芦笋多糖、芦笋皂苷抗肿瘤作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤是目前危害人类健康最严重的疾病之一,据WHO统计,全球平均每年死于恶性肿瘤者达700万人,新发病为800万例,且还在逐年增加,到2020年全世界每年将新发生2000万例肿瘤,成为人类健康头号杀手。传统的化学治疗药物和手术、放疗等结合,成功的提高了多种恶性肿瘤的治愈率,但是由于较强的副作用以及耐药性,使得寻找新药的研究刻不容缓。
     近年来,植物来源的抗肿瘤药物重新引起重视。芦笋是天门冬科天门冬属多年生草本植物,它是一种质地优良、营养丰富的保健型蔬菜,含有多糖、皂苷、黄酮、组织蛋白、微量元素等多种成分,大量科学研究证实芦笋是一种具有抗肿瘤、增加人体免疫力等功效的天然药物。国内外对芦笋的药用研究,特别是防癌抗癌研究正逐渐增多,但目前的研究多以芦笋原汁或芦笋提取液来进行抗肿瘤作用研究,其抗肿瘤作用的活性成分及具体机制目前还不清楚。课题立足这一研究空白,以芦笋多糖、芦笋皂苷为研究对象,明确芦笋抗肿瘤的有效成分及其抗肿瘤作用机制。
     肿瘤的发生发展与机体免疫反应密切相关,红细胞作为机体血液循环数量最多的血细胞,调节多种细胞的免疫功能,对机体免疫功能有重要调节作用。红细胞免疫功能的变化在肿瘤发生发展中具有极其重要的作用,红细胞膜表面存在着大量的免疫相关分子,它们是红细胞发挥免疫功能的重要物质基础。抗肿瘤药物通过增强肿瘤机体红细胞免疫功能,对肿瘤病情治疗具有实用价值。多糖的抗肿瘤作用具有整体性的优势,尤其可以增强机体免疫功能。基于这一理论基础,课题首次考察了芦笋多糖对荷瘤小鼠抗肿瘤作用,并从红细胞免疫角度考察了其抗肿瘤的作用机制。
     肿瘤的发生发展还与细胞凋亡密切相关,细胞凋亡是指为维持内环境稳定,在多种基因调控下的一个严密完整的、主动的、有序的死亡过程。以诱导肿瘤细胞凋亡作为治疗肿瘤的手段,已成为当今抗肿瘤药物作用机制研究的热点。课题首次考察了芦笋皂苷诱导人肝癌HepG2细胞凋亡的作用,并从线粒体介导细胞凋亡的途径着手,通过对凋亡事件中凋亡诱导因素、凋亡生死开关、凋亡启动分子、凋亡效应分子等指标的检测,考察了其抗肿瘤的作用机制。
     主要包括三部分研究内容:一、芦笋多糖、芦笋皂苷抗肿瘤作用研究;二、芦笋多糖对S180小鼠红细胞免疫及生理功能影响的研究;三、芦笋皂苷通过线粒体途径诱导HepG2细胞凋亡研究。
     1芦笋多糖、芦笋皂苷抗肿瘤作用研究
     1.1芦笋多糖、芦笋皂苷对荷瘤小鼠瘤重和生存时间的影响
     目的:考察芦笋多糖、芦笋皂苷对荷瘤小鼠瘤重和生存时间的影响,确定各组分体内抗肿瘤作用。方法:建立了肿瘤动物模型,分高、中、低剂量给予芦笋多糖、芦笋皂苷7天,计算抑瘤率、生命延长率。结果:①芦笋多糖可以抑制S180小鼠肿瘤的生长,给药组小鼠瘤重降低,与阴性组比较具有明显差异(P<0.05),抑瘤率具有量效性,高剂量组为47.65%;芦笋多糖可以改变H22小鼠的生存时间,给药组小鼠生存时间延长,与阴性组比较具有明显差异(P<0.05),生命延长率具有量效性,高剂量组为66.65%。②芦笋皂苷可以抑制S180小鼠肿瘤的生长,给药组小鼠瘤重降低,与阴性组比较具有明显差异(P<0.05),抑瘤率具有量效性,高剂量组为44.8%;芦笋皂苷可以改变H22小鼠的生存时间,给药组小鼠生存时间延长,与阴性组比较具有明显差异(P<0.05),生命延长率具有量效性,高剂量组为57.05%。结论:芦笋多糖、芦笋皂苷可以降低S180小鼠的瘤重,抑瘤作用明显。芦笋多糖、芦笋皂苷还可以延长H22小鼠的生存时间,生命延长作用明显。
     1.2芦笋多糖、芦笋皂苷对人肿瘤细胞增殖的影响
     目的:考察芦笋多糖、芦笋皂苷对HepG2、SGC-7901细胞增殖的影响,确定各组分体外抗肿瘤作用。方法:体外培养HepG2、SGC-7901细胞,分别给予浓度为0.1、1、10、100、1000μg/mL的芦笋多糖和芦笋皂苷,MTT法和SRB测定芦笋各组分的细胞增殖抑制率。结果:①MTT结果表明,芦笋多糖作用于HepG2、SGC-7901细胞72 h,对细胞生长有较弱的抑制作用,细胞毒作用不明显。②MTT结果表明,芦笋皂苷作用于HepG2、SGC-7901细胞72 h,对细胞生长有抑制作用,其中对HepG2细胞的IC50为101.15μg/mL,对SGC-7901细胞的IC50为177.5μg/mL。SRB结果表明,芦笋皂苷作用于HepG2、SGC-7901细胞72 h,对细胞生长有抑制作用,对HepG2细胞的GI50为107.53 gg/mL,对SGC-7901细胞的GI50为157.44 gg/mL。结论:芦笋多糖对人肿瘤细胞增殖无抑制作用,芦笋皂苷对人肿瘤细胞增殖有较强抑制作用,对HepG2细胞作用敏感。
     2芦笋多糖对S180小鼠红细胞免疫及生理功能影ktm的研究
     2.1芦笋多糖对S180小鼠红细胞补体受体-1(CR1,CD35)数量及活性的影响
     目的:研究芦笋多糖对S180小鼠红细胞补体受体-1(CRl)数量、红细胞CR1天然免疫活性及红细胞调控淋巴细胞免疫反应能力的影响。方法:取小鼠抗凝全血制备红细胞悬液,用大鼠抗小鼠CD35一抗和FITC-羊抗大鼠二抗标记小鼠红细胞,应用流式细胞仪测定小鼠红细胞CR1数量;显微镜下观察红细胞C3b受体花环率(RBC-C3bRR)和肿瘤红细胞花环率(DTER);取正常小鼠抗凝全血制备淋巴细胞悬液和血浆,取正常小鼠和芦笋多糖不同剂量组S180小鼠抗凝全血制备红细胞悬液,以癌细胞S180作为激活抗原,正常血浆作为反应基质,正常淋巴细胞作为效应细胞,分别建立抗原激活及无抗原激活红细胞调控淋巴细胞免疫反应体系,流式细胞仪检测淋巴细胞表面CD25表达。结果:①S180小鼠红细胞CR1数量显著低于正常组(P<0.01),芦笋多糖高、中剂量可以增加S180小鼠红细胞CR1数量,与阴性组比较具有明显差异(P<0.05)。②S180小鼠RBC-C3bRR、DTER显著低于正常组(P<0.01),芦笋多糖高、中剂量可以增加S180小鼠CR1天然免疫活性,与阴性组比较具有明显差异(P<0.05)。③在抗原激活情况下,小鼠红细胞能够对淋巴细胞的免疫反应发生正向调控作用,正常组小鼠红细胞作用下的CD25表达量明显高于肿瘤组,芦笋多糖组S180小鼠红细胞作用下的CD25表达量明显高于阴性组;无抗原激活情况下,红细胞同样能够单独对淋巴细胞进行正向调控,使CD25表达量升高,但各组表达量低于抗原激活情况下的表达量。结论芦笋多糖可以增加S180小鼠红细胞CR1的数量,增强S180小鼠红细胞CR1天然免疫活性,增强S180小鼠红细胞CR1调控淋巴细胞免疫反应的能力,改善S180小鼠红细胞免疫功能。
     2.2芦笋多糖对S180小鼠红细胞膜组分及流动性的影响
     目的:研究芦笋多糖对S180小鼠红细胞膜组分及流动性的影响。方法:芦笋多糖对S180小鼠腹腔注射给药7天,应用聚丙烯酰胺凝胶电泳测定小鼠红细胞膜带3蛋白及血型糖蛋白A的相对含量,采用试剂盒测定红细胞膜磷脂、胆固醇和唾液酸含量,荧光偏振法结合探针1,6-二苯-1、3、5己三烯测定红细胞膜流动性。结果:①S180小鼠与正常对照组比较红细胞膜磷脂含量降低、胆固醇含量升高,芦笋多糖可以使S180小鼠红细胞膜磷脂含量升高、胆固醇含量降低,与阴性对照组比较具有显著性差异P<0.05,P<0.01)。②S180小鼠红细胞膜带3蛋白、血型糖蛋白A相对含量明显低于正常对照组,芦笋多糖中、高剂量可以显著提高S180小鼠红细胞膜两种蛋白相对含量,与阴性对照组比较具有显著性差异(P<0.05,P<0.01)。③S180小鼠与正常对照组比较红细胞膜唾液酸含量显著降低,芦笋多糖高、中剂量组能够升高S180小鼠红细胞膜唾液酸含量,与阴性对照组比较具有显著性差异(P<0.05,P<0.01)。④S180小鼠与正常对照组比较红细胞膜流动性降低,芦笋多糖中、高剂量组能降低S180小鼠红细胞膜荧光偏振度和微黏度,升高S180小鼠红细胞膜流动性,与阴性对照组比较具有显著性差异(P<0.05,P<0.01)。结论:芦笋多糖可以改善S180小鼠红细胞膜组分的异常变化,从而保持细胞膜的流动性,恢复红细胞的结构和功能。
     2.3芦笋多糖对S1so小鼠红细胞膜电位的影响
     目的:研究芦笋多糖对S180小鼠红细胞膜电位的影响。方法:建立了肿瘤动物模型,分高、中、低剂量腹腔给予芦笋多糖7d,采集并制备红细胞悬液,采用DiBAC4(3)作为膜电位荧光探针,应用流式细胞仪检测小鼠红细胞膜电位。结果:阴性对照组S180小鼠红细胞荧光强度明显高于正常对照组,说明Slso小鼠红细胞膜电位高于正常对照组,细胞膜发生去极化,两组之间比较有非常显著性差异(P<0.01),芦笋多糖中、高剂量组能够减弱S180小鼠红细胞荧光强度,降低红细胞膜电位,使红细胞膜去极化减弱。结论:芦笋多糖可以改善S180小鼠红细胞膜电位,从而稳定细胞内外离子的跨膜扩散。
     2.4芦笋多糖对S180小鼠红细胞离子通道的影响
     目的:研究芦笋多糖对S180小鼠红细胞离子通道的影响。方法:建立了肿瘤动物模型,分高、中、低剂量腹腔给予芦笋多糖7d,采集并制备红细胞悬液,试剂盒结合分光光度计测定S180小鼠红细胞膜Na+,K+-ATPase、Ca2+,Mg2+-ATPase活性,采用Fluo-3/AM、MQAE、BCECF-AM作为荧光探针,应用激光共聚焦显微镜分别观察S180小鼠红细胞内[Ca2+]浓度,[CI-]浓度、细胞内pH。结果:①芦笋多糖能升高S180小鼠红细胞膜Na+,K+-ATPase、Ca2+,Mg2+-ATPase活性,降低S180小鼠红细胞内[Ca2+]浓度,增强红细胞阳离子通道转运活性。②芦笋多糖能够降低S180小鼠红细胞内[CI-]浓度,增强红细胞阴离子通道转运活性。③芦笋多糖还能够降低S180小鼠红细胞内的H+浓度,升高红细胞内pH,维持红细胞酸碱平衡。结论:芦笋多糖正是通过提高S180小鼠红细胞膜离子通道的功能,从而稳定细胞内环境,保护红细胞膜结构,维持红细胞发挥正常功能。
