomimetic materials: Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization, Biomacromolecules, 2006, 7(12):3311-3315
    [55] Cheng G, Xue H, Zhang Z, et al., A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities, Angewandte Chemie-international Edition, 2008, 47(46):8831-8834
    [56] Holmlin RE, Chen XX, Chapman RG, et al., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer, Langmuir, 2001, 17(9):2841-2850
    [57] Chen SF, Yu FC, Yu QM, et al., Strong resistance of a thin crystalline layer of balanced charged groups to protein adsorption, Langmuir, 2006, 22(19):8186-8191
    [58] Bernards MT, Cheng G, Zhang Z, et al., Nonfouling polymer brushes via surface-Initiated, two-component atom transfer radical polymerization, Macromolecules, 2008, 41(12):4216-4219
    [59] Chen SF, Jiang SY, A new avenue to nonfouling materials, Advanced Materials, 2008, 20(2):335-338
    [60] Chen S, Cao Z, Jiang S, Ultra-low fouling peptide surfaces derived from natural amino acids, Biomaterials, 2009, 30(29):5892-5896
    [61] Azzaroni O, Brown AA, Huck WTS, UCST wetting transitions of polyzwitterionic brushes driven by self-association, Angewandte Chemie International Edition, 2006, 45:1770-1774
    [62] Chang Y, Chen S, Zhang Z, et al., Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines, Langmuir, 2006, 22:2222-2226
    [63] Zhang Z, Chao T, Chen S, et al., Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides, Langmuir, 2006, 22:10072-10077
    [64] Cheng G, Zhang Z, Chen S, et al., Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces, Biomaterials, 2007, 28:4192-4199
    [65] Kenausis GL, Voros J, Elbert DL, et al., Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: Attachment mechanism and effects of polymer architecture on resistance to protein adsorption, Journal of Physical Chemistry B, 2000, 104(14):3298-3309
    [66] Autumn K, Liang YA, Hsieh ST, et al., Adhesive force of a single gecko foot-hair, Nature, 2000, 405(6787):681-685
    [67] Chisholm JRM, Kelley R, Marine ecology - Worms start the reef-building process, Nature, 2001, 409(6817):152-152
    [68] Waite JH, Adhesion a la Moule, Integrative and Comparative Biology, 2002, 42(6):1172-1180
    [69] Waite JH, Tanzer ML, Polyphenolic substance of Mytilus edulis: novel adhesive containing L-Dopa and hydroxyproline, Science, 1981, 212(4498):1038-1040
    [70] Crisp DJ, Walker G, Young GA, et al., Adhesion and substrate choice in mussels and barnacles, Journal of Colloid and Interface Science, 1985, 104(1):40-50
    [71] Brazee SL, Carrington E, Interspecific comparison of the mechanicalproperties of mussel byssus, Biological Bulletin, 2006, 211(3):263-274
    [72] Waite JH, The phylogeny and chemical diversity of quinone-tanned glues and varnishes, Comp Biochem Physiol B, 1990, 97(1):19-29
    [73] Lin Q, Gourdon D, Sun C, et al., Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3, Proceedings of the National Academy of Sciences, 2007, 104(10):3782-3786
    [74] Deacon MP, Davis SS, Waite JH, et al., Structure and mucoadhesion of mussel glue protein in dilute solution, Biochemistry, 1998, 37(40):14108-14112
    [75] Waite JH, Housley TJ, Tanzer ML, Peptide repeats in a mussel glue protein - theme and variations, Biochemistry, 1985, 24(19):5010-5014
    [76] Inoue K, Takeuchi Y, Miki D, et al., Mussel adhesive plaque protein gene is a novel member of epidermal growth factor-like gene family, Journal of Biological Chemistry, 1995, 270(12):6698-6701
    [77] Rzepecki LM, Hansen KM, Waite JH, Characterization of a cystine-rich polyphenolic protein family from the blue mussel Mytilus edulis L, Biol Bull, 1992, 183(1):123-137
    [78] Papov VV, Diamond TV, Biemann K, et al., Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the marine mussel Mytilus edulis, Journal of Biological Chemistry, 1995, 270(34):20183-20192
    [79] Zhao H, Waite JH, Proteins in load-bearing junctions: The histidine-rich metal-binding protein of mussel byssus, Biochemistry, 2006, 45(47):14223-14231
    [80] Waite JH, Qin XX, Polyphosphoprotein from the adhesive pads of Mytilus edulis, Biochemistry, 2001, 40(9):2887-2893
    [81] Zhao H, Waite JH, Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus, Journal of Biological Chemistry, 2006, 281(36):26150-26158
    [82] Qin XX, Coyne KJ, Waite JH, Tough tendons - Mussel byssus has collagen with silk-like domains, Journal of Biological Chemistry, 1997, 272(51):32623-32627
