憎水性金纳米粒子的制备及其在对硝基苯酚还原中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,金纳米颗粒由于具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等特性,被广泛应用于生物医学工程、非线性光学、电子学,和催化工业等领域。因此,其制备与应用一直是纳米材料领域研究的热点问题。本论文设计合成了烷氧基苄胺(SAOBA)类新型表面活性剂,它们能与正丁醇、正庚烷和HAuCl4·4H2O构成稳定的W/O型微乳液。利用该反相微乳液为模板,借助微波辐射加热手段,通过改变表面活性剂的种类、还原剂的种类、以及微乳液组成成分的比例等实验参数,很好的实现了不同尺寸和形貌的憎水性金纳米颗粒的控制合成。将制备的憎水性金纳米颗粒负载在γ-Al_2O_3上,可以很好的催化对硝基苯酚的还原。本文中所用的表征手段主要有FT-IR、1HNMR、MS、UV-vis、TEM、XRD、CA等。研究成果概括如下:
     1.分别用对羟基苯甲醛、香兰素和3,4-二羟基苯甲醛为原料,与不同链长的溴代烷烃发生O-烷基化反应生成系列烷氧基苯甲醛,然后与盐酸羟胺反应生成系列烷氧基苯甲醛肟,最后用锌粉还原生成烷氧基取代苄胺(SAOBA)。
     2.在CnOBA(n=8, 12或16)/正丁醇/正庚烷/HAuCl4/NaOH(aq.) W/O型微乳液体系中,通过微波辐射加热的碱促进条件下由正丁醇原位还原氯金酸分别制备了4-辛氧基苄胺(C8OBA)、4-十二烷氧基苄胺(C_(12)OBA)和4-十六烷氧基苄胺(C16OBA)稳定的纳米金粒子。选用C_(12)OBA为重点研究对象考察了利用正丁醇原位还原时,微乳液组成成分对形成金纳米粒子尺寸和形貌的影响。实验发现,增加C_(12)OBA/HAuCl4摩尔比或正庚烷/正丁醇的体积比,有利于获得球形、小粒径的憎水性金纳米粒子。所制备的高度单分散的憎水性金纳米粒子能够在空气/水界面形成大面积的短程有序单层膜。
     3.微波辐射下利用CnOBA(n=8, 12或16)/正丁醇/正庚烷/丙醛/HAuCl4(aq.) W/O型微乳液体系为模板,以丙醛作为还原剂合成了C8OBA、C_(12)OBA和C16OBA修饰的憎水性金纳米粒子。实验发现,在相同的反应条件下,金纳米粒子的粒径随着烷氧基链长的增加而减小,粒子形貌由不规则的多边形变为球形。同样以C_(12)OBA为研究对象,考察丙醛还原时粒子的形貌特点。实验结果显示:降低胺金摩尔比或正庚烷/正丁醇的体积比或增加还原剂丙醛的用量,有利于生成不规则形貌的憎水性金纳米颗粒;
     4.通过微波辐射加热的手段,在C_(12)OBA/正丁醇/正庚烷/甲酸/HAuCl4(aq.)反相微乳液体系中,利用甲酸作为还原剂制备了C_(12)OBA包裹的憎水性金纳米粒子。实验结果显示:金纳米粒子的尺寸随着C_(12)OBA/ HAuCl4摩尔比增大而减小、单分散性变好,粒子的形貌由不规则的多边形逐渐变为球形。用CnOBA(n=8, 16)、MDOBA、DDOBA代替C_(12)OBA分别制备了相应表面活性剂修饰的憎水性金纳米粒子。实验结果显示:烷氧基链长增加、取代烷氧基个数增加有利于生成小粒径、单分散好的憎水性金纳米粒子。
     5.利用胶体负载法将制备的憎水性金纳米粒子负载到γ-Al_2O_3载体上制得Au/γ-Al_2O_3负载型纳米金催化剂,探索了其在对硝基苯酚还原反应中的催化活性,并考察了金纳米粒子粒径、金的负载量、反应温度等因素对催化活性的影响。实验结果表明:当金纳米粒子粒径约为8nm,金负载量为0.1ωt%,反应温度为50℃时催化效果较好;该催化剂可被循环利用。
In recent decades, preparation and application of gold nano-materials have been a hot research issue in nano-materials field. Gold nanoparticles with some characters such as small size effect, surface effect, quantum size effect and macroscopic quantum tunneling effect are widely used in the fields of biomedical engineering, non-linear optics, electronics and industrial catalysis.
     This thesis introduces a novel surfactant Alkoxybenzylamine (SAOBA), which can be mixed with n-butanol, n-heptane and HAuCl4·4H2O to form W/O microemulsion. Using this reverse microemulsion as template and microwave radiation as heating means, hydrophobic gold nanoparticles with different sizes and morphologies have been prepared by changing the experimental parameters such as the type of the surfactant, the type of the reducing agent, as well as the microemulsion’s composition. When the prepared hydrophobic gold nanoparticles are surpported onγ-Al_2O_3, the Au/γ-Al_2O_3 catalyst plays a good catalytic activity in reduction of p-nitrophenol. All the products have been investigated by FT-IR, 1H NMR, MS, UV-vis, TEM, XRD, CA and so on.
     The main work completed in this thesis are summarized as follows:
     1. Alkoxybenzylamines (SAOBA) are carried out by zinc dust reduction of alkoyxybenzaloxime, which was obtained from alkoxybenzaldehyde (obtained from p-hydroxybenzaldehyde, vanillin or 3,4-dihydroxybenzaldehyde by O-alkylation) by reacting with hydroxylamine hydrochloride.
     2. Gold nanoparticles stablized by C8OBA, C_(12)OBA and C16OBA are obtained by n-butanol reduction in situ under microwave irradiation by using the CnOBA(n=8, 12, 16)/n-butanol/n-heptane/HAuCl4/NaOH(aq.) W/O microemulsion as a microreactor. We focus on C_(12)OBA in order to determine the influence of the microemulsion’s composition during the progress of formation the size and morphology of gold nanoparticles. The results show that CnOBA can be used not only as a surfactant which helps to form a stable microemulsion system, but also as a good protecting agent for gold nanoparticles. Gold nanoparticles with spherical morphology and small size can be easily obtained with the increasing of C_(12)OBA/ HAuCl4 molar ratio or the increasing of n-heptane/n-butanol volume ratio. The prepared hydrophobic gold nanoparticles with high monodispersity can spontaneously form large areas of the short-range ordered monolayer membrane at the air/water interface.