     2.5芦笋多糖对S180小鼠红细胞合淌度的影响
     目的:研究芦笋多糖对S180小鼠红细胞合淌度的影响。方法:建立了肿瘤动物模型,分高、中、低剂量腹腔给予芦笋多糖7d,采集并制备红细胞悬液,应用高效毛细管电泳法检测红细胞的合淌度。实验条件:毛细管为75μm×50cm,电泳缓冲液为含2g/L羟丙基甲基纤维素的磷酸盐溶液,压力进样为3.448kPa×10s,分离电压为20kV,柱温为25℃。结果:S180小鼠红细胞的电泳迁移时间比正常小鼠延长,芦笋多糖可以缩短S180小鼠红细胞迁移时间,与阴性组比较具有显著性差异(P<0.05)。S180小鼠红细胞的合淌度比正常组小鼠降低(P<0.01),芦笋多糖可以提高S180小鼠红细胞的合淌度,与阴性组比较具有显著性差异(P<0.05)。结论:芦笋多糖能够改变肿瘤机体红细胞的合淌度,这可能与其改变红细胞表面的电荷密度有关。高效毛细管电泳法可以作为检测红细胞生理状态和功能的一种辅助工具。
     3芦笋皂苷通过线粒体途径诱导HepG2细胞凋亡研究
     3.1芦笋皂苷诱导HepG2细胞凋亡的检测
     目的:研究芦笋皂苷诱导HepG2细胞凋亡的作用。方法:体外培养HepG2细胞,分别给予浓度为50、100、200μg/mL的芦笋皂苷,培养48h、72h。Hoechst 33258染色结合荧光显微镜观察HepG2细胞凋亡形态,透射电子显微镜观察HepG2细胞超微结构,Annexin V-FITC/PI双染结合流式细胞仪测定芦笋皂苷诱导HepG2细胞凋亡作用,PI单染结合流式细胞仪测定芦笋皂苷对HepG2细胞周期及凋亡率的影响。结果:①荧光显微镜观察表明,阴性对照组细胞界限清晰,细胞呈现弥散均匀荧光;芦笋皂苷作用于细胞48 h后,HepG2细胞出现了凋亡形态,随着浓度的增加,凋亡细胞数量增多,出现凋亡小体。②透射电子显微镜下观察表明,阴性对照组细胞有核仁且细胞器丰富,芦笋皂苷作用72h后,HepG2细胞出现了凋亡形态,且随着药物浓度的增加细胞凋亡特征性形态逐渐明显,高剂量组,细胞核裂解为碎块,产生凋亡小体。③芦笋皂苷作用48 h后,凋亡早期细胞数随药物浓度升高而减少,凋亡晚期和坏死细胞数随药物浓度升高而增加,凋亡细胞总数随着药物浓度升高呈现一定的剂量依赖性。④芦笋皂苷作用72 h后HepG2细胞周期发生了明显的变化,各剂量组细胞S期比例增加,G2/M期比例减少,随着芦笋皂苷浓度的增加周期变化趋势明显。各给药组出现亚二倍体凋亡峰,随着芦笋皂苷浓度的增加凋亡率增加。结论:芦笋皂苷可以诱导HepG2细胞凋亡。
     3.2芦笋皂苷对HepG2细胞内活性氧(ROS)、Ca2+、pH的影响
     目的:研究芦笋皂苷对HepG2细胞内活性氧(ROS)、Ca2+、pH的影响。方法:体外培养HepG2细胞,分别给予浓度为50、100、200μg/mL的芦笋皂苷,培养24h。采用Fluo-3/AM、BCECF/AM作为荧光探针,应用流式细胞仪、激光共聚焦显微镜测定芦笋皂苷对HepG2细胞内ROSCa2+、pH的影响。结果:①芦笋皂苷作用24 h,各给药组细胞内ROS荧光强度高于空白对照组,具有统计学意义(P<0.01),随着药物浓度的增加细胞内荧光强度增强,ROS水平明显增加。②芦笋皂苷作用24 h,各给药组细胞内Ca2+荧光强度高于空白对照组,具有统计学意义P<0.01),随着药物浓度的增加细胞内的荧光强度增强,Ca2+浓度升高。③芦笋皂苷作用24 h,各给药组细胞内pH荧光强度低于空白对照组,具有统计学意义(P<0.01),随着药物浓度的增加细胞内荧光强度减弱,细胞内pH降低。结论:芦笋皂苷通过对HepG2细胞内ROS、Ca2+、pH的调控,可以进一步诱发下游凋亡相关事件的发生。3.3芦笋皂苷对HepG2细胞内线粒体膜通道孔(MPTP)及线粒体膜电位
     (MMP)的影响
     目的:研究芦笋皂苷对HepG2细胞内线粒体膜通道孔(MPTP)及线粒体膜电位(MMP)的影响。方法:体外培养HepG2细胞,分别给予浓度为50、100、200μg/mL的芦笋皂苷,培养24h。采用MPTP荧光检测试剂盒、Rhodamine 123作为荧光探针,应用激光共聚焦显微镜观察芦笋皂苷对HepG2细胞MPTP、MMP的影响。结果:①芦笋皂苷作用HepG2细胞24h后,细胞荧光强度减弱,表明细胞MPTP活性增强,并且随着药物浓度增加MPTP活性逐渐增强,与空白对照组比较差异显著(P<0.05)。②芦笋皂苷作用HepG2细胞24h后,细胞荧光强度减弱,表明细胞MMP水平降低,并且随着药物浓度增加MMP水平逐渐降低,与空白对照组比较差异显著(P<0.05)。结论:芦笋皂苷通过对细胞线粒体通透性转换孔开放,启动细胞的生死开关,降低线粒体膜电位,最终诱导细胞凋亡。3.4芦笋皂苷对HepG2细胞凋亡相关蛋白表达的影响
     目的:研究芦笋皂苷对HepG2细胞凋亡相关蛋白表达的影响。方法:体外培养HepG2细胞,分别给予浓度为50、100、200μg/mL的芦笋皂苷,培养24h、48h。分别加Bcl-2、Bax、Cyt-c、Caspase-9、Caspase-3一抗孵育,加异硫氰酸荧光素(FITC)标记的二抗孵育,采用流式细胞仪检测细胞内蛋白表达水平。结果:①芦笋皂苷作用HepG2细胞24h后,细胞内Cyt-c蛋白的表达量增加,并且随着药物浓度增加蛋白含量逐渐升高。②芦笋皂苷作用HepG2细胞48h后,细胞内激活型Caspase-9、Caspase-3蛋白的表达量增加,并且随着药物浓度增加蛋白含量逐渐升高。③芦笋皂苷作用HepG2细胞24h后,细胞内Bcl-2蛋白的表达量降低,并且随着药物浓度增加蛋白含量逐渐降低;细胞内Bax蛋白的表达量增加,并且随着药物浓度增加蛋白含量逐渐升高。结论:芦笋皂苷可以调控HepG2细胞内线粒体途径多个凋亡相关蛋白的表达,从而诱导细胞凋亡。
     3.5芦笋皂苷对HepG-2细胞Caspase-9和Caspase-3活性影响
     目的:研究芦笋皂苷对HepG2细胞Caspase-9和Caspase-3活性的影响。方法:体外培养HepG2细胞,分别给予浓度为50、100、200μg/mL的芦笋皂苷,培养24h、48h。采用Caspase活性检测试剂盒结合酶标仪测定Caspase-9和Caspase-3活性。结果:①芦笋皂苷作用HepG2细胞后,pNA生成量均增加,Caspase-9的相对活性升高,与空白对照组比较差异显著(P<0.01)。芦笋皂苷作用48h后Caspase-9的相对活性较作用24h的相对活性高。24h相对活性分别增加为48.21%、63.89%、102.11%,48h相对活性分别增加为55.52%,93.83%,135.89%。②芦笋皂苷作用HepG2细胞后,pNA生成量均增加,Caspase-3的相对活性升高,与空白对照组比较差异显著(P<0.01)。芦笋皂苷作用48h后Caspase-9的相对活性比作用24h的相对活性高。24h相对活性分别增加为46.79%,55.03%,74.24%,48h相对活性分别增加为80.03%,143.32%,218.66%。结论:芦笋皂苷可以增强HepG-2细胞中Caspase-9和Caspase-3的活性,可以通过Caspase依赖的线粒体途径诱导细胞凋亡。
     结论
     芦笋具有抗肿瘤的作用。其活性成分及作用机制包括:
     一、芦笋多糖可以提高S180小鼠红细胞免疫功能:①芦笋多糖可以增加S180小鼠红细胞CR1的数量,增加S180小鼠红细胞C3b受体花环率(RBC-C3bRR)和肿瘤红细胞花环率(DTER),增强S180小鼠红细胞C3b受体调控淋巴细胞免疫反应的能力,从而对S180小鼠红细胞CRl的数量、活性有所增加和提高。②芦笋多糖能增加S180小鼠红细胞膜表面带3蛋白、血型糖蛋白A的含量;升高S180小鼠红细胞膜磷脂含量,降低胆固醇含量;增加S180小鼠红细胞膜表面唾液酸含量;提高S180小鼠红细胞膜流动性。从而改善S180小鼠红细胞膜组分和结构的变化,恢复红细胞的功能。③芦笋多糖能够减弱S180小鼠红细胞荧光强度,降低红细胞膜电位,使红细胞膜去极化减弱。④芦笋多糖能升高S180小鼠红细胞膜Na+,K+-ATPase、Ca2+,Mg2+-ATPase活性,降低S180小鼠红细胞内[Ca2+]浓度,增强红细胞阳离子通道转运活性。芦笋多糖能降低S180小鼠红细胞内[CI-]浓度,增强红细胞阴离子通道转运活性。芦笋多糖还能够降低S180小鼠红细胞内的H+浓度,升高红细胞内pH,维持红细胞酸碱平衡。⑤芦笋多糖可以缩短S180小鼠红细胞迁移时间,提高S180小鼠红细胞的合淌度。