    [83] Waite JH, Qin XX, Coyne KJ, The peculiar collagens of mussel byssus, Matrix Biology, 1998, 17(2):93-106
    [84] Waite JH, Reverse engineering of bioadhesion in marine mussels, Bioartificial Organs Ii: Technology, Medicine, and Materials, 1999, 875:301-309
    [85] Yu ME, Hwang JY, Deming TJ, Role of L-3,4-dihydroxyphenylalanine in mussel adhesive proteins, Journal of the American Chemical Society, 1999, 121(24):5825-5826
    [86] Burzio LA, Waite JH, Cross-linking in adhesive quinoproteins: Studies with model decapeptides, Biochemistry, 2000, 39(36):11147-11153
    [87] Haemers S, Koper GJM, Frens G, Effect of oxidation rate on cross-linking of mussel adhesive proteins, Biomacromolecules, 2003, 4(3):632-640
    [88] Monahan J, Wilker JJ, Cross-linking the protein precursor of marine mussel adhesives: Bulk measurements and reagents for curing, Langmuir, 2004, 20:3724-3729
    [89] Young GA, Crisp DJ, Marine annimals and adhesion, In K. W. Allen (ed.), Adhesion. London, 1982, 19-39
    [90] Yu ME, Deming TJ, Synthetic polypeptide mimics of marine adhesives, Macromolecules, 1998, 31(15):4739-4745
    [91] Lee H, Scherer NF, Messersmith PB, Single-molecule mechanics of mussel adhesion, Proceedings of the National Academy of Sciences, 2006, 103:12999-13003
    [92] Arora A, Arora T, Materials for innovative Eco-Products, Materials Technology, 2004, 19(3):154-158
    [93] Dalsin JL, Hu B-H, Lee BP, et al., Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces, Journal of the American Chemical Society, 2003, 125:4253-4258
    [94] Fan X, Lin L, Dalsin JL, et al., Biomimetic anchor for surface-initiated polymerization from metal substrates, Journal of the American Chemical Society, 2005, 127:15843-15847
    [95] Lee H, Lee BP, Messersmith PB, A reversible wet/dry adhesive inspired by mussels and geckos, Nature, 2007, 448:338-342
    [96] Lee H, Dellatore SM, Miller WM, et al., Mussel-inspired surface chemistry for multifunctional coatings, Science, 2007, 318:426-430
    [97] Messersmith PB, Multitasking in tissues and materials, Science, 2008, 319:1767-1768
    [98] Gu H, Xu K, Yang Z, et al., Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles—a potential candidate for bimodal anticancer therapy, Chemical Communications, 2005, 4270-4272
    [99] Wang L, Yang Z, Gao J, et al., A Biocompatible method of decorporation: Bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood, Journal of the American Chemical Society, 2006, 128:13358-13359
    [100] Statz AR, Barron AE, Messersmith PB, Protein, cell and bacterial fouling resistance of polypeptoid-modified surfaces: effect of side-chain chemistry, Soft Matter, 2008, 4:131-139
    [101] Wu H, Zhu H, Zhuang J, et al., Water-soluble nanocrystals through dual-interaction ligands, Angewandte Chemie International Edition, 2008, 47:3730-3734
    [102] Shukoor MI, Natalio F, Metz N, et al., dsRNA-functionalized multifunctional g-Fe2O3 nanocrystals: A tool for targeting cell surface receptors, Angewandte Chemie International Edition, 2008, 47(25):4748-4752
    [103] Szwarc M, Living polymers, Nature, 1956, 178(4543):1168-1169
    [104] Wang JS, Matyjaszewski K, Controlled/living radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes, Journal of the American Chemical Society, 1995, 117(20):5614-5615
    [105] Curran DP, The design and application of free radical chain reactions in organic synthesis, Synthesis, 1988, 1988:489-513
    [106] Boutevin B, From telomerization to living radical polymerization, Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38(18):3235-3243
    [107] Qiu J, Matyjaszewski K, Metal complexes in controlled radical polymerization, Acta Polymerica, 1997, 48(5-6):169-180
    [108] Bengough WI, Fairservice WH, Effects of salts of metals on vinyl polymerization. Part 6.—Polymerization of methyl methacrylate in the presence of cupric bromide, Transactions of the Faraday Society, 1971, 67:414-419
    [109] Pan CY, Lou XD, "Living" free radical ring-opening polymerization of 2-methylene-4-phenyl-1,3-dioxolane by atom transfer radical polymerization, Macromolecular Chemistry and Physics, 2000, 201(11):1115-1120
    [110] Chen XP, Padias AB, Hall HK, Atom transfer radical polymerization of methyl bicyclobutane-1-carboxylate, Macromolecules, 2001, 34(11):3514-3516