     3. Under the promotion of microwave irradiation, by the reduction of propionaldehyde, C8OBA, C_(12)OBA and C16OBA modified hydrophobic gold nanoparticles are prepared in CnOBA(n=8, 12, 16)/n-butanol/n-heptane/propion- aldehyde/HAuCl4 (aq) W/O microemulsion. The expermental results show that the size of the gold nanoparticles gradually decrease and the morphologies of gold nanoparticles gradually change from polygonal to spherical with the increasing length of the alkoxy chain of the CnOBA under the same reaction condition. We still focus on C_(12)OBA to study the morphology of C_(12)OBA-capped Au nanoparticles obtained by propionaldehyde as reductant. The results show that gold nanoparticles with polygonal morphology are obtained by decreasing the C_(12)OBA/HAuCl4 molar ratio or n-heptane/n-butanol volume ratio or increasing the amount of the reductant propionaldehyde.
     4. C_(12)OBA-coated gold nanoparticles are synthesized under microwave irradiation in C_(12)OBA/n-butanol/n-heptane/formic acid/HAuCl4(aq.) reverse microemulsion system with formic acid as a reductant. The results illustrate that the size of the gold nanoparticles gradually decreasing with the molar ratio of aime/gold increasing, and the monodispersity of the gold nanoparticles increasing, the morphologies of the paricles gradually change from polygonal to spherical. C8OBA, C16OBA, MDOBA and DDOBA modified naoparticles are also sythesized by the same system. we find that increasing alkoxy chain length and alkoxy chain number are conducive to generate small particle size and good monodispersity gold nanoparticles.
     5. Au/γ-Al_2O_3 catalyst is prepared by loading the obtained gold sol onto the surface ofγ-Al_2O_3. Then, the catalytic activity in the reduction reaction of p-nitrophenol are tested. Meanwhile, we study the influence of the size of the gold, the amount of the supports and the temperature to the reaction. The optimum reaction conditions are described as follows: the size of the gold naoparticles should be smaller then 10nm, the load ratio of gold nanoparticles is 0.1ωt% and the reaction temperature is 50℃. This Au/γ-Al_2O_3 catalyst can be recycled .
引文
[1] Henglein A., Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles[J], Chem Rev., 1989, 89: 1861~1873
    [2] Njoki P. N., Lim I-Im S., Mott D., Zhong C. J., Size Correlation of Optical and Spectroscopic Properties for Gold Nanoparticles[J], J.Phys. Chem. C, 2007, 111: 14664~14669
    [3]储昭琴,李村成,孔明光,金纳米颗粒、金纳米片的制备及电镜观察[J],电子显微学报, 2005, 24(4): 253~253
    [4] Jadab S. , Kunjukrishna P., Vijayamohanan, Organic dye molecules as reducing agent for the synthesis of electroactive gold nanoplates[J], J. Colloid Interface Sci., 2006, 298: 679~684
    [5] Sun Y. G., Xia Y., N., Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium[J], J. Am. Chem. Soc., 2004, 126: 3892~3901
    [6] Gou L., F., Murphy C. J., Solution-Phase Synthesis of Cu2O Nanocubes[J], Nano Lett., 2003, 3(2): 231~234
    [7] Sau T. K., Murphy C. J., Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution[J], J. Am. Chem. Soc., 2004, 126: 8648~8649
    [8] Jana N. R., Gearheart L., Murphy C. J., Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods[J], J. Phys. Chem. B, 2001, 105: 4065~ 4067
    [9] Jana N. R., Gearheart L., Murphy C. J., Anisotropic Chemical Reactivity of Gold Spheroids and Nanorods[J], Langmuir, 2002, 18: 922~927
    [10] Gao J. X., Bender C. M., Murphy C. J., Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution[J], Langmuir, 2003, 19: 9065~9070
    [11] Sau T. K., Murphy C. J., Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution[J], Langmuir, 2004, 20: 6414~6420
    [12] Gole A., Murphy C. J., Polyelectrolyte-Coated Gold Nanorods: Synthesis, Characterization and Immobilization[J], Chem. Mater., 2005, 17: 1325~1330
    [13] Schwartzberg A. M., Olson T. Y., Zhang J. Z., Gold Nanotubes Synthesized via Magnetic Alignment of Cobalt Nanoparticles as Templates[J], J. Phys. Chem. C, 2007, 111: 16080~16082
    [14] Liu H., G., Wang C. W., Wu J. P., Gold and silver nanorings formed at the air/water interface[J], Colloids and Surfaces A: Physicochem. Eng. Aspects 2008, 312: 203~208
    [15] Sau T. K., Murphy C. J., Self-Assembly Patterns Formed upon Solvent Evaporation of Aqueous Cetyltrimethylammonium Bromide-Coated Gold Nanoparticles of Various Shapes[J], Langmuir, 2005, 21: 2923~2929
    [16] Teng X. W., Yang H., Synthesis of Platinum Multipods: An Induced Anisotropic Growth[J], Nano. Lett., 2005, 5(5): 885~891
    [17] Tuan H. Y., Lee D. C., Korgel B. A., Catalytic Solid-Phase Seeding of Silicon Nanowires by Nickel Nanocrystals in Organic Solvents[J], Nano. Lett., 2005, 5(4): 681~684
    [18] Wang L., Wei G., Li Z., Photochemical synthesis and self-assembly of gold nanoparticles[J], Colloids and Surfaces A: Physicochem. Eng. Aspects 2008, 312: 148~153