     芦笋皂苷通过线粒体途径诱导HepG2细胞凋亡:①荧光显微镜和透射电镜的形态学观察结果表明,芦笋皂苷能够诱导HepG2细胞发生凋亡,产生凋亡小体。流式细胞仪检测同样表明,芦笋皂苷能够诱导HepG2细胞发生凋亡,细胞凋亡率随药物浓度升高呈现剂量依赖性,同时芦笋皂苷能够阻滞HepG2细胞周期于S期,使S期细胞比例增加,G2/M期细胞比例减少。②芦笋皂苷能够刺激HepG2细胞内ROS水平升高,增加胞浆内Ca2+浓度,还可以引起细胞内H+增多,导致细胞内酸化,从而诱导HepG2细胞凋亡。③芦笋皂苷能够使HepG2细胞线粒体通透性转换孔开放,启动细胞的生死开关,降低线粒体膜电位,从而进入一个不可逆转的线粒体凋亡途径。④芦笋皂苷能够调控多种线粒体凋亡途径相关蛋白的表达,诱导HepG2细胞凋亡。可以显著增加细胞内Cyt-C蛋白、激活型Caspase-9、Caspase-3蛋白的表达量,同时显著增加细胞内Bax蛋白的表达量,降低细胞内Bcl-2蛋白的表达量。⑤芦笋皂苷可以增强HepG2细胞中Caspase-9和Caspase-3的活性,这种作用具有量效性和时效性,证明芦笋皂苷可以通过Caspase依赖的线粒体途径诱导HepG2细胞凋亡。
     1.多糖的抗肿瘤作用具有整体性的优势,尤其可以增强机体免疫功能。基于这一理论基础,本课题首次考察了芦笋多糖的抗肿瘤作用,并从红细胞免疫角度考察了其抗肿瘤的作用机制。①首次检测了小鼠红细胞CR1的数量,并考察了芦笋多糖对S180小鼠红细胞CR1数量的影响,国内外尚无相关报道。②血液免疫反应路线图理论是近年来红细胞免疫基础理论的重大突破,是红细胞免疫研究方法的创新。课题结合这一新理论,考察了芦笋多糖对S180小鼠红细胞调控淋巴细胞免疫反应能力的影响,国内外尚无相关报道。③关于肿瘤机体与正常机体红细胞淌度间差别的报道还比较少,课题首次建立高效毛细管电泳检测方法测定了芦笋多糖对S180小鼠红细胞电泳合淌度的影响。
     2.课题通过实验筛选出对人肿瘤细胞增殖具有直接抑制作用的芦笋皂苷成分,并考察了其诱导细胞凋亡的作用,同时确定线粒体途径为芦笋皂苷诱导细胞凋亡的主要途径,国内外未见相关报道。
Tumor is one of the most harmful diseases to human health, as WHO reports, up to seven million people die from cancer per year the entire world, and the new patient are about eight million, which is gradually increasing. In 2020, the new incidence will be twenty million per year all the world, and the cancer will be the first killer for human health. Chemistry drug, operation and radiotherapy had successfully cured many cancers, but the side-effect and drug-resistance were obvious, so founding new drugs is urgent.
     In recent years, anti-tumor drugs from plant have aroused people's attention. Asparagus officinalis is a perennial herb plant; it has abundant nutrition and many active components such as polysaccharide, saponin, flavonoids, tissue protein, and trace element. Many scientific studies showed Asparagus officinalis had anti-tumor effect and enhanced people's immunity. The research is increasing gradually around the would, especially on cancer cure and prevention, but the present work mainly focus on asparagus officinalis juice or extracts, so the exact anti-tumor active components in'Asparagus officinalis and anti-tumor mechanism are unclear. Based on the vain field, we choose asparagus polysaccharide and saponin as study object, and identify anti-tumor active components in Asparagus officinalis and anti-tumor mechanism.
     There are substantial connections between tumor occurrence and development with organism immunity. Red blood cells is the most cells in blood cycle, it can adjust many immune functions, which play an important role in organism immunity. The change of red blood cells immunity may affect tumor occurrence and development; there are many immune molecules on red blood cells surface, which are the most important material basis for its immune function. Many anti-tumor drugs cured the patients by enhancing their immunity, and polysaccharide from plant had the advantage to enhance organism immunity. So based on this feature, we determined asparagus polysaccharide anti-tumor effect for the first time, and study the mechanism via red blood cells immunity.
     There are substantial connections between tumor occurrence and development with cell apoptosis. Apoptosis is the process of programmed cell death that may occur in multi-cellular organisms. Use cell apoptosis induction as tumor treatment method has been hotspot for anti-tumor drug discovery. So based on this feature, we determined HepG2 cell apoptosis induced by asparagus saponin for the first time, and study the mechanism via mitochondrial pathway, such as apoptosis induction factor, apoptosis death switch, apoptosis starting molecule, apoptosis executing molecule and so on.
     The experiments include three parts:1. Study on anti-tumor effect of Asparagus polysaccharide and Asparagus saponins; 2. Study on the effect of Asparagus polysaccharide on immune and biochemistry function of erythrocyte in S180 mice; 3. Study on apoptosis of HepG2 cell induced by Asparagus saponins via mitochondrial pathway.
     1 Study on anti-tumor effect of Asparagus polysaccharide and Asparagus saponins
     1.1 Effect of Asparagus polysaccharide and Asparagus saponins on tumor weight and survival time of tumor model mice
     OBJECTIVE:To determine the effect of Asparagus polysaccharide and Asparagus saponins on tumor weight and survival time of tumor model mice, confirm the anti-tumor effect in vitro.
