薯蓣皂素的酶促糖基化以及相关化合物的生物合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薯蓣皂素是一种重要的甾体皂甙化合物,它的葡萄糖苷(延龄草苷)是许多药用植物的活性成份,但含量相当少,不利于工业化生产。因此,薯蓣皂素人工糖基化是解决该问题的一条出路。化学法虽然可以有效地合成延龄草苷,但是繁琐的糖基保护和去保护过程是不可避免的,而且在该过程中会使用大量的有机溶剂,对环境压力很大;薯蓣皂素的酶促糖基化可能成为其产业化生产的一条捷径,原因在于:糖基转移酶催化的转糖基反应条件温和、糖基化位点唯一、可以避免糖基的保护和去保护等。但是糖基转移酶的糖基供体必须使用昂贵而且不稳定的核苷酸葡萄糖,这必然会增加酶法催化薯蓣皂素糖基化的成本。因此,为了降低酶催化合成延龄草苷的成本,本论文以廉价的麦芽糊精、UTP、磷酸盐和薯蓣皂素为底物,在一锅体系中,多酶组合催化合成了延龄草苷。同时本文以氨基化的磁性纳米颗粒为载体,将相关的生物催化剂制备成固定化酶,催化合成了尿苷二磷酸葡萄糖和葡萄糖-1-磷酸,它们是上述一锅合成体系中重要的中间体,也是酶催化转糖基过程中具有高附加值的高能糖基供体。同时本文还通过重组的半乳糖激酶催化合成了半乳糖-1-磷酸,为后续的薯蓣皂素糖基随机化改造做好铺垫。本论文的主要内容如下:
     1.用于薯蓣皂素糖基化的生物催化剂制备
     从E. coli K12中分别克隆了malpase, ugpase, ppase, udpgdh基因,从土豆芽中克隆了sgtl.1基因。这些基因分别在E.coli BL21(DE3)和E. coli DH5a中成功地表达了有活性的可溶蛋白。同时优化了重组蛋白的表达条件,并制成冻干酶制剂。
     2.多酶一锅催化合成延龄草苷
     在体系中加入麦芽糊精磷酸化酶(E1)、尿苷二磷酸葡萄糖焦磷酸化酶(E2)、无机焦磷酸酶(E3)、薯蓣皂素糖基转移酶(E4)以及麦芽糊精、UTP、磷酸盐、薯蓣皂素等底物,通过考察助溶剂添加效果、优化反应条件以及利用正交试验优化底物浓度的配比,最终确定了该体系的最优反应条件:6.58 U E1/1,125 U E2/1,7 U E3/1,0.75 U E4/1,5%(m/v)麦芽糊精,10 mM UTP,0.1 mM薯蓣皂素,5 mM MgCl2,100 mM (pH 9)磷酸盐缓冲液在40℃下连续反应48 h。在该条件下,延龄草苷的产率为89%,浓度为15.8 mg/l。
     3.三种固定化酶组合催化合成尿苷二磷酸葡萄糖
     利用化学共沉淀法制备的Fe3O4,经过氨基硅烷化和戊二醛活化后,分别和麦芽糊精磷酸化酶、尿苷二磷酸葡萄糖焦磷酸化酶、无机焦磷酸酶共价结合,制备成固定化酶。通过分别比较游离酶和固定化的理化性质,证明了磁性纳米颗粒适合在多酶催化合成尿苷二磷酸葡萄糖中使用。通过多步实验,确定多酶合成尿苷二磷酸葡萄糖的最佳反应条件如下:在体系中加入5%(m/v)麦芽糊精,2mMUTP,10mM MgCl2,100mM(pH 7.5)磷酸钠缓冲液,18 U E1/1,100 U E2/1,25 U E3/1,30℃恒温摇床上200 rpm连续反应12 h。然后在200ml体系中,利用优化后的反应条件,连续5批次酶促合成尿苷二磷酸葡萄糖。反应液经过SAX柱离子交换和ODS柱脱盐纯化后,得到0.63 g产品,分离得率为53.3%(以UTP为基准)。
     4.用固定化的麦芽糊精磷酸化酶催化合成a-D-葡萄糖-1-磷酸
     确定固定化的麦芽糊精磷酸化酶催化合成葡萄糖-1-磷酸的最佳反应条件为:5%(m/v)麦芽糊精,100 mM(pH7.5)磷酸钠缓冲液,24 U/I麦芽糊精磷酸化酶,在30℃恒温摇床上200 rpm连续反应。在该条件下连续8批,每批200 ml连续合成α-D-葡萄糖-1-磷酸。经过多步沉淀纯化,得到0.44 g产品,分离得率为70.5%。
     5.利用半乳糖激酶催化制备α-D-半乳糖-1-磷酸
     从E. coli K12中克隆了galk基因,在E. coli BL21(DE3)中进行了高效表达,并制备了半乳糖激酶制剂。实验确定半乳糖激酶的酶促反应最优条件为:在30℃下,22 mM ATP,20 mM半乳糖,3.5mM MgCl2,100mM(pH7.5)磷酸盐缓冲液,36 U/ml半乳糖激酶,连续反应8 h。100 ml体系中,在最优反应条件下合成了α-D-半乳糖-1-磷酸。反应液通过多步沉淀纯化,得到0.54克产品,产率为88.2%。
Trillin is a glucoside of diosgenin which is an important kind of steroidal saponins. It is the active ingredient in medicinal plants of dioscoreaceae. Although it can be isolated from plants, this is extremely difficult and uneconomic, especially in large amounts due to the the amount of trillin in plant is rather limited. Thus, glycosylations in vitro are important for the synthesis of steroidal saponins for the pharmaceutical industry. Chemical synthesis would provide a feasible route to obtain homogeneous saponins, however, the protection and the deprotection of hydroxy groups are unavoidable and it requires organic solvents. So the more economic and cleaner route should be enzymatic synthesis. In this work, a glucosyltransferase cloned from potato bud was used to glucosylate steroidal sapogenins and steroidal alkaloids, in which UDP-glucose was provided as an indispensable sugar donor. But UDP-glucose is extremely expensive and unstable as a kind of energy-rich compound. So avoiding the use of UDP-glucose can greatly increase predominance for enzymatic synthesis of trillin. A multiple-enzymes system for enzymatic synthesis of trillin is artificially designed, the glycosylation reactions in vitro, in which the low-cost maltodextrin, UTP, phosphate were used as substrates. UDP-glucose and glucose-1-phosphate are not only vital intermediates in the one-pot bioreaction system as mentioned above, but also high value-added energy-rich sugar donors in the reaction catalyzed by enzymes. This dissertation describes the biosynthesis of UDP-glucose and glucose-1-phosphate using the enzymes covalently immobilized on amino-functionalized magnetic nanoparticles. In addition, galactose-1-phosphate was also synthesized using a recombinant galactokinase cloned from E. coli in this work for the purpose of diosgenin glycorandomazation in the future.