    [19] Agrawal V. V., Kulkarni G. U., Rao C.N.R., Surfactant-promoted formation of fractal and dendritic nanostructures of gold and silver at the organic–aqueous interface[J], J. Colloid and Interface Sci., 2008, 318: 501~506
    [20]齐利民,席凯,马季铭,特殊形貌SrCO3粒子的简易合成[J],化学学报, 2003, 61(1): 126~128
    [21]刘吉平,郝向阳,纳米科学与技术,北京:科学出版社,2002
    [22]李玲,向航.功能材料与纳米技术,北京:化学工业出版社,2002
    [23]侯士敏,陶成钢,刘虹雯等,高定向石墨表面金纳米粒子和金纳米线的研究[J].物理学报, 2001, 50(2): 223~224
    [24] Mafune F., Kohno J., Takeda Y., et al., Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant[J], J. Phys. Chem. B, 2001, 105(22): 5114~5120
    [25] Binil I. I., Karuvath Y., Kakkudiyil G. T., Functionalized Gold Nanoparticles as Phosphorescent Nanomaterials and Sensors[J], J. Am. Chem. Soc., 2006, 128: 1907~1913
    [26] Tetsu Y., Kunitake T., Practical preparation of anionic mercap toligand-stablized gold nanoparticles and their immobilization[J], Physicochem. and Eng. Aspects, 1999, 149: 193~199
    [27] Gole A.,Murphy C. J., Seed-Mediated Synthesis of Gold Nanorods: Role of the Size and Nature of the Seed[J], Chem. Mater., 2004, 16: 3633~3640
    [28] Wu H. Y., Liu Z. L., Li C.X., et al., Preparation of hollow capsule-stabilized gold nanoparticles through the encapsulation of the dendrimer[J], J. Colloid and Interface Sci., 2006, 302: 142~148
    [29] Qu Y. Q., Porter R., Shan F., et al., Synthesis of Tubular Gold and Silver Nanoshells Using Silica Nanowire Core Templates[J], Langmuir, 2006, 22: 6367~6374
    [30]连洪州、石春山,用于纳米粒子合成的微乳液[J],化学通报,2004, 5: 333~340
    [31] Shen M., Du Y. K., Hua N. P., et al., Microware irradiation synthesis and self-assembly of alkylamine-stabilized gold nanoparticles[J], Powder Tech., 2006, 162: 64~72
    [32] Shen M., Du Y. K., Yang P., et al., Morpholology control of the fabricated hydrophobic gold nanostructures in W/O microemulsion under microwave irradiation[J], J. Phys. Chem. Solids, 2005, 66(10): 1628~1634
    [33]沈明,姚玉峰,曹振峰等,憎水性金纳米粒子的反相微乳液法制备[J],化学研究与应用, 2007, 19(6): 622~628
    [34] Meldrum F. C., Kotov N. A., Fendler J. H., ultra-thin particulate films prepared from capped and uncapped reverse-micelle-entrapped silver particles[J], J. Chem. Soc. Faraday Trans., 1995, 91: 673~680
    [35]丁艳君,王桦,李继山等,纳米金-蛋白A介导抗体定向固定的压电传感及电化学特性研究[J],高等化学学报, 2005, 26(2): 222~226
    [36] Liu T., Tang J., Jiang L., The enhancement effect of gold nanoparticles as a surface modifier on DNA sensorsensitivity[J], Biochem. Biophys. Res. Commun., 2004, 313(1): 3~7
    [37] Wang H., Wu J., Li J., etal., Nanogold particle-enhanced oriented adsorption of antibody fragments for immunosensing platforms[J], Biosens Bioelectron, 2005, 20(11): 2210~2217
    [38] Fishelson M., Dovgolevsky N., Geiger D., Maximum likelihood haplotyping for general pedigrees[J]. Hum. Hered, 2005, 59(1): 41~60;
    [39] Chen J., Wang D., Xi J. Au L. et al., Immuno gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells[J], Nano. Lett., 2007, 7: 1318~1322
    [40] Park J. H., Lim Y. T., Park O. O., Enhancement of potostability in blue- light- emitting polymer doped with gold nanoparticles[J], Macromolecular Rapid Communications, 2003, 331~334
    [41]周华,董守安,纳米金负载型催化剂的研究进展[J],贵金属, 2004, 25(2): 48 ~56
    [42] Bond G. C., Louis C., Tholnpson D. T., Catalysis by Gold.London: Imperial Collegc. Press., 2006, 1~21;
    [43]王东辉,程代云,郝正平,史喜成,纳米金催化剂及其应用北京:国防工业出版社2006;
    [44]徐柏庆,杨绪壮,王东辉等译,黄金的催化作用,北京:科学出版社,2008
    [45] Diemant T., Hartmann H., Bansmann J., Behm R.J., CO adsorption energy on planar Au/TiO2 model catalysts under catalytically relevant conditions[J], Journal of Catalysis, 2007, 252: 171~177
    [46] Betiana C., Corinne P., María A., Volpe Hydrogenation of crotonaldehyde on different Au/CeO2 catalysts[J], Journal of Catalysis, 2008, 254: 71~78
    [47] Haruta M., Tsubota S., Kobayshi T., Low - Temperature oxidation of CO over gold supported on TiO2,α-Fe2O3, and Co3O4[J], Journal of Catalysis, 1993, 144: 175~192;
    [48] Golunski S., Rajaram R., Hodge N., et al., Low- temperature redox activity in co-precipitated catalysts: a comparison between gold and platinum-group metals[J], Catalysis Today, 2002, 72: 107 ~113
    [49] Ferenc Somodi, Modified preparation method for highly active Au/SiO2 catalysts used in CO oxidation[J], Appl. Catal. A: Gen., 2008, 347: 216~222
    [50] Moreau F., Bond G. C., Taylor A. O., Gold on Titania Catalysts: Influence of SomePhysicochemical Parameters on the Activity and Stability for the Oxidation of Carbon Monoxide[J], Appl. Catal. A: Gen., 2006, 302: 110~117
    [51] Choudhary T. V., Sivadinarayana C., Chusuei C. C., et al., CO oxidation on supported nano-Au catalysts synthesized from a [Au6(PPh3)6](BF4)2 complex[J], Journal of Catalysis, 2002, 207: 247~255