     METHODS:Tumor mice model was made, and they were treated with different dosage of Asparagus polysaccharide and Asparagus saponins for 7 days, the anti-tumor rate and life-lengthening rate was calculated. RESULTS:①Asparagus polysaccharide inhibited tumor growth of S180 mice, which the tumor weight was reduced remarkably compared with control group (P<0.05). Asparagus polysaccharide improved survival time of H22 mice, which the survival time was lengthened remarkably compared with control group (P<0.05).②Asparagus saponins inhibited tumor growth of S180 mice, which the tumor weight was reduced remarkably compared with control group (P<0.05). Asparagus saponins improved survival time of H22 mice, which the survival time was lengthened remarkably compared with control group (P<0.05).CONCLUSION:Asparagus polysaccharide and Asparagus saponins had anti-tumor effect in vitro.
     1.2 Effect of Asparagus polysaccharide and Asparagus saponins on human tumor cell proliferation
     OBJECTIVE:To determine the effect of Asparagus polysaccharide and Asparagus saponins on human tumor cell proliferation, confirm the anti-tumor effect in vivo. METHODS: HepG2 and SGC-7901 cells were cultured, and they were treated with different dosage of Asparagus polysaccharide and Asparagus saponins, the cell proliferation inhibitory rate was measured by MTT and SRB methods. RESULTS:①The result of MTT showed Asparagus polysaccharide had little inhibitory effect on cell proliferation, which was unremarkably compared with control group (P>0.05).②Result of MTT showed Asparagus saponins had inhibitory effect on cell proliferation, and the IC50 for HepG2 and SGC-7901 was 101.15μg/mL and 177.5μg/mL. The result of SRB showed Asparagus saponins had inhibitory effect on cell proliferation, and the GI50 for HepG2 and SGC-7901 was 107.53μg/mL and 157.44μg/mL. CONCLUSION:Asparagus polysaccharide had no anti-tumor effect in vitro, while Asparagus saponins had anti-tumor effect in vitro.
     2 Study on the effect of Asparagus polysaccharide on immune and biochemistry function of erythrocyte in S180 mice
     2.1 Effect of Asparagus polysaccharide on the number and activity of erythrocyte complement receptor 1(CD35) in S180 mice
     OBJECTIVE:To study the effect of Asparagus polysaccharide on the number and activity of erythrocyte complement receptor 1 in S180 mice. METHODS:Red blood cells from mice venous blood were labeled by rat anti-mouse CD35 monoclonal antibody and FITC-conjugated goat anti-mouse antibody. Using flow cytometry, we determined the number of ECR1. Using microscope, we studied the the adherence between erythrocyte immunity and C3b receptor or tumor-cell by RBC-C3bRR and DTER. Suspensions of lymphocytes and plasma were separated from anticoaguted whole blood of normal mice. Suspensions of erythrocytes were separated from anticoaguted whole blood of normal mice and S180 mice treated by Asparagus polysaccharide. Usnig S180 cells as activating antigen, plasma as reactive medium, lymphocytes as effective cell, we established two immuno-response systems of lymphocytes regulated by erythrocytes with or without antigen activation. The expression of CD25 on lymphocytes was measured by flow cytometry. RESULTS:①The number of CR1 in S180 mice group was remarkably low compared with that in normal mice group (P<0.01), and Asparagus polysaccharide could increase CR1 number remarkably compared with control group (P<0.05).②RBC-C3bRR and DTER in S180 mice group was remarkably low compared with that in normal mice group (P<0.01), and Asparagus polysaccharide could increase RBC-C3bRR and DTER remarkably compared with control group (P<0.05).③Under antigen activation, the erythrocytes could positively regulate immunological reaction of lymphocytes, the expression of CD25 on lymphocytes regulated by erythrocytes in normal group was much higher than that in tumor groups, and in tumor groups treated by Asparagus polysaccharide was much higher than that in tumor control group; Under no antigen activation, the erythrocytes could also positively regulate immunological reaction of lymphocytes and increase the expression of CD25, but the effect was weaker than that under antigen activation.
     CONCLUSION:Asparagus polysaccharide can improve the erythrocyte immune function of S180 mice, which may be one of its most important anti-tumor mechanisms.
     2.2 Effect of Asparagus polysaccharide on erythrocyte membrane components and fluidity in S180 mice
     OBJECTIVE:To study the effect of Asparagus polysaccharide on erythrocyte membrane components and fluidity in S180 mice. METHODS:S180 mice were administrated with Asparagus polysaccharide by i.p. for 7d, and we determined band 3 and glycophorin A content by SDS-PAGE, spectrophotometer with test kit was used to measure phospholipids, cholesterol and sialic acid, DPH dye and fluorescence spectrophotometry was used to determine membrane fluidity. RESULTS:①The content of phospholipids in S180 mice group was remarkably low and cholesterol in S180 mice group was remarkably high compared with that in normal mice group, and Asparagus polysaccharide could increase phospholipids content and decrease cholesterol content remarkably compared with control group (P<0.05,P<0.01).②The content of band 3 and glycophorin A in S180 mice group was remarkably low compared with that in normal mice group, and Asparagus polysaccharide could increase both proteins content remarkably compared with control group (P<0.05,P<0.01).③The content of sialic acid in S180 mice group was remarkably low compared with that in normal mice group, and Asparagus polysaccharide could increase the content remarkably compared with control group (P<0.05,P<0.01).④The erythrocyte membrane fluidity in S180 mice group was remarkably low compared with that in normal mice group, and Asparagus polysaccharide could improve membrane fluidity remarkably compared with control group (P<0.05,P<0.01). CONCLUSION:Asparagus polysaccharide can adjust the abnormality of S180 mice, and improve membrane fluidity, restore erythrocyte membrane structure and function.
     2.3 Effect of Asparagus polysaccharide on erythrocyte membrane potential in S180 mice
     OBJECTIVE:To study the effect of Asparagus polysaccharide on erythrocyte membrane potential in S180 mice. METHODS:Tumor mice model was made and treated with different dosage of Asparagus polysaccharide for 7 days, suspensions of erythrocytes were separated from anticoaguted whole blood and dyed with DiBAC4(3), flow cytometry was used to determine erythrocyte membrane potential. RESULTS:The erythrocyte fluorescence intensity in S180 mice group was remarkably high compared with that in normal mice group (P<0.01), which showed erythrocyte membrane potential in S180 mice group was high, Asparagus polysaccharide could decrease erythrocyte fluorescence intensity and lower erythrocyte membrane potential remarkably compared with control group (P<0.05).
     CONCLUSION:Asparagus polysaccharide can adjust erythrocyte membrane potential and maintain cell inner environment and ion transmembrance diffusion.
     2.4 Effect of Asparagus polysaccharide on erythrocyte ion channel in S180 mice
     OBJECTIVE:To study the effect of Asparagus polysaccharide on erythrocyte ion channel in S180 mice. METHODS:Tumor mice model was made and treated with different dosage of Asparagus polysaccharide for 7 days, and suspensions of erythrocytes were separated from anticoaguted whole blood, spectrophotometer with test kit was used to measure Na+,K+-ATPase, Ca2+,Mg2+-ATPase activity, erythrocytes were dyed with Fluo-3/AM, MQAE, BCECF-AM and laser scanning confocal microscope and fluorescence spectrophotometry were used to determine [Ca2+],[CI-],pH. RESULTS:①Asparagus polysaccharide could increase erythrocyte Na+,K+-ATPase, Ca2+,Mg2+-ATPase activity, lower [Ca2+] concentration, improve cation channel transport activity.②Asparagus polysaccharide could lower [CI-] concentration, improve anion channel transport activity.③Asparagus polysaccharide could increase intra-cellular pH, maintain acid-base balance. CONCLUSION:Asparagus polysaccharide can improve erythrocyte ion channel transport activity, maintain cell inner environment and protect cell structure, enhance erythrocyte immune function. 2.5 Effect of Asparagus polysaccharide on complex mobility of erythrocyte in mice
     OBJECTIVE:To study the effect of Asparagus polysaccharide on complex mobility of erythrocyte in S180 mice. METHODS:Tumor mice model was made and treated with different dosage of Asparagus polysaccharide for 7 days, and suspensions of erythrocytes were separated from anticoaguted whole blood, high performance capillary electrophoresis was used to determine complex mobility of erythrocyte. Experimental conditions included the following:capillaries,75μm×50cm; buffer for electrophoresis, phosphate solution containing hydroxypropylmethyl cellulose (0.1mol/L, pH7.4); injection pressure,3.448kPa; injection time,10s; separation voltage,20kV; column temperature,25℃. RESULTS:The migration time of erythrocyte in S180 mice group was longer than that in normal mice group, and Asparagus polysaccharide could remarkably shorten migration time of erythrocyte compared with control group (P<0.05). The complex mobility of erythrocyte in S180 mice group was longer than that in normal mice group, and Asparagus polysaccharide could remarkably increase complex mobility of erythrocyte compared with control group (P<0.05). CONCLUSION: Asparagus polysaccharide improved complex mobility of erythrocyte in S180 mice, which is possibly related with the change of charges density on erythrocytes surface. It is believed that HPCE can be used as an auxiliary tool for determining the physiological state and functions of erythrocytes.