     The genes of malpase, ugpase,ppase, udpgdh from E. coli K12 and the gene of sgtl.1 from the bud of potato have been cloned. They were individually expressed with activity in E. coli BL21 (DE3) or E. coli DH5a. The expression condition for production of these recombinant proteins were optimized. And the recombinant enzymes were prepared and stored in the state of lyophilized powder.
     The one-pot system for biocatalytic synthesis of diosgenyl-β-d-glucopyranoside contained maltodextrin phosphorylase (E1, MalPase), uridine diphosphate glucose pyrophosphorylase (E2, GIPTTase), inorganic pyrophosphatase (E3, PPase), solanidine glucosyltransferase (E4, SGT1.1) and maltodextrin, UTP, phosphate, diosgenin. To increase the yield of trillin, some factors such as cosolvents, reaction conditions and substrate concentration were optimized. Under the optimum conditions:the reaction mixture containing 6.58 U El/1,125 U E2/1,7 U E3/1,0.75 U E4/1,5 mM MgCl2,100 mM phosphate buffer (pH 9), maltodextrin (5%, m/v), 10 mM UTP and 0.1 mM diosgenin was incubated in a thermomixer at 200 rpm and 40℃for 48 h, giving trillin in 28% yield (ca.15.8 mg/l).
     The amino-functionalized Fe3O4 nanoparticles prepared by chemical coprecipitation are an ideal material for immobilizing various enzymes which are needed for synthesis of UDP-glucose. The Fe3O4 nanoparticles activated by glutaraldehyde was found to be able to tightly bind with maltodextrin phosphorylase (E1), uridine diphosphate glucose pyrophosphorylase (E2) and inorganic pyrophosphatase (E3) respectively. The conditions for one-pot biocatalysis were optimized:18 U E1/l,100 U E2/l,25 U E3/l; maltodextrin,5% (m/v); UTP,2 mM; and MgCl2,10 mM; in 100 mM sodium phosphate buffer, pH 7.5; at 30℃for 10 h. Under the optimum conditions, the immobilized multiple-enzyme biocatalyst could be easily recovered and reused for five times in repeated syntheses of UDP-Glc. After purified by SAX column and ODS column orderly, approximately 630 mg of crystallized UDP-Glc was obtained from 1 litre of reaction mixture, with a moderate yield of 53.3% (based on UTP conversion).
     The optimal reaction conditions for glucose-1-phosphate synthesis by immobilized MalPase was:MalPase,24 U/l; maltodextrin,5%(m/v); in 100 mM sodium phosphate buffer, pH 7.5; and reacting at 30℃for 8 h. The immobilized MalPase could be easily recovered and reused for eight times in repeated synthesis of glucose-1-phosphate. After simple purification, approximately 440 mg of a crude product was afforded, with a moderate isolation yield of 70.5%.
     The genes of galk from E. coli K12 had been cloned and overexpressed in E. coli BL21(DE3). The reaction conditions for galactose-1-phosphate synthesis by galactokinase (GalK) was optimized as follows:the reaction mixture was composed of 36 U GalK/ml,22 mM ATP,20 mM galactose and 3.5 mM MgCl2 in 100 mM sodium phosphate buffer (pH 7.5), and incubated at 30℃for 8 h. Under the optimal conditions,0.54 g crude product was isolated from a 100-ml system, with a yield of 88.2%.
引文
[1]Hou N, Xu LJ. Synthesis and bacteriostatic activity of new thiosemicarbazone derivatives-amino mercaptotriazole schiff bases. Acta Pharmaceu Sin.1992,27:738-741.
    [2]Ferrier RJ, Furneaux RH. The chemistry of some 1-mercury(II)thio-D-glucose compounds; a new synthesis of 1-thio sugars. Carbohydr Res.1977,57:73-83.
    [3]Walsh C, Meyers FCL, Losey HC. Antibiotic glycosyltransferases:antibiotic maturation and prospects for reprogramming. J Med Chem.2003,46:3425-3436.
    [4]Bertho G, Bertho P, Benarous JG, Delaforge M, Girault J. Solution conformation of methylated macrolide antibiotics roxithromycin and erythromycin using NMR and molecular modelling. Ribosome-bound conformation determined by TRNOE and formation of cytochrome P450-metabolite complex. Int J Biol Macromol.1998,22: 103-127.
    [5]Schlunzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, Yonath A, Franceschi F. Structural basis for the interaction of antibiotics with the peptidyltransferase centre in eubacteria. Nature.2001,413:814-821.
    [6]Chang X, Li W, Jia Z, Satou T, Fushiya S, Koike K. Biologically active triterpenoid saponins from Ardisia japonica. J Nat Prod.2007,70:179-187.
    [7]Fu GM, Liu Y, Yu S, Huang X, Hu Y, Chert X, Zhang F. Cytotoxic oxygenated triterpenoid saponins from Symplocos chinensis. JNat Prod.2006,69:1680-1686.
    [8]Ahu MJ, Kim CY, Yoon KD, Ryu MY, Cheong JH, Chin YW, Kim J. Steroidal saponins from the rhizomes of Poly'gonatum sibiricum. J Nat Prod.2006,69:360-364.