    [52] Hsiao C. Y., Kang Y. M., WanB. Z., Pretreatment effect of gold/iron/zeolite-Y on carbon monoxide oxidation[J], Catal. Today, 1995, 26(1): 59~69
    [53] Ivanova S., Petit C., Pitchon V., A new preparation method for the formation of gold nanopaticles on an oxide support[J], Appl. Catal. A: Gen., 2004, 267: 191~ 201
    [54] Elodie Quinet, Franck Morfin, Fabrice Diehl, Priscilla Avenier,Jean-Luc Rousset , Hydrogen effect on the preferential oxidation of carbon monoxide over alumina-supported gold nanoparticles[J], Applied Catalysis B: Environmental, 2008, 80: 195~201
    [55] Kozlova A. P, KozlovA. I., Sugiyama S., et al., Study of gold species in iron-oxide -supported gold catalysts derived from gold-phosphine complex Au(PPh3) (NO3) and As- precipitated wet Fe(OH)3[J], J. of Catal., 1999, 181: 37~48
    [56] Uematsu T., Fan L., Maruyama T., et al., New application of spray reaction technique to the preparation of supported gold catalysts for environmental catalysis[J], Journal of Molecular Catalysis, A, Chemical, 2002, 182~183: 209~ 214
    [57] Wen L., Fu J. K., Gu P. Y., Yao B.X., Lin Z. H., Zhou J.Z., Monodispersed gold nanoparticles supported on g-Al2O3 for enhancement of low-temperature catalytic oxidation of CO[J], Applied Catalysis B: Environmental, 2008, 79: 402~409
    [58] Zheng N. F., Stucky G. D., A General Sythetic Strategy for Oxide-Supported Metal Nanoparticle Catalysts[J], J. Am. Chem. Soc., 2006, 128: 14278~14280
    [59] Wu S., Zheng X., Wang S, et.al., TiO2 supported nano-Au catalysts prepared via solvated metal atom impregnation for low-temperature CO oxidation[J], Catal. Lett., 2004, 97(1~2): 17~23
    [60] Mallick K., Witcomb M. J., Scurrell M. S., Simplified single-step synthetic route for the preparation of a highly active gold-based catalyst for CO oxidation[J], J. Mol. Catal. A: Chem.,2004, 215: 103~106
    [61] Baiker A., Maciejewski M., Tagliaferri S., et.al., Gold-Silver-zirconium and gold iron- zirconium alloys[J], J. Catal., 1995, 151: 407~419
    [62] Moreau F., Bond G. C., et.al., Gold supported on mixed oxides for the oxidation of carbon monoxide[J], Applied Catalysis A: General, 2008, 347: 208~215
    [63] Nielson F.P. Ribeiro, Fabiana M.T. Mendes, et.al., Selective CO oxidation with nano gold particles-based catalysts over Al2O3 and ZrO2[J], Applied Catalysis A: General, 2008, 347: 62~71
    [64] Avgouropoulos G., Manzoli M., et.al., Catalytic performance and characterization of Au/doped-ceria catalysts for the preferential CO oxidation reaction[J], Journal of Catalysis, 2008, 256: 237~247
    [65] Schubert M. M., Hackenberg S., Veen A. C., et.al., CO oxidation over supported Au catalysts“inert”and“active”support materials and their role for the oxygen supply during reaction[J], J. Catal., 2001, 197(1): 113~122
    [66] Karpenko A., Leppelt R., Plzak V., Behm R. J., The role of cationic Au3+ and nonionic Au0 species in the low-temperature water–gas shift reaction on Au/CeO2 catalysts[J], Journal of Catalysis, 2007, 252: 231~242
    [67] Denkwitz Y., Karpenko A., Plzak V., Leppelt R., Schumacher B., Behm R. J., Influence of CO2 and H2 on the low-temperature water-gas shift reaction on Au/CeO2 catalysts in idealized and realistic reformate[J], Journal of Catalysis, 2007, 246: 74~90
    [68] Shibata M., Kawata N., Masumoto T., et. al., Selective hydrogenation of unsaturated carbonyl compounds over an oxidized gold-zirconium alloy[J], J. Chem. soc. chem. commun., 1988: 154~156;
    [69] Mul G., Zwijnenburg A., Van der Linden B., et al., Stability and selectivity of Au/TiO2 and Au/TiO2/SiO2 catalysts in propene epoxidation: an in situ FT-IR study [J], Journal of Catalysis, 2001, 201: 128~137
    [70] Uphade B. S., Akita T., Nakamura T., et al., Vapor-phase epoxidation of propene using H2and O2 over Au/Ti-MCM-48[J], Journal of Catalysis, 2002, 209: 331~ 340
    [71] Stangland E. E., Stavens K. B., Andres R. P., et al., Characterization of gold-titania catalysts via oxidation of propylene topropylene oxide [J]. Journal of Catalysis, 2000, 191: 332~347
    [72] Uphade B. S., Okumura M., Tsubota S., et al., Effect of physical mixing of CsCl with Au/Ti-MCM-41 on the gas-phase epoxidation of propene using H2 and O2: drastic depression of H2 consumption [J], Applied Catalysis A, General, 2000, 190: 43~50
    [73]齐世学,邹旭华,安立敦,负载型金催化剂[J],化学通报, 2002, 11: 734~741
    [74] Ruth K., Hayes M., Burch R., et al., The effects of SO2 on the oxidation of CO and propane on supported Pt and Au catalysts [J], Applied Catalysis B, Environmental, 2000, 24: 133~138
    [75] Krawczyk K., Motek M., Combined plasma-catalytic processing of nitrous oxide [J]. Applied Catalysis B, Environmental, 2001, 30: 233~245
    [76] Craenenbroeck J. V., Andreeva D., Tabakova T., et al., Spectroscopic analysis of Au-V-based catalysts and their activity in the catalytic removal of diesel soot particulates [J], Journal of Catalysis, 2002, 209: 515~527