     3. Study on apoptosis of HepG2 cell induced by Asparagus saponins via mitochondrial pathway
     3.1 Determination of apoptosis of HepG2 cell Induced by Asparagus saponins. OBJECTIVE:To study apoptosis of HepG2 cell inducted by Asparagus saponins.
     METHODS:HepG2 cells were cultured and treated with different dosage of Asparagus saponins for 48h and 72h.Cells were dyed with Hoechst 33258 and observed under fluorescence microscope, and the ultrastructural changes of cells were observed by transmission electron microscopy. Cells were dyed with Annexin V-FITC/PI and PI, flow cytometry was used to determine apoptosis rate and cell cycle. RESULTS:①Under fluorescence microscope, cells in control group showed integrated and clear edge image. After treated with Asparagus saponins for 48h, cells appeared apoptosis image, as concentration increased, the cells morphology changed irregular, and the number of apoptotic bodies increased.②Under transmission electron microscopy, cells in control group showed prominent nuclear and abundant organella. After treated with Asparagus saponins for 72h, cells appeared apoptosis image, as concentration increased, the apoptosis morphology was gradually obvious and apoptotic bodies appeared.③After treated with Asparagus saponins for 48h, cells apoptosis rate was gradually high. As concentration increased, the early apoptosis rate decreased and the late apoptosis rate increased.④After treated with Asparagus saponins for 72h, cell cycle changed much, and the ratio of cells increased in S phase and decreased in G2/M phase. As concentration increased, apoptotic peak gradually appeared.CONCLUSION: Asparagus saponins can induce HepG2 apoptosis.
     3.2 Effect of Asparagus saponins on HepG2 intracellular reactive oxygen species (ROS), Ca2+, pH
     OBJECTIVE:To study the effect of Asparagus saponins on HepG2 intracellular ROS, Ca2+, pH. METHODS:HepG2 cells were cultured and treated with different dosage of Asparagus saponins for 24h.Cells were dyed with DCFH-DA, Fluo-3/AM, BCECF/AM, flow cytometry and laser scanning confocal microscope were used to determine intracellular ROS, Ca2+, pH.
     RESULTS:①After treated with Asparagus saponins for 24h, the cells fluorescence intensity intensified, the intracellular ROS level increased remarkably compared with control group (P<0.01).②After treated with Asparagus saponins for 24h, the cells fluorescence intensity intensified, the intracellular Ca2+ level increased remarkably compared with control group (P<0.01).③After treated with Asparagus saponins for 24h, the cells fluorescence intensity weakened, the intracellular pH decreased remarkably compared with control group (P<0.01).
     CONCLUSIONAsparagus saponins can adjust HepG2 intracellular ROS、Ca2+、pH level and induce downstream apoptosis event happen.
     3.3 Effect of Asparagus saponins on HepG2 mitochondrial permeability transition pore (MPTP) and Mitochondrial membrane potential (MMP)
     OBJECTIVE:To study the effect of Asparagus saponins on HepG2. mitochondrial permeability transition pore (MPTP) and mitochondrial membrane potential (MMP). METHODS:HepG2 cells were cultured and treated with different dosage of Asparagus saponins for 24h.Cells were dyed with MPTP fluorescence kit and Rhodamine 123, laser scanning confocal microscope was used to observe MPTP, MMP. RESULTS:①After treated with Asparagus saponins for 24h, the cells fluorescence intensity weakened, the MPTP activity increased remarkably compared with control group (P<0.05).②After treated with Asparagus saponins for 24h, the cells fluorescence intensity weakened, the MMP level decreased remarkably compared with control group (P<0.05). CONCLUSION:Asparagus saponins can open mitochondrial permeability transition pore, turn on the death switch and decrease mitochondrial membrane potential, then induce cell apoptosis.
     3.4 Effect of Asparagus saponins on apoptosis related protein expression in HepG2
     OBJECTIVE:To study the effect of Asparagus saponins on apoptosis related protein expression in HepG2. METHODS:HepG2 cells were cultured and treated with different dosage of Asparagus saponins. Cells were incubated with Bcl-2、Bax、Cyt-c、Caspase-9、Caspase-3 antibody respectively, then incubated with FITC-conjugated antibody, flow cytometry was used to determine protein expression. RESULTS:①After treated with Asparagus saponins for 24h, the intracellular Cyt-c expression increased, which was in a dosage dependent manner.②After treated with Asparagus saponins for 48h, the intracellular activated Caspase-9, Caspase-3 expression increased, which was in a dosage dependent manner.③After treated with Asparagus saponins for 24h, the intracellular Bcl-2 expression decreased and Bax expression decreased. CONCLUSION:Asparagus saponins can adjust apoptosis related protein expression in HepG2, and induce cell apoptosis via mitochondrial pathway.
     3.5 Effect of Asparagus saponins on Caspase-9 and Caspase-3 activity in HepG2 OBJECTIVE:To study the effect of Asparagus saponins on Caspase-9 and Caspase-3 activity in HepG2. METHODS:HepG2 cells were cultured and treated with different dosage of Asparagus saponins for 24h and 48h. Caspase kit and enzyme-labeled instrument were used to determine Caspase-9 and Caspase-3 activity. RESULTS:①After treated with Asparagus saponins, pNA production increased, Caspase-9 activity increased remarkably compared with control group (P<0.01), and the activity at 48h was higher than that at 24h. The activity at 24h was increased by 48.21%,63.89%,102.11%, and the activity at 48h was increased by 55.52%, 93.83%,135.89%.②After treated with Asparagus saponins, pNA production increased, Caspase-3 activity increased remarkably compared with control group (P<0.01), and the activity at 48h was higher than that at 24h. The activity at 24h was increased by 46.79%, 55.03%,74.24% and the activity at 48h was increased by 80.03%,143.32%,218.66%.
     CONCLUSION:Asparagus saponins can increase Caspase-9 and Caspase-3 activity in HepG2, and induce cell apoptosis via caspase dependent mitochondrial pathway.
     Asparagus officinalis had anti-tumor effect, the active component and the mechanism as follows:
     1. Asparagus polysaccharide can improve immune function of S180 mice:①Asparagus polysaccharide can increase CR1 number, increase RBC-C3bRR and DTER, enhance the regulation of erythrocyte CR1 on immunological reaction of lymphocyte.②Asparagus polysaccharide can increase band 3 protein and glycophorin A content on erythrocyte membrane, increase phospholipids content and decrease cholesterol content, increase sialic acid content, adjust membrane fluidity.③Asparagus polysaccharide can decrease erythrocyte fluorescence intensity and lower erythrocyte membrane potential.④Asparagus polysaccharide can increase erythrocyte Na+,K+-ATPase, Ca2+,Mg2+-ATPase activity, lower [Ca2+] concentration, improve cation channel transport activity; lower [CI-] concentration, improve anion channel transport activity; lower [H+] concentration, increase intra-cellular pH, maintain acid-base balance.⑤Asparagus polysaccharide can shorten erythrocyte migration time, increase erythrocyte complex mobility.
     2. Asparagus saponins can induce HepG2 cell apoptosis via mitochondrial pathway:①Cell morphology under fluorescence microscope and transmission electron microscope showed Asparagus saponins can induce HepG2 cell apoptosis, and apoptotic bodies appear. Asparagus saponins can change cell cycle and induce S phase arrest, increase the ratio of cells in S phase and decrease in G2/M phase.②Asparagus saponins can increase intracellular ROS level, increase intracellular Ca2+ level, decrease intracellular pH, so induce HepG2 cell apoptosis.③Asparagus saponins can open mitochondrial permeability transition pore, turn on the death switch and decrease mitochondrial membrane potential, then induce cell apoptosis via un-reversible mitochondrial pathway.④Asparagus saponins can adjust apoptosis related protein expression in HepG2 and induce cell apoptosis. It increases intracellular Cyt-C, activated Caspase-9 and Caspase-3, Bax expression, decreases intracellular Bcl-2 expression.⑤Asparagus saponins can increase Caspase-9 and Caspase-3 activity in HepG2 in a dosage and time dependent manner, and induce cell apoptosis via caspase dependent mitochondrial pathway.
引文
[1]顾关云,蒋昱.芦笋的化学成分和生物活性[J].国外医药·植物药分册,2007,22(2):47-50.
    [2]周利亘,王春辉,王君虹,等.芦笋活性成分及其生物学功能[J].安徽农学通报,2006,12(2):23-26.
    [3]孙春艳,赵伯涛,郁志方,等.芦笋化学成分及药理作用研究进展[J].中国野生植物资源,2004,23(5):1-5.
    [4]Sun Z, Huang X, Kong L. A new steroidal saponin from the dried stems of Asparagus officinalis L [J]. Fitoterapia.2010,81(3):210-213.
    [5]Sharma U, Saini R, Kumar N, et al. Steroidal saponins from Asparagus racemosus [J]. Chem Pharm Bull (Tokyo).2009,57(8):890-893.
    [6]蔡金星,刘秀凤,常学东.芦笋老茎总皂甙提取工艺优化[J].食品与机械,2009,25(4):76-79.