    [9]Varki A. Essentials of Glycobiology.2003,11.
    [10]Koenigs W, Knorr E. Ueber einige Derivate des Traubenzuckers und der Galactos. Chem Ber.1901,34:957-962.
    [11]Bertczzi CB, Bednarski MD. The synthesis of 2-azido C-glycosyl Sugars. Tetrahedron Lett.1992,33:3109-3112.
    [12]Herscovici J, Delatre S, Atonakis S. Enantiospecific naphthopyran synthesis by intramolecular diels-alder cyclization of 4-keto 2,3-unsaturated c-glycosides. Tetrahedron Lett.1991,32:1183-1186.
    [13]Bolitt V, Mioskowski C, Falck JR. Direct anomeric substitution of pyranyl esters using organocopper reagents. Tetrahedron Lett,1989,30:6027-6030.
    [14]Bols. M, Szarek WA. Stereocontrolled synthesis of alpha-glucosides by intramolecular glycosidation. J Chem Soc Chem Comm.1992,12:913-914.
    [15]Bellosta V, Czernecki S. C-glycosyl compounds 24 reaction of organocuprate reagents with protected 1,2-anhydro sugars-stereocontrolled synthesis of 2-deoxy-c-glycosyl compounds. Carbohydrate Res.1993,244:275-284.
    [16]Drew KN, Gross PH. C-glycoside syntheses.1. glycosyl cyanides and isocyanides from glycosyl fluorides with full acetal protection. J Org Chem.1991,56:509-513.
    [17]Matsumoto T, Hosoya T, Suzuki K. Total synthesis and absolute stereochemical assignment of gilvocarcin-m. J Am Chem Soc.1992,114:3568-3570.
    [18]Lopez MTG, Herae FGD, Felix AS. K2[PD (C6F5)4]-catalyzed cyclotrimerization of malononitrile. J Carbohydrate Chem.1987,6:273-278.
    [19]Kozikowski AP, Konoike T, Ritter A. Organometallics in organic-synthesis applications of a new diorganozinc reaction to the synthesis of c-glycosyl compounds with evidence for an oxonium-ion mechanism. Carbohydrate Res.1987,171:109-124.
    [20]Lewis MD, Cha JK, Kishi Y. Highly stereoselective approaches to alpha-and beta-C-glycopyranosides. J Am Chem Soc.1982,104:4976-4978.
    [21]Benhaddou R, Czemecki S, Ville G. Palladium-mediated arylation of acetylated enones derived from glycals.4. synthesis of aryl 2-deoxy-beta-d-c-glycopyranosid. J Org Chem. 1992,7:4612-4616.
    [22]Vasell AA, Uhlmann P, Waldraff CAA, Diederieh F. Glycosylidene carbenes.9. fullerene sugars-preparation of enantiomerically pure, spiro-linked c-glycosides of c-60. Angew Chem Int Ed Eng.1992,31:1388-1390.
    [23]Schmidt RR, Toepfer A. Glycosylimidates.50. glycosylation with highly reactive glycosyl donors-efficiency of the inverse procedure. Tetrahedron Lett.1991,32: 3353-3356.
    [24]Friesen RW, Loo RW. Preparation of c-aryl glucals via the palladium-catalyzed coupling of metalated aromatics with 1-iodo-3,4,6-tri-o-(triisopropylsilyl)-d-glucal. J Org Chem. 1991,56:4821-4823.
    [25]Wittman V, Kessler H. Stereoselective synthesis of c-glycosides with a glycosyl dianion. Angew Chem Int Ed Eng.1993,32:1091-1093.
    [26]Grondin R, Leblanc Y, Hoogsteen K. Synthesis of 2-amino c-glucosides and 2-amino c-glucoside spiroketals. Tetrahedron Lett.1991,32:5021-5024.
    [27]Prandi J, Andin C, Beau JM. Synthesis of c-glycosides-boron-trifluoride etherate-promoted opening of epoxides by anomeric anions. Tetrahedron Lett.1991,32: 769-772.
    [28]Crich D, Lim LBL. Diastereoselective radical reactions-beta-face selective quenching of the 1,2-o-isopropylidene-3,4,6-tri-o-benzyl-D-glucopyranos-1-yl radical. Tetrahedron Lett.1991,32:2565-2568.
    [29]Parker KA, Coburn CA. Reductive aromatization of quinol ketals-a new synthesis of c-aryl glycosides. J Am Chem Soc.1991,113:8516-8518.
    [30]Bubois E, Beau JM. Formation of c-glycosides by a palladium-catalyzed coupling reaction of tributylstannyl glycals with organic halides. J Chem Soc Chem Comm.1990, 1191-1192.
    [31]Friesen RW, Sturino FC. The preparation of c-arylglycals-the palladium-catalyzed coupling of 3,4,6-tri-o-(tert-butyldimethylsilyl)-1-(tributylstannyl)-D-glucal and aryl bromides. J Org Chem.1990,55:2572-2574.
    [32]Friesen RW, Loo RW. Preparation of c-aryl glucals via the palladium-catalyzed coupling of metalated aromatics with 1-iodo-3,4,6-tri-o-(triisopropylsilyl)-d-glucal. J Org Chem. 1991,56:4821-4823.
    [33]Zhang HC, Daves GDJ. Enantioisomers and diastereoisomers of 2,4-dimethoxy-5-(2,3-dideoxy-5-o-tritylribofuranosyl) pyrimidine-2',3'-dideoxy pyrimidine c-nucleosides by palladium-mediated glycal aglycon coupling. J Org Chem. 1993,58:2557-2560.
    [34]Farr RN, Daves GD. Efficient synthesis of 2'-deoxy-beta-d-furanosyl c-glycosides palladium-mediated glycal-aglycone coupling and stereocontrolled beta-face and alpha-face reductions of 3-keto-furanosyl moieties. J Carbohydrate Chem.1990,9: 653-660.
    [58]Outtan RA, Daves GDJ. Synthetic 1-methoxybenzo[d]naphtho[1,2-b]pyran-6-one C-glycosides. J Org Chem.1987,52:5064-5066.