    [77] kuroda K., Ishida T., Haruta M., Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA[J], J. moleculer catal. A: Chem., 2009, 298: 7~11
    [1]张连水.日常生活与表面活性剂[J].化学教育, 1998, 3:1~3
    [2]刘瞻.表面活性剂的结构特点与应用[J].怀化学院学报, 2004, 23(5):33~37
    [3]刘程.表面活性剂应用手册Z.北京:化学工业出版社, 1992
    [4] Chen X. Y., Li J. R., Jiang L..Two-dimensional arrangement of octadecylamine- functionalized gold nanoparticles using the LB technique[J]. Nanotechnology, 2000, 11: 108~111
    [5] Zhou X. H., Li J. R., Liu C. Y., et al.. Preparation, stability and two-dimensional ordered arrangement of gold nanoparticles capped by surfactants with different chain lengths[J]. Science in China, Series B, 2002, 45 (4): 358~364
    [6] Shen M., Du Y. K., Hua N. P., et al..Microware irradiation synthesis and self-assembly of alkylamine-stabilized gold nanoparticles[J]. Powder Tech., 2006, 162: 64~72
    [7] Shen M., Du Y. K., Yang P., et al..Morphology control of the fabricated hydrophobic gold nanostructures in W/O microemulsion under microwave irradiation[J]. J. Phys. Chem. Solid, 2005, 66 (10): 1628~1634
    [8]沈明,姚玉峰,曹振峰等.憎水性金纳米粒子的制备、表征与形貌控制[J].化学研究与应用, 2007, 19 (6):622~628
    [9]杨宝旺,黄雅勇.肾上腺素合成法之改良[J]. J. Chemistry ( The Chinese Chem. Soc. Taiwan China ), 1985, 43(1): 19~29
    [10] Freud Karl F., Werner H..Di- and Trihydroxycinnamylalcohol[J]. J. Chem. Ber., 1953, 86: 190~196
    [11] Pearl I. A., Beyer D. L. Reaction of Vanillin and its Derived Conpounds.ⅩⅫEthers of Protocatechuic Acid and their Ethyl Esters[J]. J. Am. Chem. Soc., 1953, 75: 2627~2630
    [12] Lange R. G., Cleavage of Alkylδ-Hydroxyphenyl Ethers[J]. J. Org. Chem., 1962, 27: 2037~2039
    [13] Anderson S., An improvement of the Aluminium Iodide Method for Ether Cleavage Catalysis by Quaternary Ammonium Iodides[J]. Synthesis, 1985, 4: 437~439
    [14]夏春年,陈利民,胡惟孝,高纯度3,4-二羟基苯甲醛的制备[J].合成化学, 2004, 12(5): 484~486, 494
    [15] Pablo Espinet, Ionic metallomesogens derived from silver(I) bis-amine complexes:Structure and mesogenic behavior[J]. Inorganica Chimica Acta, 2008, 361: 2270~2278
    [16]赵鸿斌,宁静恒等.系列长链烷氧基苯甲醛的合成研究[J].化学研究, 2001, 12(1): 19~22
    [17]何彦祯,高锐,李锦.对烷氧基苯甲醛的合成实验研究[J].湖北化工, 2003, 1: 21~22
    [18]张雅文,周华等,4-(4-甲基苯氧基)苄胺的合成[J] .应用化学, 2003, 20(1): 98~99
    [1] Awate S. V., Sahu R. K., Kadgaonkar M. D., Photocatalytic mineralization of benzene over gold containing titaniananotubes: Role of adsorbed water and nanosize gold crystallite[J], Catalysis Today, 2009, 141: 144~151
    [2] kuroda K., Ishida T., Haruta M., Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA[J], J. moleculer catal. A: Chem., 2009, 298: 7~11
    [3] Simon U., Schon G., Schmid G., The application of Au55 clusters as quantum dots[J], Angew Chem Int Ed Engl, 1993, 32: 250~254
    [4] Park J. H., Lim Y. T., Park O. O., Enhancement of potostability in blue- light-emitting polymer doped with gold nanoparticles[J], Macromolecular Rapid Communications, 2003, 331~334
    [5] Chen J.,Wang D., Xi J. Au L. et al., Immuno gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells[J], Nano. Lett., 2007, 7: 1318~1322
    [6] Qu Y. Q., Porter R., Shan F., et al., Synthesis of Tubular Gold and Silver Nanoshells Using Silica Nanowire Core Templates[J], Langmuir 2006, 22: 6367~6374
    [7] Binil I. I., Karuvath Y., Kakkudiyil G. T., Functionalized Gold Nano-particles as Phosphorescent Nanomaterials and Sensors[J], J. Am. Chem. Soc., 2006, 128: 1907~1913
    [8] Gole A.,Murphy C. J., Seed-Mediated Synthesis of Gold Nanorods: Role of the Size and Nature of the Seed[J], Chem. Mater. 2004, 16: 3633~3640
    [9] Pena S. R. N., Raina S., Goodrich G. P., et al., Hybridization and enzymatic extension of Au nanoparticle-bound oligonucleotides[J], J. Am. Chem. Soc., 2002, 124: 7314~7323
    [10] Collier C. P., Saykally R. J., Shiang J. J., et al., Reversible tuning of silver quantum dot monolayers through the metal-insulator transition[J], Science, 1997, 277: 1978~ 1981
    [11] Brust M., Walker M., Bethell D., et al., Synthesis of thiol-derivatized gold nano- particles in a two-phase liquid-liquid system[J], J. Chem. Soc. Chem. Commun., 1994, 7: 801~802
    [12] Fan C. Y., Jiang L., Preparation of hydrophobic nanometer gold particles and their optical absorption in chloroform[J], Langmuir, 1997, 13: 3059~3062
    [13] Sastry M., Kumar A., Mukherjee P., Phase transfer of aqueous colloidal gold particles into organic solutions containing fatty amine molecules[J], Colloids Surf. A, 2001, 181: 255~259
    [14] Chen X. Y., Li J. R., Jiang L., Two-dimensional arrangement of octadecylamine- functionalized gold nanoparticles using the LB technique[J], Nanotechnology, 2000, 11: 108~111
    [15] Zhou X. H., Li J. R., Liu C. Y., et al., Preparation, stability and two-dimensional ordered arrangement of gold nanoparticles capped by surfactants with different chain lengths[J], Science in China, Series B, 2002, 45(4): 358~364