    [7]赵建华,宋擎,汪素芳,等.芦笋皂苷含量测定的比色法研究[J].时珍国医国药,2009,20(8):1962-1964.
    [8]Hayes PY, Jahidin AH, Lehmann R, et al. Steroidal saponins from the roots of Asparagus racemosus [J]. Phytochemistry.2008,69(3):796-804.
    [9]刘杰.正交实验法优选芦笋茎中总皂苷的提取工艺[J].光明中医,2008,23(11):1672-1676.
    [10]宋擎,高小霞,张立伟,等.分光光度法测定芦笋边角料中总皂苷的含量[J].山西大学学报,2008,31(S1):112-115.
    [11]Sautour M, Miyamoto T, Lacaille-Dubois MA. Steroidal saponins from Asparagus acutifolius [J]. Phytochemistry.2007,68(20):2554-2562.
    [12]Mandal D, Banerjee S, Mondal NB, et al. Steroidal saponins from the fruits of Asparagus racemosus[J]. Phytochemistry.2006,67(13):1316-1321.
    [13]Xue-Feng Huang, Ling-Yi Kong. Steroidal saponins from roots of Asparagus officinalis [J]. Steroids,2006,71:171-176.
    [14]Xue-Feng Huang, Yu-Ying Lin and Ling-Yi Kong. Steroids from the roots of asparagus officinalis and their cytotoxic activity [J]. Journal of Integrative Plant Biology,2008,50(6): 717-723.
    [15]Wang M, Tadmor Y, Wu Q L. Quantification of protodioscin and rutin in asparagus shoo ts by LC/M S and HPLC methods [J]. J A gric Food Chem,2003,51 (21):6132-6136.
    [16]安玉会.芦笋中两种皂角苷类化合物的提取分离[J].河南医科大学学报,1998,33(4):14-15.
    [17]方幼兰.芦笋皂苷的提取纯化及其糖基组成[J].生物工程学报,2005,21(3):446-450.
    [18]孙春燕.芦笋茎叶中黄酮类化合物和多糖的提取、纯化研究[D].南京:南京野生植物研究院,2006.
    [19]黄晓德,赵伯涛,钱骅,等.芦笋茎叶多糖的提取纯化研究.江西农业学报,2006,18(1):15-18.
    [20]黄雪峰,罗俊,张勇,等.石刁柏的化学成分[J].中国天然药物,2006,4(3):181-184.
    [21]李娟,王凤山.芦笋多糖的研究进展[J].国生化药物杂志,2009,30(3):215-217.
    [22]Sims I M.Structural diversity of fructans frommembers of the order Asparagalesin New Zealand [J].Phytochemistry,2003,63:351-359.
    [23]Shiomi N. Structure of fructopolysaccharide (asparagosin) from roots ofasparagus(Asparagus officinalis L)[J].New Phytol,1993,123:263-270.
    [24]Villanueva-Surez M J, Redondo-Cuenca A, Rodrguez-Sevilla M D, et al.Characterization of nonstarch polysaccharides content from different edible organs of some vegetables, determined by GC and HPLC:comparative study [J].Agric Food Chem,2003,51(20):5950-5955.
    [25]季宇彬,陈学军,汲晨锋.芦笋多糖提取、单糖组分分析及定量测定[J].中草药,2006,37(8):1159-1161.
    [26]崔莹光.芦笋多糖的提取及其生物学活性研究[D].山东:山东师范大学,2005.
    [27]芦笋多糖对巨噬细胞的免疫调节研究[D].山东:山东师范大学,2008.
    [28]孙胄轩,黄雪峰,孔令义.芦笋茎的化学成分研究[J].中国现代中药,2009,11(6):9-11.
    [29]孙春艳.芦笋茎叶中黄酮类化合物的提取工艺研究[J].食品工业科 技,2006,27(4):141-145.
    [30]刘树兴,魏丽娜,李红.超声法提取芦笋老茎中黄酮类物质的研究[J].食品科学,2006,27(11):360-363.
    [31]赵静,安利国,张福森,等RP-HPLC法测定芦笋中黄酮类化合物芦丁的含量[J].中国野生植物资源,2007,26(3):61-63.
    [32]黄雷芳,陈波.本地芦笋中芦丁的提取及其反相色谱鉴定[J].食品科技,2006,31(7):244-248.
    [33]朱立华,孙萍,曹国红,等.反相高效液相色谱法测定芦笋各段芦丁的含量[J].济南大学学报(自然科学版),2007,21(1):53-55.
    [34]宋元清,王艳平,毛远菁.分光光度法测定芦笋中总黄酮的含量[J].化学分析计量,2005,14(4):52-53.
    [35]朱立华,孙萍,曹国红,等.反相高效液相色谱法测定芦笋各段芦丁的含量[J].济南大学学报,2007,21(1):53-55.
    [36]张素华,王正云.芦笋中总黄酮的提取及初步精制[J].河南工业大学学报(自然科学版),2005,26(3):78-83.
    [37]张素华,王正云.芦笋中活性物质提取技术参数及组分鉴定的研究[J].食品科学,2005,26(2):138-141.
    [38]王正云.芦笋中黄酮类化合物的提取及纯化工艺的研究[D].江苏:扬州大学,2005.
    [39]付婕,范双喜,谷建田,韩莹琰,秦勇.石刁柏中总黄酮含量的测定分析[J].安徽农业科学,2006,34(10):2108-2110.
    [40]姜云云.芦笋质量控制的现代分析方法研究[D].上海:第二军医大学,2009.
    [41]黄晓德.芦笋茎叶游离氨基酸的提取及含量测定[J].中国野生植物资源,2006,25(40):61-63.
    [42]黄莺莺.芦笋中17种氨基酸反相高压液相色谱分析法的快速测定[J].仪器仪表与分析检测,2001,3:32-34.
    [43]张存莉.甾体皂苷的生物活性研究进展[J].西北林学院学报,2003,18(2):95-100.
    [44]Potduang B, Meeploy M, Giwanon R,et al.Biological activities of asparagus racemosus[J]. Afr J Tradit Complement Altern Med.2008,5(3):230-237.
    [45]许申,胡谷丰,方浩徽.芦笋颗粒在肿瘤治疗中的作用[J].临床肺科杂志,2008,13(6):678-679.
    [46]Yu Shao, Chee-Kok Chin. Anti-tumor activity of the crude saponins obtained from asparagus [J].CancerLetter.1996,104(1):31-36.
    [47]Zhou LB, Chen TH, Bastow KF, et al. Filiasparosides A-D, cytotoxic steroidal saponins from the roots of Asparagus filicinus[J]. J Nat Prod.2007,70(8):1263-1267
    [48]Kim GS, Kim HT, Seong JD, et al. Cytotoxic steroidal saponins from the rhizomes of Asparagus oligoclonos [J]. J Nat Prod.2005,68(5):766-768.
    [49]夏俊,陈治文,石莹.绿芦笋提取液抑制肿瘤细胞核酸生物合成的研究[J].癌变·畸变·突变,2003,15(4):212-214.
    [50]黄玲,陈玲,林久茂.大蒜、芦笋对人胃癌细胞SGC-7901增殖的影响[J].福建中医学院学报,2007,17(2):27-29.
    [51]Sham Diwanay, Deepa Chitre, Bhushan Patwardhan. Immun oprotection by botanical drugs in cancer chemo therapy [J] Journal of Ethno- pharmacology.2004,90(1):49-55.
    [52]Xue-Feng Huang, Yu-Ying Lin and Ling-Yi Kong. Steroids from the Roots of Asparagus officinalis and Their Cytotoxic Activity [J]. Journal of Integrative Plant Biology,2008,50 (6): 717-722
    [53]夏俊,陈治文,胡守芬,等.芦笋提取物抑制恶性黑色素瘤A375细胞增殖的研究[J].蚌埠医学院学报,2004,29(2):95-97.
    [54]JI C F,JI Y B; YUE L. Effect of asparagus saponins on HepG2 apoptosis and mitochondrial membrane potential and ROS level [C]. International Conference on Medical Engineering,2009.4.
    [55]Wei Liu, Xue-Feng Huang,Qi Qi. Asparanin A induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells [J]. Biochemical and Biophysical Research Communications,2009,381:700-705
    [56]王海燕,郭良淼.槲皮素诱导肿瘤细胞凋亡的相关基因调控[J].中药药理与临床2005,21(6):89-91.
    [57]黄镜.芦笋有效成分熊果酸诱导HL-60细胞凋亡的实验研究[J].中国中西医结合杂志,1999,19(5):296-298.
    [58]Gautam M, Saha S, Bani S, et al. Immunomodulatory activity of Asparagus racemosus on systemic Thl/Th2 immunity:implications for immunoadjuvant potential [J]. J Ethnopharmacol.2009,121 (2):241-247.
    [59]张志远.芦笋粗多糖对正常小鼠免疫功能的影响[J].郑州牧业工程高等专科学校学报,2003,23(2);83-84.
    [60]苗明三,方晓艳.芦笋多糖对正常小鼠免疫功能的影响[J].中国医药学报,2003,(18)1:52-54.
    [61]季宇彬,汲晨锋,陈学军.HPCE分析芦笋多糖对荷瘤小鼠红细胞的影响[J].哈尔滨商业大学学报,2006(5):31-33.