    [59]Barkta M, Lhoste P, Sinou D. Palladium(o)-based approach to functionalized C-glycopyranosides.J Org Chem.1989,54:1890-1896.
    [35]Gentil E, Potier M, Boullanger P, Descotes G. Use of 2-alkoxycarbonyl derivatives in glucosylation reactions-stereoselective synthesis of orthocarbonates. Carbohydrate Res. 1990,197:75-91.
    [36]Bertozzi CR, Bednarski MD. The synthesis of 2-azido c-glycosyl sugars. Tetrahedron Lett.33:3109-3112.
    [37]Brakta M, Lhosle P, Sinou D, Barnoub J. Assignment of anomeric configuration of c-glycopyranosides and c-glycofuranosides-a h-1, c-13, and nuclear overhauser enhancement spectrometric study. J Org Chem.1993,58:2992-2998.
    [38]Stork G, Suh HS, Kim G. The temporary silicon connection method in the control of regiochemistry and stereochemistry-applications to radical-mediated reactions-the stereospecific synthesis of c-glycosides. J Am Chem Soc.1991,113:7054-7056.
    [39]Amariutei L, Descotes G, Jugel C, Maitre JP, Mentech J. Sucrochemistry.4. regioselective synthesis of aminated sucrose derivatives via the mitsunobu reaction. J Carbohyd Chem.1988,7:21-31.
    [40]Grindley TB, Wickramage C. A novel-approach to the synthesis of c-glycosyl compounds-the wittig rearrangement. J Carbohydrate Chem.1988,7:661-685.
    [41]Craig D, Munasinghem VRN. Stereoselective template-directed c-glycosidation synthesis of bicyclic ketooxetanes via intramolecular cyclization reactions of (2-pyridylthio)glycosidic silyl enol ethers. J Chem Soc Chem Comm.1993,901-903.
    [42]Deng S, Yu B, Lou Y, Hui Y. Highly efficient glycosylation of sapogenins. J Org Chem. 1999,64:202-208.
    [43]Liu MZ, Yu B, Hui Y Z. First total synthesis of 25(R)-ruscogenin-1-yl beta-D-xylopyranosyl-(1-> 3)-[beta-D-glucopyranosyl-(1-> 2)]-beta-fucopyranoside, an ophiopogonis saponin from the tuber of Liriope muscari (Decne.) Tetrahedron Lett. 1998,39:415-418.
    [44]Li C, Yu B, Liu MZ, Hui YZ. Synthesis of diosgenyl alpha-L-rhamnopyranosyl-(1-> 2)-[beta-D-glucopyranosyl-(1-> 3)]-beta-D-glucopyranoside (gracillin) and related saponins. Carbohydrate Res.1998,306:189-195.
    [45]Gu GF, Du Y, Linhardt R.J. Total Synthesis of quercetin 3-sophorotrioside. J Org Chem. 2004,69:2206-2209.
    [46]Hu YN, Walker S. Remarkable structural similarities between diverse glycosyltransferases. Chem Bio.2002,9:1287-1296.
    [47]Breton C, Mucha J, Jeanneau C. Structural and functional features of glycosyltransferases. Biochimie.2001,83:713-718.
    [48]Campbell JA. Davies JG, Bulone V. A classification of nucleotide-diphospho-sugar glycosltransferases based on amino acid sequence similarities. J Biochem.1997,326: 929-939.
    [49]Vrielink A, Ruger W, Driessen HP, Freemont PS. Crystal structure of the DNA modifying enzyme β-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J 1994,13:3413-3422.
    [50]Breton C, Imberty A. Structure/function studies of glycosyltransferases. Curr Opin Struct Biol,1999,9:563-571.
    [51]Wiggins CAR, Munro S. Activity of the yeast MNN 1 a-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proc Natl Acad Sci USA,1998,95:7945-7950.
    [52]Bourne Y, Henrissat B. Glycoside hydrolases and glycosyltransferases:families and functional modules. Curr Opin Struct Biol,2001,11:593-600.
    [53]Shao J, Zhang JB, Nahalk J, Wang P. G. Biocatalytic synthesis of uridine 5A-diphosphate N-acetylglucosamine by multiple enzymes co-immobilized on agarose beads. Chem Commun.2002,2586-2587.
    [54]Liu ZY, J Zhang JB, Chen X, Wang PG. Combined biosynthetic pathway for de novo production of UDP-Galactose:Catalysis with multiple enzymes immobilized on agarose beads. Chem Bio Chem.2002,3:348-355.
    [55]Yang YH, Kanga YB, Kimb DH, Leea TH, Parka SH, Leea K, Yooa D, Liouc KK, Leec HC, Sohngc JK, Kima BG. One-pot enzymatic synthesis of deoxy-thymidine-diphosphate(TDP)-2-deoxy-a-d-glucose using phosphomannomutase. JMol CatalB-Enzym.2010,62:282-287.
    [56]Lee JH, Chung SW, Lee HJ, Jang KS, Lee SG, Kim BG. Optimization of the enzymatic one pot reaction for the synthesis of uridine 5'-diphosphogalactose. Bioproc Biosyst Eng. 2010, SP1:71-78.
    [57]Zhao GH, Guan WY, Cai L, Wang PG. Enzymatic route to preparative-scale synthesis of UDP-GlcNAc/GalNAc, their analogues and GDP-fucose. Nat Protoc.2010,4: 636-646.
    [58]Song JK, Yao QJ, Wang PG. Large-scale biosynthesis of (iso)Globotrihexose with a new three-enzyme system. Glycobiology.2006,11:1126-1126.
    [59]Olivier NB, Chen MM, Behr JR, Imperiali B. In vitro biosynthesis of UDP-N,N '-diacetylbacillosamine by enzymes of the Campylobacter jejuni general protein glycosylation system. Biochem.2006,45:13659-13669.