    [16] Shen M., Du Y. K., Hua N. P., et al., Microware irradiation synthesis and self- assembly of alkylamine-stabilized gold nanoparticles[J], Powder Tech., 2006, 162: 64~72
    [17] Shen M., Du Y. K., Yang P., et al., Morpholology control of the fabricated hydrophobic gold nanostructures in W/O microemulsion under microwave irradiation[J], J. Phys. Chem. Solids, 2005, 66(10): 1628~1634
    [18]沈明,姚玉峰,曹振峰等,憎水性金纳米粒子的反相微乳液法制备[J],化学研究与应用, 2007, 19(6): 622~628
    [19] Yang G. J., Qu X. L., Shen M., et al., Preparation of glassy carbon electrode modified by hydrophobic gold nanoparticles and its application for the determination of ethamsylate in the presence of cetyltrimethylammonium bromide [J], Sensors and Actuators B, 2007, 128: 258~265
    [20] Qu Q. S, Zhang X. X., Shen M., et al., Open-tubular capillary electrochromato- graphy using a capillary coated with octadecylaminecapped gold nanoparticles[J], Electrophoresis, 2008, 29: 901~909
    [21] Tu W., Liu H., Continuous synthesis of colloidal metal nanoclusters by micro- wave irradiation[J], J. Chem. Mater., 2000, 12: 564~567
    [22] Kumar A., Mandal S., Selvakannan P. R., et al., Investigation into the interaction between surface-bound alkylamines and gold nanoparticles[J], Langmuir, 2003, 19: 6277~6282
    [23] Hirai H., Formation and catalytic functionality of synthetic polymer-noble metal colloid[J], J. Macromol Sci-Chem A, 1979, 13: 633~649
    [24] Aslan K., Perez-Luna V. H., Surface modification of colloidal gold by chemisorp- tion of alkanethiols in the presence of a nonionic surfactant[J], Langmuir[J], 2002, 18: 6059~6065
    [25]李干佐,郭荣等.微乳液理论及其应用,北京:石油工业出版社,1995
    [1] Park J. H., Lim Y. T., Park O. O., Enhancement of potostability in blue-light-emitting polymer doped with gold nanoparticles[J], Macromolecular Rapid Communications, 2003, 331~334
    [2]李风生,杨毅等.纳米/微米复合技术及应用.北京:国防工业出版社, 2002
    [3]蒋鹤麟,微电子工业中的贵金属浆料[J],贵金属, 1997, 18(4): 53~58
    [4] Chen J., Wang D., Xi J. Au L. et al., Immuno gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells[J], Nano. Lett., 2007, 7: 1318~1322
    [5] Awate S. V., Sahu R. K., Kadgaonkar M. D., Photocatalytic mineralization ofbenzene overgold containing titaniananotubes: Role of adsorbed water and nanosize gold crystallite[J], Catalysis Today, 2009, 141: 144~151
    [6] Simon U., Schon G., Schmid G., The application of Au55 clusters as quantum dots[J], Angew Chem Int Ed Engl, 1993, 32: 250~254
    [7] Tetsu Y., Kunitake T., Practical preparation of anionic mercap toligand- stablized gold nanoparticles and their immobilization[J], Physicochem. and Eng. Aspects, 1999, 149: 193~199
    [8] Binil I. I., Karuvath Y., Kakkudiyil G. T., Functionalized Gold Nanoparticles as Phosphorescent Nanomaterials and Sensors[J], J. Am. Chem. Soc., 2006, 128: 1907~1913
    [9]兰新哲,金志浩,赵西成等, PVP保护还原法制备纳米金溶胶[J],稀有金属材料与工程, 2003, 32(1): 50~53
    [10] Wang J., Neoh K. G., Kang E. T., Preparation of nanosized metallic particles in polyaniline[J], Journal of Colloid and Interfance Science, 2001, 239: 78~86
    [11] Shen M., Chen W. F., Sun Y., Yan C. G., Synthesis and characterization of water-soluble gold colloids stabilized with aminoresorcinarene[J], J. Phys. Chem. Solids, 2007, 68: 2252~2261
    [12] Brown K. R, Natan M. J., Hydroxylamine Seeding of Colloidal Au Nanoparticles in Solution and on Surfaces[J], Langmuir, 1998, 14: 726~728
    [13] Brust M., Walker M., Bethell D., et al., Synthesis of thiol-derivatized gold nano-particles in a two-phase liquid-liquid system[J], J. Chem. Soc. Chem. Commun., 1994, 7: 801~802
    [14] Templetion A.C., Hostetler M.J., Kraft C.T., Murray R.W., Reactivity of Monolayer-ProtectedGold Cluster Molecules: Steric Effects[J], J. Am.Chem. Soc., 1998,120: 1906~1911
    [15] Chen X. Y., Li J. R., Jiang L., Two-dimensional arrangement of octadecylamine-functionalized gold nanoparticles using the LB technique[J], Nanotechnology, 2000, 11: 108~111
    [16] Shen M., Du Y. K., Rong H. L., et al., Preparation of hydrophobic gold nanoparticles with safe organic solvents by microwave irradiation method, Colloids and Surfaces A,2005, 257-258: 439~443
    [17] Hussain I., Brust M., Papworth A. J., Cooper A. I., Preparation of Acrylate- Stabilized Gold and Silver Hydrosols and Gold-Polymer Composite Films[J], Langmuir, 2003, 19: 4831~4835
    [18] Esumi K, Kameo A, Suzki A, et al. Preparation of gold nanoparticles in formamide and N,N-dimethylformamide in the presence of poly (amidoamine)-dendrimers with surface methyl ester groups[J], Colloid. Surf. A, 2001, 176(2~3): 233~237
    [19] Chiang C. L., Controlled growth of gold nanoparticles in aerolol-OT/sorbitan molooleate/ isooctane mixal reverse micelles[J], Colloid Interface Sci., 2000, 230(1): 60~66