    [62]季宇彬,汲晨锋,陈学军.芦笋多糖对S180小鼠红细胞氯离子浓度及膜电位影响的研究[J].中国药学杂志,2008,43(15):1146-1149.
    [63]Ji Y, Ji C, Chen X.Effects of asparagus polysaccharide on GPA and band 3 from erythrocyte membrane of S180 mice[M].IFMBE Proceding,2008,19:528-530.
    [64]Rodriguez R, Jaramillo S, Rodriguez G, et al. Antioxidant activity of ethanolic extracts from several asparagus cultivars [J]. J Agric Food Chem.2005,53(13):5212-5217.
    [65]Visavadiya NP, Soni B, Soni B, et al.Suppression of reactive oxygen species and nitric oxide by Asparagus racemosus root extract using in vitro studies[J]. Cell Mol Biol (Noisy-le-grand).2009,55(Suppl:OL):1083-1095.
    [66]Visavadiya NP, Narasimhacharya AV.Asparagus root regulates cholesterol metabolism and improves antioxidant status in hypercholesteremic rats [J]. Evid Based Complement Alternat Med.2009,6(2):219-226.
    [67]Sun T, Powers JR, Tang J. Enzyme-catalyzed change of antioxidants content and antioxidant activity of asparagus juice [J]. J Agric Food Chem.2007,55(1):56-60
    [68]Bhatnagar M, Sisodia SS, Bhatnagar R. Antiulcer and antioxidant activity of Asparagus racemosus Willd and Withania somnifera Dunal in rats[J]. Ann N Y Acad Sci. 2005,1056:261-278.
    [69]杨桂文.芦笋类黄酮及其抗氧化活性研究[D].山东:山东师范大学,2006.
    [70]赵静.芦笋抗氧化作用研究[D].山东:山东师范大学,2006.
    [1]Dmitri V. Krysko, Tom Vanden Berghe, Katharina D Herde. Apoptosis and necrosis: Detection, discrimination and phagocytosis [J]. Methods,2008,44:205-221.
    [2]Francesca Doonan, Thomas G. Cotter. Morphological assessment of apoptosis [J]. Methods, 2008,44:200-204.
    [3]Mohamad N, Gutierrez A, NunezM, et al. Mitochondrial apoptotic Pathways [J]. Biocell, 2005,29(2):149-161.
    [4]Pascal Schneider, Jurg Tschopp. Apoptosis induced by death receptors [J]. Pharmacochemistry Library,2008,31:281-286.
    [5]Guan Li Ying, Xu Cai Min, Pan Hua Zhen. Endoplasmic Reticulam Stress-induced Apoptosis [J]. Progress in Biochemistry arid Biophysics,2007,34(11):1136-1141.
    [6]林丹樱,刘晓晨,马万云.利用三通道实时荧光成像方法研究单个活细胞凋亡与胞浆pH值变化的关系[J].光谱学与光谱分析,2009,29(6):1581-1585.
    [7]Babu US, Gaines DM, Wu Y,et al. Use of flow cytometry in an apoptosis assay to determine pH and temperature stability of shiga-like toxin 1 [J]. J Microbiol Methods.2008, 75(2):167-171.
    [8]Becelli R, Renzi G, Altieri F, et al. Intracellular and extracellular tumor pH measurement in a series of patients with oral cancer [J]. J Craniofac Surg,2007,18:1051-1054.
    [9]高艳,赵伟,沈炜炜,等.胃癌AGS细胞内pH值的测定及酸性环境对其增殖和凋亡的影响[J].现代生物医学进展,2008,8(9):1656-1659.
    [10]Hayasni T, Hayashi I, Shinonara T, et al.Radiation-induced apoptosis of stem/progenitor cells in human umbilical cord blood is associated with alterations in reactive oxygen and intracellular pH [J]. Mutat Res.2004,556(1-2):83-91.
    [11]Di Sario A, Bendia E, Omenetti A, et al. Selective inhibition of ion transport mechanisms regulating intracellular pH reduces proliferation and induces apoptosis in cholangiocarcinoma cells [J]. Dig Liver Dis.2007,39(1):60-69.
    [12]芦颖,李庆华,庞天翔.肿瘤细胞内pH值改变与肿瘤多药耐药的关系[J].中国药理学通报,2007,23(9):1128-1130.
    [13]Franke JC, Plotz M, Prokop A, et al. New caspase-independent but ROS-dependent apoptosis pathways are targeted in melanoma cells by an iron-containing cytosine analogue [J]. Biochem Pharmacol.2010,79(4):575-586.
    [14]Jin S, Zhang QY, Kang XM, et al. Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway [J]. Ann Oncol.2010,21(2):263-268.
    [15]Kim BM, Choi YJ, Han Y, et al. N, N-dimethyl phytosphingosine induces caspase-8-dependent cytochrome c release and apoptosis through ROS generation in human leukemia cells [J]. Toxicol Appl Pharmacol.2009,239(l):87-97.
    [16]Zhang Y, Liu H, Jin J, et al. The role of endogenous reactive oxygen species in oxymatrine-induced caspase-3-dependent apoptosis in human melanoma A375 cells [J]. Anti-cancer Drugs.2010,21 (5):494-501.
    [17]Su CC, Lin JG, Li TM, et al. Curcumin-induced apoptosis of human colon cancer colo 205 cells through the production of ROS, Ca2+ and the activation of caspase-3 [J]. Anticancer Res.2006,26(6B):4379-4389.
    [18]Oh SH, Lim SC.A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation [J]. Toxicol Appl Pharmacol.2006, 212(3):212-223.
    [19]Lee JH, Li YC, Ip SW, et al. The role of Ca2+ in baicalein-induced apoptosis in human breast MDA-MB-231 cancer cells through mitochondria- and caspase-3-dependent pathway [J]. Anticancer Res.2008,28(3A):1701-1711.
    [20]Chattopadhyay P, Chaudhury P, Wahi AK.Ca2+ concentrations are key determinants of ischemia-reperfusion-induced apoptosis:significance for the molecular mechanism of Bcl-2 action [J]. Appl Biochem Biotechnol.2010,160(7):1968-1977.
    [21]Wang L, Luo HS, Xia H.Sodium butyrate induces human colon carcinoma HT-29 cell apoptosis through a mitochondrial pathway [J]. J Int Med Res.2009,37(3):803-811.
    [22]Chang HC, Huang CC, Huang CJ, et al. Desipramine-induced apoptosis in human PC3 prostate cancer cells:activation of JNK kinase and caspase-3 pathways and a protective role of [Ca2+]i elevation [J]. Toxicology.2008,250(1):9-14.
    [23]Feng B, Huang CG, Chen RH,et al. 2'-Epi-2'-O-acetylthevetin B induces apoptosis. partly via Ca2+ -mediated mitochondrial pathway in human hepatocellular carcinoma HepG2 cells [J]. Cell Biol Int.2009,33(9):918-925.
    [24]Giacomello M, Drago I, Pizzo P, et al. Mitochondrial Ca2+ as a key regulator of cell life and death[J]. Cell Death Differ. 2007,14(7):1267-1274.
    [25]Ghoneum M, Matsuura M, Braga M,et al. S. cerevisiae induces apoptosis in human metastatic breast cancer cells by altering intracellular Ca2+ and the ratio of Bax and Bcl-2 [J]. Int J Oncol.2008,33(3):533-539.
    [26]Lee J. Martin. The mitochondrial permeability transition pore:A molecular target for amyotrophic lateral sclerosis therapy [J].Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease,2010,1802(1):186-197.
    [27]Anna W.C. Leung, Andrew P. Halestrap. Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2008,1777(7-8):946-952.
    [28]Evgeny Pavlov, R. Carolina Gutierrez, Yuan Zhang, et al. High-Frequency Photoconductive Stimulation Reveals Central Role of Mitochondrial Permeability Transition Pore in Activity-Driven Neuronal Cell Death [J].Biophysical Journal,2010,98(3):378a
    [29]Nadezhda I. Fedotcheva, Vera V. Teplova, Tatiana A. Fedotcheva, et al. Effect of progesterone and its synthetic analogues on the activity of mitochondrial permeability transition pore in isolated rat liver mitochondria [J].Biochemical Pharmacology,2009,78(8): 1060-1068.
    [30]Andrew P. Halestrap. What is the mitochondrial permeability transition pore? [J] Journal of Molecular and Cellular Cardiology,2009,46(6):821-831.
    [31]Christopher P. Baines. The molecular composition of the mitochondrial permeability transition pore [J].Journal of Molecular and Cellular Cardiology,2009,46(6):850-857.
    [32]Keiichi Odagiri, Hideki Katoh, Hirotaka Kawashima, et al. Local control of mitochondrial membrane potential, permeability transition pore and reactive oxygen species by calcium and calmodulin in rat ventricular myocytes [J].Journal of Molecular and Cellular Cardiology,2009,46(6):989-997.
    [33]Keiichi Odagiri, Hideki Katoh, Hirotaka Kawashima, et al. Local control of mitochondrial membrane potential, permeability transition pore and ROS by calcium and calmodulin in rat ventricular myocytes [J].Journal of Molecular and Cellular Cardiology, 2008,45(4):S9.