    [60]Namdjou DJ, Sauerzapfe B, Schmiedel J, Drager G, Bernatchez S, Wakarchuk WW, Elling L. Combination of UDP-Glc(NAc) 4'-epimerase and galactose oxidase in a one-pot synthesis of biotinylated nucleotide sugars. Adv Synth Catal.2007,3:314-318.
    [61]Bourgeaux V, Piller F, Piller V. Two-step enzymatic synthesis of UDP-N-acetylgalactosamine. Bioorg Med Chem Lett.2005,24:5459-5462.
    [62]Zhang JB, Kowal P, Chen X, Wang PG. Large-scale synthesis of globotriose derivatives through recombinant E. coli. Org. Biomol. Chem.2003,1:3048-3053.
    [63]Esders TW, Light RJ. Glucosyl-and Acetyltransferases Involved in the Biosynthesis of Glycolipids from Candida bogoriensis. JBiol Chem.1972,247:1375-1386.
    [64]Pazkowski C, Kalinowska M, Wojciechowski ZA. Phospholipids modulate the substrate specificity of soluble UDP-glucose:steroid glucosyltransferase from eggplant leaves. Phytochemistry.2001.5:663-669.
    [65]Nawloka P, Kalinowska M, Paczkowski C, Wojciechowski ZA. Evidence for essential histidine and dicarboxylic amino-acid residues in the active site of UDP-glucose solasodine glucosyltransferase from eggplant leaves. Acta Biochim Pol.2003,2: 567-572.
    [66]Kohara A, Nakajima C, Tanaka H, Shoyama Y, Ikenaga V, Hashimoto K, Yoshida S, Muranaka T. A novel glucosyltransferase involved in steroid saponin biosynthesis in Solanum aculeatissimum. Plant Mol Biol.2004, SP3:184-184.
    [67]Kohara A, Nakajima C,. Yoshida S, Muranaka T. Characterization and engineering of glycosyltransferases responsible for steroid saponin biosynthesis in Solanaceous plants. Phytochemistry.2007,4:478-486.
    [68]Singh S, Scigelova M, Crout DHG. Glycosidase-catalyzed synthesis of alpha-galactosyl epitopes important in xenotransplantation and toxin binding using the Alpha-galactosidase from Penicillium multicolor. Chem Commun.1999,2065-2066.
    [69]Nilsson KGI. Synthesis with glycosidases. Front Nat Prod Res.1996,1:518-547.
    [70]Nilsson KGI. Glycosidase-catalyzed synthesis of di-and trisaccharide derivatives related to antigens involved in the hyperacute rejection ofxenotransplants. Tetrahedron Lett. 1997,38:133-136.
    [71]Vic G, Grout DHG. Synthesis of glucosidic derivatives with a spacer arm by reverse hydrolysis using almond β-D-glucosidase. Tetrahedron-Asymmetr.1994,5:2513-2516.
    [72]Suzuki K, Fujimoto H, Ito Y, Sasaki T, Ajisaka K. An efficient synthesis of a Gal beta 1-3Ga1NAc-serine derivative using beta-galactosidase. Tetrahedron Lett.1997,38: 1213-1214.
    [73]Scheckermann C, Wagner R, Fischer L. Galactosylation of antibiotics using the β-galactosidase from Aspergillus oryzae. Enzyme Microb.Technol.1997, 20:629-634.
    [74]Gunata Z, Vallier MJ, Sspis JC, Baumes R, Bayonove C. Enzymatic synthesis of monoterpenyl β-D-glucosides by various β-glucosidases. Enzyme Microb Technol.1994, 16:1055-1058.
    [75]Vic G, Thomas D, Grout, DHG. Solvent effect on enzyme-catalyzed synthesis of (3-D-glucosides using the reverse hydrolysis method:Application to the preparative-scale synthesis of 2-hydroxybenzyl and octyl β-D-glucopyranosides. Enzyme Microb Technol. 1997,20:597-603.
    [76]Ljunger G, Adlercreutz P, Mattiasson B. Enzymatic synthesis of octyl-β-glucoside in octanol at controlled water activity. Enzyme Microb Technol.1994,16:751-755.
    [77]Tong AM, Lu WY, Xu JH, Lin GQ. Use of apple seed meal as a new source of (3-glucosidase for enzymatic glucosylation of 4-substituted benzyl alcohols and tyrosol in monophasic aqueous-dioxane medium. Bioorg Med Chem Lett.2004,9:2095-2097.
    [78]Tong AM, Xu JH, Lu WY, Lin GQ. Construction and optimization of a monophasic organic-water system for enzymatic synthesis of p-nitrobenzyl beta-D-glucopyranosides by reverse hydrolysis. J Mol Catal B-Enzym.2005,3:83-88.
    [79]Yu HL, Xu JH, Lu WY, Lin GQ. Identification, purification and characterization of beta-glucosidase from apple seed as a novel catalyst for synthesis of O-glucosides. Enzyme Microb Technol.2007,2:354-361.
    [80]Yu HL, Xu JH, Lu WY, Lin GQ. Environmentally benign synthesis of natural glycosides using apple seed meal as green and robust biocatalyst. JBiotechnol.2008,4:469-477.
    [81]Yu HL, Xu JH, Wang YX, Lu WY, Lin GQ. Assembly of a three-dimensional array of glycoconjugates by combinatorial biocatalysis in nonaqueous media. J Comb. Chem. 2008,179-87.
    [82]MeAulife JC, Hindsgaul O. Use of acyclic glycosyl donors for furanoside synthesis. J Org Chem.1997,62:1234-1239.
    [83]Morzycki JW, Wojtkielewicz A. Synthesis of a cholestane glycoside OSW-1 with potent cytostatic activity. Carbohydr Res.2002,337:1269-1274.
    [84]Ma XQ, Yu B, Hui YZ, Miao Zh, Ding H. Synthesis of steroidal glycosides bearing the disaccharide moiety of OSW-1 and their antitumor activities. Carbohydr Res.2001,334: 159-164.
    [85]Wang PG, Bertozzi CR. Principles, Synthesis, and Applications. Glycochemistry.2001,6: 163-176.