    [20] Shen M., Du Y. K., Hua N. P., et al., Microware irradiation synthesis and self- assembly of alkylamine-stabilized gold nanoparticles[J], Powder Tech., 2006, 162: 64~72
    [21] Shen M., Du Y. K., Yang P., et al., Morpholology control of the fabricated hydrophobic gold nanostructures in W/O microemulsion under microwave irradiation[J], J. Phys. Chem. Solids, 2005, 66(10): 1628~1634
    [22]沈明,姚玉峰,曹振峰等,憎水性金纳米粒子的反相微乳液法制备[J],化学研究与应用, 2007, 19(6): 622~628
    [23] Tu W., Liu H., Continuous synthesis of colloidal metal nanoclusters by micro- wave irradiation[J], J. Chem. Mater., 2000, 12: 564~567
    [24] Yu W. Y., Tu W. X., Liu H, F., Synthesis of Nanoscale Platinum Colloids by Microwave Dielectric Heating[J], Langmuir, 1999, 15: 6~9
    [25] Tsujia M., Hashimotob M., Nishizawab Y., et al., Synthesis of gold nanorods and nanowires by a microwave-polyol method[J], Materials Letters, 2004, 58: 2326~2330
    [26] Weisbecker C. S., Merritt M. V., Whitesides G. M., Molecular Self-Assembly of AliphaticThiols on Gold Colloids[J], Langmuir, 1996, 12: 3763~3772
    [27] Mayya K. S., Patil V., Sastry M., On the Stability of Carboxylic Acid Derivatized Gold Colloidal Particles: The Role of Colloidal Solution pH Studied by Optical Absorption Spectroscopy[J], Langmuir, 1997, 13: 3944~3947
    [28] Norman T. J., Grant C. D., Magana D., et al., Near Infrared Optical Absorption of Gold Nanoparticle Aggregates[J], J. Phys. Chem. B, 2002, 106: 7005~7012
    [29] Jana N. R., Gearheart L., Murphy C. J., Seeding growth for size control of 5-40 nm diameter gold.nanoparticles[J], Langmuir, 2001, 17: 6782~6786
    [30] Aslan K., Perez-Luna V. H., Surface modification of colloidal gold by chemi- sorption of alkanethiols in the presence of a nonionic surfactant[J], Langmuir, 2002, 18: 6059~6065
    [1] Peng X., G., Manna L., Yang W. D., et a1., Shape control of CdSe nanocrystals[J], Nature, 2000, 404: 59~61
    [2] Jin R., Cao Y., Mirkin C. A., et al., PhotoInduced conversion of silver nanospheres to nanoprisms[J], Science, 2001, 94: 1091~1093
    [3] Link S., El-Sayed M. A., Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods[J], J. Phys. Chem. B, 1999, 103: 8410~8426
    [4] Duff D. G., Balker A., Edwards P. P., A new hydrosol of gold clusters. 1. Formation and particle size variation[J], Langmuir, 1993, 9 (9): 2301~2309
    [5] Murphy C. J., Sau T. K., Gole A. M., et al., Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications[J], J Phys Chem B, 2005, 109: 13857~13870
    [6] Aihara N., Torigoe K., Esumi K., Preparation and characterization of gold and silver nanoparticles in layered laponite suspensions[J], Langmuir, 1998, 14 (17): 4945~4949
    [7] Haruta M., Yamada N., Kobayashi T., Gold Catalysts Prepared by CO2 precipitation for Low-Temperature Oxidation of Hydrogen and of Carbon Monoxide[J]. J. Cata.l, 1989, 115: 301~309
    [8] Haruta M., Tsubota S., Kobayshi T., Low-Temperature Oxidation of CO over Gold Supported on TiO2,α–Fe2O3, and Co3O4.[J], J. Catal., 1993, 144: 175~192
    [9] Wang S., Li Y. L., Du C. M., et al., Self-organization of gold nanoparticles protected by 9-(5-thiopentyl)-carbazole[J], Chinese Chemical Letters, 2001, 12(12): 1141~1144.
    [10] Yonezawa T., Onoue S., Kimizuka N., Formation of uniform fluorinated gold nanoparticles and their highly ordered hexagonally packed monolayer[J]. Langmir, 2001, 17(8): 2291~2293.
    [11] Yu Y. Y., Chang S. S., Lee C. L., et al., Gold nanorods: electrochemical synthesis and optical properties[J]. J. Phys. Chem. B, 1997, 101: 6661-6664.
    [12] Wei G. T., Liu F. K., Wang C. R. C., Shape separation of nanometer gold particles by sized-exclusion chromatography[J]. Anal. Chem., 1999, 71: 2085~2091.
    [13] Brown K. R.., Natan M. J., Hydtoxylamine seeding of colloidal Au nanoparticles in solution and on surfance[J]. Langmuir, 1998, 14: 726~728
    [14] Che W., Cai W., Zhang L., et al., Sonchemical processes and formation of gold nanoparticledwithin pores of mesoporous silica[J]. Journal of Colloid and Interface Science, 2001, 238: 291~295.
    [15] Wang R. Y., Yang J., Zhang Z., et al., Dendron-controlled nucleation and growth of gold nanoparticles[J]. Angew. Chem. Int. Ed., 2001, 40: 549~552.
    [16] Esumi K., Kameo A., Suzki A., et al., Preparation of gold nanoparticles in formamide and N,N-dimethylformamide in the presence of poly (amidoamine)- dendrimers with surface methyl ester groups[J]. Colloid. Surf. A, 2001, 176(2~3): 233~237.
    [17] Mori Y., Okamoto S. I., Aashi T., Preparation of gold nanoparticles in water- in-oil microemulsion.[J]. Kagaku Kogaku Ronbunshu, 2001, 27(6): 736~741.
    [18] Xu X. C., Yang W. S., Liu J., et al., Synthesis of a high-permeance NaA zeolite memberance by microwave heating [J]. Adv. Mater., 2000, 3(12): 195~197.