    [111] Tang W, Matyjaszewski K, Effects of initiator structure on activation rate constants in ATRP, Macromolecules, 2007, 40(6):1858-1863
    [112] Tang W, Matyjaszewski K, Effect of ligand structure on activation rateconstants in ATRP, Macromolecules, 2006, 39(15):4953-4959
    [113] Kato M, Kamigaito M, Sawamoto M, et al., Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris- (triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization, Macromolecules, 1995, 28(5):1721-1723
    [114] Matyjaszewski K, Patten TE, Xia J, Controlled/"Living" radical polymerization. Kinetics of the homogeneous atom transfer radical polymerization of styrene, Journal of the American Chemical Society, 1997, 119(4):674-680
    [115] Ma HW, Hyun JH, Stiller P, et al., "Non-fouling" oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization, Advanced Materials, 2004, 16(4):338-341
    [116] Matyjaszewski K, Xia JH, Atom transfer radical polymerization, Chemical Reviews, 2001, 101(9):2921-2990
    [117] Pasche S, Voros J, Griesser HJ, et al., Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces, Journal of Physical Chemistry B, 2005, 109(37):17545-17552
    [118] Homola J, Surface plasmon resonance sensors for detection of chemical and biological species, Chemical Reviews, 2008, 108(2):462-493
    [119] Homola J, Present and future of surface plasmon resonance biosensors, Analytical and Bioanalytical Chemistry, 2003, 377(3):528-539
    [120] Habauzit D, Chopineau J, Roig B, SPR-based biosensors: a tool for biodetection of hormonal compounds, Analytical and Bioanalytical Chemistry, 2007, 387(4):1215-1223
    [121] Shankaran DR, Gobi KVA, Miura N, Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest, Sensors and Actuators B: Chemical, 2007, 121(1):158-177
    [122] Yang W, Chen S, Cheng G, et al., Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetiane)-grafted surfaces, Langmuir, 2008, 24:9211-9214
    [123] Wang H, Chen SF, Li LY, et al., Improved method for the preparation of carboxylic acid and amine terminated self-assembled monolayers ofalkanethiolates, Langmuir, 2005, 21(7):2633-2636
    [124] Wagner VE, Koberstein JT, Bryers JD, Protein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-polymers, Biomaterials, 2004, 25(12):2247-2263
    [125] Ooka AA, Garrell RL, Surface-enhanced Raman spectroscopy of DOPA-containing peptides related to adhesive protein of marine mussel, Mytilus edulis, Biopolymers, 2000, 57(2):92-102
    [126] Adkins JN, Varnum SM, Auberry KJ, et al., Toward a human blood serum proteome - Analysis by multidimensional separation coupled with mass spectrometry, Molecular & Cellular Proteomics, 2002, 1(12):947-955
    [127] Bearinger JP, Terrettaz S, Michel R, et al., Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions, Nature Materials, 2003, 2(4):259-264
    [128] Roosjen A, Mei HCvd, Busscher HJ, et al., Microbial adhesion to poly(ethylene oxide) brushes: Influence of polymer chain length and temperature, Langmuir, 2004, 20:10949-10955
    [129] Johnston EE, Bryers JD, Ratner BD, Interactions between Pseudomonas aeruginosa and plasma-deposited PEO-like thin films during initial attachment and growth, Polym Prep (Am Chem Soc, Div Polym Chem), 1997, 38(1):1016-1017
    [130] Cheng G, Li GZ, Xue H, et al., Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation, Biomaterials, 2009, 30(28):5234-5240
    [131] Ikeuchi M, Ikeuchi M, Inoue K, et al., a new synthesis of phenolic 1-hydroxy-1-phenyl-2, 3, 4, 5-tetrahydro-1H-3-benzazepines, Heterocycles, 2005, 65(12):2925-2934
    [132] Jones DM, Brown AA, Huck WTS, Surface-initiated polymerizations in aqueous media: Effect of initiator density, Langmuir, 2002, 18(4):1265-1269
    [133] Ladd J, Boozer C, Yu QM, et al., DNA-directed protein immobilization on mixed self-assembled monolayers via a Streptavidin bridge, Langmuir, 2004, 20(19):8090-8095
    [134] Sever MJ, Wilker JJ, Synthesis of peptides containing DOPA (3,4-dihydroxyphenylalanine), Tetrahedron, 2001, 57(29):6139-6146
    [135] Waite JH, Mussel power, Nature Materials, 2008, 7:8-9
    [136] Fan X, Lin L, Messersmith PB, Cell fouling resistance of polymer brushes grafted from Ti substrates by surface-initiated polymerization: Effect of ethylene glycol side chain length, Biomacromolecules, 2006, 7:2443-2448