    [86]Ikeda T, Miyashita H, Kajimoto T, Nohara T. Synthesis of neosaponins having an alpha-L-rhamnopyranosyl(1-> 4)-[alpha-L-rhamnopyranosyl-(1-> 2)]D-glucopyranosyl glyco-linkage. Tetrahedron Lett.2001,42:2353-2356.
    [87]Ikeda T, Kinjo J. Kajimoto T, Nohara T. Synthesis of neosaponins carrying oligosaccharides from natural products. Heterocycles.2000,52:775-798.
    [88]Kirschning A, Jesberger M, Schonberger A. The first polymer-assisted solution-phase synthesis of deoxyglycosides. Org Lett.2001,3:3623-3626.
    [89]Garcia BA, Gin DY. Dehydrative glycosylation with activated diphenyl sulfonium reagents. Scope, mode of C(1)-hemiacetal activation, and detection of reactive glycosyl intermediates. J Am Chem Soc.2000,122:4269-4279.
    [90]Wagner B, Heneghan M, Schnabel G, Ernst B. Catalytic glycosylation with rhodium(III)-triphos catalysts. Synlett.2003,9:1303-1306.
    [91]Nishida Y, Shingu Y, Dohi H, Kobayashi K. One-pot alpha-glycosylation method using appel agents inN,N-dimethylformamide. Org Lett.2003,5:2377-2380.
    [92]Glunz PW, Hintermann S, Williams LJ, Schwarz JB, Kuduk SD, Kudryashov V, Lloyd KO, Danishefsky SJ. Design and synthesis of Le(y)-bearing glycopeptides that mimic cell surface Le(y) mucin glycoprotein architecture. J Chem Soc Chem Comm.2000,122: 7273-7279.
    [93]Li B, Yu B, Hui Y Z, Li M, Han XW, Fung KP. An improved synthesis of the saponin, polyphyllin D. Carbohydrate Res,2001,331:1.-7.
    [94]Yu B, Li B, Zhang JB, Hui YZ. A Novel Cleavage of Allyl Protection. Tetrahedron Lett. 1998,39:4871-4874.
    [95]Li M, Han XW, Liu XM, Yu B, Xing GW, Hui YZ, Bao X. Total assignment of NMR spectral lines of synthesized mono-and diacyl derivatives of diosgenyl saponins. Magn Reson Chem.2002,40:789-792.
    [96]Yu B, LiB, Xing GW, Hui YZ. A "Double Random" Strategy for the Preparation of Saponin Libraries. J Comb Chem.2001,3:404-406.
    [97]Yu B, Xing GW, Hui YZ, Han XW. Lipase-catalyzed regioselective acylation of diosgenyl saponins. Tetrahedron Lett.2001,42:5513-5516.
    [98]Yang J, Fu X, Jia Q, Shen J, Biggins JB, Jiang J, Zhao J, Schmidt JJ, Wang PG, Thorson JS. Studies on the substrate specificity of Escherichia coli galactokinase. Org Lett.2003, 5:2223-2226.
    [99]Hoffmeister D, Yang J. Liu L, Thorson JS. Creation of the first anomeric D/L-sugar kinase by means of directed evolution. Proc Natl Acad Sci USA.2003,100: 13184-13189.
    [100]Hoffmeister D, Thorson JS. Mechanistic implications of Escherichia coli galactokinase structure-based engineering. Chem Bio Chem.2004,5:989-992.
    [101]Yang J, Liu L, Thorson JS. Structure-based enhancement of the first anomeric glucokinase. Chem Bio Chem.2004,5:992-996.
    [102]Barton WA, Biggins JB, Lesniak J, Jeffrey PD, Jiang J, Rajashankar KR, Thorson JS Nikolov DB. Structure, mechanism and engineering of a nucleotidylyltransferase as a first step toward glycorandomization. Nat Struct Biol.2001,8:545-551.
    [103]Thoden JB, Holden HM. Molecular structure of galactokinase. J Biol Chem.2003,278: 33305-33311.
    [104]Yang J, Fu X, Liao J, Liu L, Thorson JS. Structure-based engineering of E. coli galactokinase as a first step toward in vivo glycorandomization. Chem Biol.2005,12: 657-664.
    [105]William AB, John BB, Jiang JQ, Thorson JS, Nikolov DB. Expanding pyrimidine diphosphosugar libraries via structure-based nucleotidylyltransferase engineering. Proc Nat. Acad Sci USA.2002,99:13397-13402.
    [106]Jiang J, Biggins JB. Thorson JS.Ange. Chem Intl Ed Engl.2001,40:1502-1505.
    [107]Jiang J, Biggins JB, Thorson JS. A General Enzymatic Method for the Synthesis of Natural and "Unnatural". UDP-and TDP-Nucleotide Sugars. J Am Chem Soc.2000,122: 6803-6804.
    [108]Yang J, Hoffmeister D, Liu L, Fu X, Thorson JS. Natural product glycorandomization. Bioorg Med Chem.2004,12:1577-1584.
    [109]Thorson JS, Barton WA, Hoffmeister D, Albermann C, Nikolov DB. Structure-based enzyme engineering and its impact on in vitro glycorandomization. Chem Bio Chem. 2004,5:16-25.
    [110]Barton WA, Biggins JB, Jiang JQ, Thorson JS, Nikolov DB. Expanding pyrimidine diphosphosugar libraries via structurebased nucleotidylyltransferase engineering. Proc Nat. Acad Sci USA.2002,99:13397-13402.
    [111]Williams GJ, Zhang CS, Thorson JS. Expanding the promiscuity of a natural-productglycosyltransferase by directed evolution. Nat Chem Biol.2007,3: 657-662.
    [112]Robles-Medina A, Gonzalez-Moreno PA, Esteban-Cerdan L, Molina-Grima E. Biocatalysis:Towards ever greener biodiesel production. Biotechnol Adv.2009,27: 398-408.
    [113]Tao JH, Xu JH. Biocatalysis in development of green pharmaceutical processes. Curr Opin Chem Biol.2009,13:43-50.
    [114]Sambrook J, Russell D. Molecular Cloning 3,2001, Cold Spring Harbor Laboratory Press.