    [19] Sau T. K., Pal A., Jana N. R., et al., Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles[J]. Journal of Nanoparticle Research, 2001, 3(4): 257~261.
    [20] Brust M., Walker A., Bethell D., et al., Synthesis of thiol derivatised gold nanoparticles in a two-phase liquid-liquid system [J]. Chem, Soc. Chem. Commun., 1994, 801~802
    [21] Link S., Wang Z. L., El-Sayed M. A., Aolly formation of gold-silver nanopariticles and the dependence of the plasmon absorption on their composition [J]. , J. Phys. Chem., 1999, 103: 3529~3533
    [22] Dykma L A, Lyakhov A A, Bogaytev V A, et al. Synthesis of colloidal gold using high-molecular weight reducing agents [J]. Colloid. , 1998, 60(6): 700~704.
    [23] Wang J., Neoh K. G., Kang E. T., Preparation of nanosized metallic particles in polyaniline[J]. Journal of Colloid and Interfance Science, 2001, 239: 78~86.
    [24]沈明,姚玉峰,曹振峰等,憎水性金纳米粒子的反相微乳液法制备[J],化学研究与应用.2007,19(6):622~628
    [25] Shen M., Chen W. F., Sun Y., Yan C. G., Synthesis and characterization of water-soluble gold colloids stabilized with aminoresorcinarene[J]. Journal of physics and chemistry of solids, 2007,68: 2252~2261
    [26] Shen M., Sun Y., Han Y. Strong deaggregating effect of a novelpolyamino resorcinarene surfactant on gold nanoaggregates under microwave irradiation[J]. Langmuir, 2008, 24(22): 13161~13167
    [27] Tsujia M., Hashimotob M., Nishizawab Y., et al., Synthesis of gold nanorods and nanowires by a microwave–polyol method[J], Materials Letters, 2004, 58: 2326~2330
    [28]慕泾霞,甲酸还原反应的优选条件[J],固原师专学报, 2000, 21(6): 79~80.
    [29] Meldrum F. C., Kotov N. A., Fendler J. H., ultra-thin particulate films prepared from capped and uncapped reverse-micelle-entrapped silver particles, J. Chem. Soc. Faraday Trans., 1995, 91: 673~680.
    [30] Jada A., Lang J., Candau S. J., Zana R., Structure and dynamics of water-in-oil microemulsions[J], Colloids and Surf., 1989, 38: 251~261.
    [31] Scheuing D.R., Fourier transform infrared spectroscopy in colloid and interface science, in: Transform Infrared Spectroscopy in Colloid and Interface Science, ACS Symposium Series 447, American Chemical Society, Washington, DC, 1991.
    [32] Weers J.G., Scheuing D.R., Micellar shape to rod transitions, in: Transform Infrared Spectroscopy in Colloid and Interface Science, ACS Symposium Series 447, American Chemical Society, Washington, DC, 1991.
    [33] Hostetler M. J., Stokes J. J., Murray R.W., Infrared Spectroscopy of Three-Dimensional Self-Assembled Monolayers: N-Alkanethiolate Monolayers on Gold Cluster Compounds[J], Langmuir, 1996, 12: 3604~3612
    [34] Nikoobakht B., El-Sayed M.A., Evidence for Bilayer Assembly of Cationic Surfactants on the Surface of Gold Nanorods[J], Langmuir, 2001, 17: 6368~6374
    [35] Jana N. R., Gearheart L., Murphy C. J., Seeding growth for size control of 5-40 nm diameter gold nanoparticles[J], Langmuir, 2001, 17: 6782~6786
    [36] Aslan K., Perez-Luna V. H., Surface modification of colloidal gold by chemisorption of alkanethiols in the presence of a nonionic surfactant[J], Langmuir, 2002, 18: 6059~6065
    [1] Haruta M., Yamada N., Kobayashi T., et al.,Gold-catalysis prepared by copreci- pitation for low temperature oxidation of hyrogen and carbon monoxide[J], J Catal.,1989, 115: 301~309
    [2] Haruta M., Tsubota S., Kobayashi T., et al., Low-temperature oxidation of CO over gold surported on TiO2,α-Fe3O4 and Co3O4 [J], J Catal., l993, 144: 175~192
    [3] Haruta M., Catalysis Surveys of Japan, 1997, (1): 67~73
    [4] Shi H., Xu N., Zhao D., Immobilized PVA-stabilized gold nanoparticles on silica show an unusual selectivity in the hydrogenation of cinnamaldehyde[J], Catalysis Communications, 2008, 9: 1949~1954
    [5] Pascal G. N. Mertens, Pieter Vandezande, Recyclable Au0, Ag0 and Au0–Ag0 nanocolloids for the chemoselective hydrogenation of a,b-unsaturated aldehydes and ketones to allylic alcohols[J], Applied Catalysis A: General 2009, 355: 176~183
    [6] Stangland E. E., Stavens K. B., Andres R. P., et al., Characterization of gold- titania catalysts via oxidation of propylene topropylene oxide[J], Journal of Catalysis, 2000, 191: 332~347
    [7] kuroda K., Ishida T., Haruta M., Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA[J], J. moleculer catal. A: Chem., 2009, 298: 7~11
    [8] Valden M., Lai X.,Goodman W., Onset of catalytic activity of gold clusters on titania with the appearance of nanmetallic properties[J], Science, 1998, 281: 1647~1650
    [9] Valden M., Pak S., Lai X., Structure sensitivity of CO oxidation over model Au/TiO2 catalyst[J], Catal.Lett., 1998, 56: 7~10
    [10] Nielson F. P. Ribeiro, Fabiana M. T. Mendes, Carlos A. C. Perez, Martin Schmal. Selective CO oxidation with nano gold particles-based catalysts over Al2O3 and ZrO2[J], Applied Catalysis A: General, 2008, 347: 62~71
    [11]王东辉,程代云,郝正平,史喜成,纳米金催化剂及其应用北京:国防工业出版社2006
    [12]邓谦,李小梅,蔡铁军等,Au/γ-Al2O3催化剂上高浓度甲醇催化消除反应的研究[J],湖南科技大学学报,2006,21(3), 77~80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700