    [137] Feng W, Brash J, Zhu SP, Atom-transfer radical grafting polymerization of 2-methacryloyloxyethyl phosphorylcholine from silicon wafer surfaces, Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(12):2931-2942
    [138] Li GZ, Xue H, Cheng G, et al., Ultralow fouling zwitterionic polymers grafted from surfaces covered with an initiator via an adhesive mussel mimetic linkage, Journal of Physical Chemistry B, 2008, 112(48):15269-15274
    [139] Prime KL, Whitesides GM, Self-assembled organic monolayers - Model systems for studying adsorption of proteins at surfaces, Science, 1991, 252(5009):1164-1167
    [140] Langer R, Perspectives: Drug delivery - Drugs on target, Science, 2001, 293(5527):58-59
    [141] Foss RP. Acrylic amphoteric polymers, United States, US4749762, Jun. 7, 1988
    [142] Farwaha R, Currie W. Amphoteric surfactants and copolymerizable amphorteric surfactants for use in latex paint, United States, US5240982, Aug. 31, 1993
    [143] Mumick PS, Welch PM, Salazar LC, et al., Water-soluble copolymers. 56. Structure and solvation effects of polyampholytes in drag reduction, Macromolecules, 1994, 27(2):323-331
    [144] Salamone JC, Quach L, Watterson AC, et al., Polymerization of ion-pair co-monomers of related structures, Journal of Macromolecular Science-Chemistry, 1985, A22(5-7):653-664
    [145] Salamone JC, Mahmud NA, Mahmud MU, et al., Acrylic ampholytic ionomers, Polymer, 1982, 23(6):843-848
    [146] Salamone JC, Watterson AC, Hsu TD, et al., Polymerization of vinylpyridinium salts .9. preparation of monomeric salt pairs, Journal of Polymer Science Part C-Polymer Letters, 1977, 15(8):487-491
    [147] Peiffer DG, Lundberg RD, Synthesis and viscometric properties of low charge-density ampholytic ionomers, Polymer, 1985, 26(7):1058-1068
    [148] McCormick CL, Johnson CB, Water-soluble polymers. 28. Ampholyticcopolymers of sodium 2-acrylamido-2-methylpropanesulfonate with (2-acrylamido-2-methylpropyl)dimethylammonium chloride: synthesis and characterization, Macromolecules, 1988, 21(3):686-693
    [149] Yang JH, Jhon MS, The conformation and dynamics study of amphoteric copolymers, P(sodium 2-methacryloyloxyethanesulfonate-co-2-methacryloyloxyethyltrimethylammonium iodide), using viscometry, N-14-NMR, and NA-23-NMR, Journal of Polymer Science Part A: Polymer Chemistry, 1995, 33(15):2613-2621
    [150] Zhang AF, Barner J, Goessl I, et al., A covalent-chemistry approach to giant macromolecules and their wetting behavior on solid substrates, Angewandte Chemie-international Edition, 2004, 43(39):5185-5188
    [151] Li GZ, Cheng G, Xue H, et al., Ultra low fouling zwitterionic polymers with a biomimetic adhesive group, Biomaterials, 2008, 29(35):4592-4597
    [152] Scofield JH, Hartree-slater subshell photoionization cross-sections at 1254 and 1487EV, Journal of Electron Spectroscopy and Related Phenomena, 1976, 8(2):129-137
    [153] Dalsin JL, Lin LJ, Tosatti S, et al., Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA, Langmuir, 2005, 21(2):640-646
    [154] Chen RX, Feng C, Zhu SP, et al., Surface-initiated atom transfer radical polymerization grafting of poly(2,2,2-trifluoroethyl methacrylate) from flat silicon wafer surfaces, Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(3):1252-1262
    [155] Faca VM, Song KS, Wang H, et al., A mouse to human search for plasma proteome changes associated with pancreatic tumor development, Plos Medicine, 2008, 5(6):953-967
    [156] Yang Z, Zheng SY, Harrison WJ, et al., Long-circulating near-infrared fluorescence core-cross-linked polymeric micelles: Synthesis, characterization, and dual nuclear/optical imaging, Biomacromolecules, 2007, 8(11):3422-3428
    [157] Vaisocherova H, Zhang Z, Yang W, et al., Functionalizable surface platform with reduced nonspecific protein adsorption from full blood plasma-Material selection and protein immobilization optimization, Biosensors & Bioelectronics, 2009, 24(7):1924-1930
    [158] Wach JY, Malisova B, Bonazzi S, et al., Protein-resistant surfaces throughmild dopamine surface functionalization, Chemistry-a European Journal, 2008, 14(34):10579-10584
    [159] Rodriguez R, Blesa MA, Regazzoni AE, Surface complexation at the TiO2 (anatase) aqueous solution interface: Chemisorption of catechol, Journal of Colloid and Interface Science, 1996, 177(1):122-131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700