    [115]沈萍,范秀容,李广武.微生物学实验(第三版).1999年,高等教育出版社.
    [116]周德庆.微生物学实验教程(第2版).2006年,高等教育出版社。
    [117]Yadav JS, Nanda S, Reddy TP, Rao BA. Efficient enantioselective reduction of ketones with Daucus carota Root. J Org Chem.2002,67:3900-3903.
    [118]Bae J, Lee DH, Kim D, Cho SJ, Park JE, Koh S, Kim J, Park BH, Choi Y, Shin HJ, Hong SI, Lee DS. Facile synthesis of glucose-1-phosphate from starch by Thermus caldophilus GK24 a-glucan phosphorylase. Process Biochem.2005,40:3707-3713.
    [119]Nora AC, David D, Alejandro MV, Francisco JM, Edurne BF, Maria TMZ, Gustavo E, Steven B, Javier PR. Glycogen Phosphorylase, the Product of the glgP Gene, Catalyzes Glycogen Breakdown by Removing Glucose Units from the Nonreducing Ends in Escherichia coli. J Biochem.2006,188:5266-5272.
    [120]Hong Y, Wu L, Liu B, Peng C, Sheng DH, Ni JF, Shen YL. Characterization of a glucan phosphorylase from the thermophilic archaeon Sulfolobus tokodaii strain 7. J Mol Catal B-Enzym.2008,54:27-34.
    [121]Yoon MY, Lee KJ, Park HC, Park SH, Kim SG, Kim SK, Choi JD. Cloning, Expression, and Characterization of UDP-glucose Pyrophosphorylase from Sphingomonas chungbukensis DJ77. Bull Kore Chem Soc.2009,30:1360-1364.
    [122]Padilla L, Agosin E. Heterologous expression of Escherichia coli ppsA (phosphoenolpyruvate synthetase) and galU (UDP-glucose pyrophosphorylase) genes in Corynebacterium glutamicum, and its impact on trehalose synthesis. Metab Eng. 2005,7:260-268.
    [123]Yang L, Liao RZ, Yu JG, Liu RZ. Study on the Mechanism of Escherichia coli Inorganic Pyrophosphatase. J Mol Catal B-Enzym.2009,113:6505-6510.
    [124]Satoh T, Shinoda H, Ishii K, Koyama M, Sakurai N, Kaji H, Hachimori A, Irie M, Samejima T. Primary structure, expression, and site-directed mutagenesis of inorganic pyrophosphatase from Bacillus stearothermophilus. JBiochem.1999,125:48-57.
    [125]Hoe HS, Kim HK, Kwon ST. Expression in Escherichia coli of the thermostable inorganic pyrophosphatase from the Aquifex aeolicus and purification and characterization of the recombinant enzyme. Protein Expres Purif.2001,23:242-248.
    [126]Pinchas K, Edna F, Idit G. Potato steroidal glycoalkaloid levels and the expression of key isoprenoid metabolic genes. Planta.2007,227:143-150.
    [127]Arnqvist L, Dutta PC, Jonsson L, Sitbon F. Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a type sterol methyltransferase cDNA. Plant Physiol.2003,131:1792-1799.
    [128]Roman E, Roberts I, Lidholt K, Kusche-Gullberg M. Overexpression of UDP-glucose dehydrogenase in Escherichia coli results in decreased biosynthesis of K5 polysaccharide. Biochem J.2003,374:767-772.
    [129]Vigetti D, Ori M, Viola M, Genasetti A, Karousou E, Rizzi M, Pallotti F, Nardi I, Hascall VC, De Luca G, Passi A. Molecular cloning and characterization of UDP-glucose dehydrogenase from the amphibian Xenopus laevis and its involvement in hyaluronan synthesis. JBiol Chem.2006,281:8254-8263.
    [130]J Nahalka. Physiological aggregation of maltodextrin phosphorylase from Pyrococcus furiosus and its application in a process of batch starch degradation to a-D-glucose-1-phosphate. JInd Microbiol Biotechnol.2008,35:219-223.
    [131]Weinhausel A, Nidetzky B, Kysela C, Kulbe KD Application of Escherichia coli maltodextrin-phosphorylase for the continuous production of glucose-1-phosphate. Enzyme Microb Technol.1995,17:140-146.
    [132]Shin HJ, Shin Y, Lee DS. Formation of a-D-glucose-1-phosphate by thermophilic a-1,4-D-glucan phosphorylase. J Ind Microbiol Biotechnol.2000,24:89-93.
    [133]Dimond RL, Farnsworth PA, Loomis WF. Isolation and characterization of mutations affecting UDPG pyrophosphorylase activity in dictyostelium discoideum. Dev Biol. 1976,50:169-181.
    [134]Newell PC, Sussman M. Uridine diphosphate glucose pyrophosphorylase in dictyostelium discoideum. JBiol Chem.1969,244:2990-2995.
    [135]Elling L, Kula MR. Investigation of the UDP-glucose dehydrogenase reaction for a coupled assay of UDP-glucose pyrophosphorylase activities. Biotechnol Appl Biochem. 1991,14:306-16.
    [136]Kunitz MJ. Crystalline inorganic pyrophosphatase isolated from baker's yeast. Gen Physiol.1952,35:423-449.
    [137]Lahti R, Pitkaranta T, Valve E, Ira I, Kukko-Kalske E, Heinonen J. Cloning and characterization of the gene encoding inoranic pyrophosphatase of Eschevichia coli K-12. J. Bacteriol.1988,170:5901-5907.
    [138]Campbell RE, Tanner ME. Uridine diphospho-alpha-D-gluco-hexodialdose:Synthesis and kinetic competence in the reaction catalyzed by UDP-glucose dehydrogenase. Angew Chem Int Edit.1997,36:1520-1522.
    [139]Lluisma AO, Ragan MA. Characterization of the UDP-glucose pyrophosphorylase gene from the marine red alga Gracilaria gracilis. JAppl Phycol.1998,10:581-588.
    [140]Chiang HC, Tseng TH, Wang CJ, Chen CF, Kan WS. Experimental antitumor agents from Solanum indicum. Anticancer Res.1991,11:1911-1917.
    [141]Hibasami H, Moteki H, Ishikawa K, Katsuzaki H, Imai K, Yoshioka K, Ishii Y, Komiya T. Protodioscin isolated from fenugreek (Trigonella foenumgraecum) induces cell death and morphological change indicative of apoptosis in leukemic cell line HL-60, but not in gastric cancer cell line KATO III. Int J Mol Med.2003,11:23-26.
    [142]Cai J, Liu M, Wang Z. Apoptosis induced by dioscin in Hela cells. Biological Pharmaceutical Bulletin.2002,25:193-196.
    [143]刘遂心,李彤,孙明.缺氧对心肌细胞内游离钙浓度和细胞膜Ca2+-ATPase表达的影响及薯蓣皂甙的干预作用.中国医刊.2004,391:31-33.
    [144]SaumurM, Mitaine-Ofer AC, Miyamoto T, DongmoA, Lacaille-DuboisMA. Amifungal steroid saponins from Dioscorea cayenensis. Planm Med.2004,70:90-92.
    [145]Takechi M, Doi K, Wakayama Y. Biological activities of synthetic saponins and cardiac glycosides. Phytother Res.2003,17:83-85.
    [146]Ishikawa T, Kataoka S, Kandori K. The influence carboxylate ions on the growth of β-FeOOH particles. J Mater Sci.1993,28:2693-2698.
    [147]Ishikawa T, Takeda T, Kandori K. Effects of amines on the formation of p-ferric oxide hydroxide. J Mater Sci.1992,27:4531-4534.
    [148]Butterworth MD, Illum L, Davis SS. Preparation of ultrafine silica-and PEG-coated magnetite particles. Colloid Surface A.2001,179:93-102
    [149]Mohapatra S, Pramanik N, Mukherjee S, Ghosh SK, Pramanik P. A simple synthesis of amine-derivatised superparamagnetic iron oxide nanoparticles for bioapplications. J Mater Sci.2007,42:7566-7574.
    [150]Rossi LM, Quach AD, Rosenzweig Z. Glucose oxidase-magnetite nanoparticle bioconjugate for glucose sensing. Anal Bioanal Chem.2004,380:606-613.
    [151]Yamaura M, Camilo RL, Sampaio LC, Macedo MA, Nakamura M, Toma HE. Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. JMagn Magn Mater.2004,279:210-217.
    [152]Phan NTS, Jones CW. Highly accessible catalytic sites on recyclable organosilane-functionalized magnetic nanoparticles:An alternative to functionalized porous silica catalysts. J Mol Catal A-Chem.2006,253:123-131.
    [153]Steitz B, Salaklang J, Finka A, O'Neil C, Hofmann H, Petri-Fink A. Fixed Bed Reactor for Solid-Phase Surface Derivatization of Superparamagnetic Nanoparticles. Bioconj Chem.2007,18:1684-1690.
    [154]Hu B, Pan J, Yu HL, Liu JW, Xu JH. Immobilization of Serratia marcescens lipase onto amino-functionalized magnetic nanoparticles for repeated use in enzymatic synthesis of Diltiazem intermediate. Process Biochem.2009,44:1019-1024.
    [155]Yong Y, Bai YX. Li YF, Lin L, Cui YJ, Xia CG. Characterization of Candida rugosa lipase immobilized onto magnetic microspheres with hydrophilicity. Process Biochem. 2008,43:1179-1185.
    [156]Li YG, Gao HS, Li WL, Xing JM, Liu HZ. In situ magnetic separation and immobilization of dibenzothiophene-desulfurizing bacteria. Bioresour Technol.2009, 21:5092-5096.
    [157]Zhu H, PanJ, Hu B, Yu HL, Xu JH. Immobilization of glycolate oxidase from Medicago falcata on magnetic nanoparticles for application in biosynthesis of glyoxylic acid. J Mol Catal B-Enzym.2009,61:174.
    [158]胡彬.磁性纳米颗粒的制备及其在脂肪酶固定化中的应用.华东理工大学硕士学位论文,2008.
    [159]Fukui T, Kazata Y. Katsube T. Exploring the active site in UDP-glucose pyrophosphorylase by affinity labelling and site directed mutagenesis. Biotech App Biochem.1993,18:209-216.
    [160]Gillett TA, Levine S, Hansen RG. Uridine diphosphate glucose pyrophosphorylase. J Biol Chem.1971,246:2552-2554.
    [161]Gustafson GL, Gander JE. UDP-glucose pyrophosphorylasefrom Sorghum vulgare. J Biol Chem.1972,247:1387-1397.
    [162]Nakano K, Omura Y. Tagaya M. UDP-glucose py-rophosphorylase from potato tuber:purification and characterization. J Biochem.1989,106:528-532.
    [163]Holden HM, Thoden JB, Timson DJ, Reece RJ. Galactokinase:structure, function and role in type II galactosemia. Cell Mol Life Sci.2004,61:19-20.
    [164]Asada M, Okano Y, Imamura T, Suyama I, Hase Y, Isshiki G. Molecular characterization of galactokinase deficiency in Japanese patients. Am J Hum Genet.68: 1036-1042.
    [165]Geus D, Hartley AP, Sedelnikova SE, Glynn SE, Baker PJ, Verhees CH, Oost J, Rice DW. Cloning, purification, crystallization and preliminary crystallographic analysis of galactokinase from Pyrococcus furiosus. Acta Crystallogr D.2003,59:1819-1821.
    [166]Choi JY, Lee JH, Lee JM, Kim JH, Chang HC, Chung DK, Cho SK, Lee HJ. Expression of the galactokinase gene (galK) from Lactococcus lactis ssp lactis ATCC7962 in Escherichia coli. JMicrobiol.2002,40:156-160.
    [167]Timson DJ, Reece RJ. Kinetic analysis of yeast galactokinase:implications for transcriptional activation of the GAL genes. Biochimie.2002,84:265-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700