    [34]Shiang Y. Lim, Sean M. Davidson, Derek J. Hausenloy, et al. Preconditioning and postconditioning:The essential role of the mitochondrial permeability transition pore [J]. Journal of Molecular and Cellular Cardiology,2007,42(6):S171
    [35]Mayte Montero, Laura Vay, Esther Hernandez-SanMiguel, et al.Mitochondrial free [Ca2+] and the permeability transition pore [J].Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2008, 1777(Supplement 1):S29
    [36]Johan Haumann, James S. Heisner, Age D. Boelens, et al. Hypothermic Cardioprotection Attenuates Mitochondrial Permeability Transition Pore Opening and Calcium Loading in Isolated Cardiac Mitochondria [J]. Biophysical Journal,2010,98(3):735a-736a.
    [37]Thomas Eissing, Steffen Waldherr, Frank Allgower, et al.Response to Bistability in Apoptosis:Roles of Bax, Bcl-2, and Mitochondrial Permeability Transition Pores [J]. Biophysical Journal,2007,92(9):3332-3334.
    [38]E.Z. Bagci, Y. Vodovotz, T.R. Billiar, et al.Bistability in Apoptosis:Roles of Bax, Bcl-2, and Mitochondrial Permeability Transition Pores [J].Biophysical Journal,2006,90(5): 1546-1559.
    [39]Victor V. Lemeshko. Potential-dependent membrane permeabilization and mitochondrial aggregation caused by anticancer polyarginine-KLA peptides [J].Archives of Biochemistry and Biophysics,2010,493(2):213-220.
    [40]Jorge Lago, Francisco Saritaclara, Juan M. Vieites, et al.Collapse of mitochondrial membrane potential and caspases activation are early events in okadaic acid-treated Caco-2 cells [J].Toxicon,2005,46(5):579-586.
    [41]Jayanta Sarkar, Neetu Singh, Sanjeev Meena, et al. Staurosporine induces apoptosis in human papillomavirus positive oral cancer cells at G2/M phase by disrupting mitochondrial membrane potential and modulation of cell cytoskeleton [J]. Oral Oncology,2009,45(11): 974-979.
    [42]Takehiko Iijima.Mitochondrial membrane potential and ischemic neuronal death [J].Neuroscience Research,2006,55(3):234-243.
    [43]Sundararajan Jayaraman, Flow cytometric determination of mitochondrial membrane potential changes during apoptosis of T lymphocytic and pancreatic beta cell lines: Comparison of tetramethylrhodamineethylester (TMRE), chloromethyl-X-rosamine (H2-CMX-Ros) and MitoTracker Red 580 (MTR580) [J]. Journal of Immunological Methods, 2005,306(1-2):68-79.
    [44]Zhonghai Li, Jingze Wang. A forskolin derivative, FSK88, induces apoptosis in human gastric cancer BGC823 cells through caspase activation involving regulation of Bcl-2 family gene expression, dissipation of mitochondrial membrane potential and cytochrome c release [J]. Cell Biology International,2006,30(11):940-946.
    [45]Wang Ruijuan, Toshiro Miura, Harada Nozomu, et al. Changes in Mitochondrial membrane potential and intracellular calcium concentration during oxidative stress and its modification by beta-blocker [J].Journal of Cardiac Failure,2004,10(Supplement 1):S185.
    [46]Aneta Rogalska, Aneta Koceva-Chyla, et al. Aclarubicin-induced ROS generation and collapse of mitochondrial membrane potential in human cancer cell lines [J]. Chemico-Biological Interactions,2008,176(1):58-70.
    [47]Po Yee Chiu, Ka Fai Luk, Hoi Yan Leung, et al.Schisandrin B stereoisomers protect against hypoxia/reoxygenation-induced apoptosis and inhibit associated changes in Ca2+ -induced mitochondrial permeability transition and mitochondrial membrane potential in H9c2 cardiomyocytes [J]. Life Sciences,2008,82(21-22):1092-1101.
    [48]Juanita Bustamante, Eloisi Caldas Lopes, Mariana Garcia, et al. Disruption of mitochondrial membrane potential during apoptosis induced by PSC 833 and CsA in multidrug-resistant lymphoid leukemia [J].Toxicology and Applied Pharmacology,2004, 199(1):44-51.
    [49]Guy C. Brown, Vilmante Borutaite. Regulation of apoptosis by the redox state of cytochrome c [J].Biochimica et Biophysica Acta (BBA)-Bioenergetics,2008,1777(7-8): 877-881.
    [50]Luisa De Martino, Gabriella Marfe, Mariangela Longo, et al. Bid cleavage, cytochrome c release and caspase activation in canine coronavirus-induced apoptosis [J]. Veterinary Microbiology,2010,141(1-2):36-45.
    [51]Maneesh H. Singh, Sheila M. Brooke, Ilona Zemlyak, et al. Evidence for caspase effects on release of cytochrome c and AIF in a model of ischemia in cortical neurons [J].Neuroscience Letters,2010,469(2):179-183.
    [52]Mei Shi, Shi-Gan Yan, Shu-Tao Xie, et al.Tip30-induced apoptosis requires translocation of Bax and involves mitochondrial release of cytochrome c and Smac/DIABLO in hepatocellular carcinoma cells [J].Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,2008,1783(2):263-274.
    [53]Luca Scorrano. Opening the doors to cytochrome c:Changes in mitochondrial shape and apoptosis [J].The International Journal of Biochemistry & Cell Biology,2010, 41(10):1875-1883.
    [54]Aline Buda dos Santos, Daniel Junqueira Dorta, Cezar Rangel Pestana,et al. Dehydromonocrotaline induces cyclosporine A-insensitive mitochondrial permeability transition/cytochrome c release [J]. Toxicon,2009,54(1):16-22.
    [55]Valerian E. Kagan, Hulya A. Bayir, Natalia A. Belikova, et al. Cytochrome c/cardiolipin relations in mitochondria:a kiss of death [J]. Free Radical Biology and Medicine,2009,
    46(11):1439-1453.
    [56]Aki Ogura, Shigeru Oowada, Yasuhiro Kon, et al. Redox regulation in radiation-induced cytochrome c release from mitochondria of human lung carcinoma A549 cells [J]. Cancer Letters,2009,277(1):64-71.
    [57]Ha Lim Oh, Haeyoung Lim, Younghee Park, et al. HY253, a novel compound isolated from Aralia continentalis, induces apoptosis via cytochrome c-mediated intrinsic pathway in HeLa cells [J]. Bioorganic & Medicinal Chemistry Letters,2009,19(3):797-799
    [58]R. Kumarswamy, Sudhir Chandna. Putative partners in Bax mediated cytochrome-c release:ANT, CypD, VDAC or none of them? [J]. Mitochondrion,2009,9(1):1-8.
    [59]Eun Jeong Choi, Woong Shick Ahn, Su Mi Bae. Equol induces apoptosis through cytochrome c-mediated caspases cascade in human breast cancer MDA-MB-453 cells [J].Chemico-Biological Interactions,2009,177(1):7-11.
    [60]Hyo-Jung Lee, Hyo-Jeong Lee, Eun-Ok Lee, et al. Mitochondria-cytochrome C-caspase-9 cascade mediates isorhamnetin-induced apoptosis [J].Cancer Letters,2008, 270(2):342-353
    [61]Tsyregma Li, Tatiana Brustovetsky, Bruno Antonsson, et al. Oligomeric BAX induces mitochondrial permeability transition and complete cytochrome c release without oxidative stress [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2008,1777(11):1409-1421.
    [62]Ha Lim Oh, Dong-Keun Lee, Haeyoung Lim, et al. HY253, a novel decahydrofluorene analog, from Aralia continentalis, induces cell cycle arrest at the G1 phase and cytochrome c-mediated apoptosis in human lung cancer A549 cells [J]. Journal of Ethnopharmacology, 2010,129(1):135-139.
    [63]Han YH, Moon HJ, You BR, et al. Propyl gallate inhibits the growth of HeLa cells via caspase-dependent apoptosis as well as a G1 phase arrest of the cell cycle [J]. Oncol Rep. 2010,23(4):1153-1158.
    [64]Bressenot A, Marchal S, Bezdetnaya L, et al. Assessment of apoptosis by immunohistochemistry to active caspase-3, active caspase-7, or cleaved PARP in monolayer cells and spheroid and subcutaneous xenografts of human carcinoma [J]. J Histochem Cytochem.2009,57(4):289-300.
    [65]Yaguchi T, Fujikawa H, Nishizaki T. Linoleic acid derivative DCP-LA protects neurons from oxidative stress-induced apoptosis by inhibiting caspase-3/-9 activation [J].Neurochem Res.2010,35(5):712-717.
    [66]Zhao JF, Sun AH, Ruan P, et al. Vibrio vulnificus cytolysin induces apoptosis in HUVEC, SGC-7901 and SMMC-7721 cells via caspase-9/3-dependent pathway [J]. Microb Pathog.2009,46(4):194-200.
    [67]Yasuda Y, Saito M, Yamamura T, et al. Extracellular adenosine induces apoptosis in Caco-2 human colonic cancer cells by activating caspase-9/-3 via A(2a) adenosine receptors [J]. J Gastroenterol.2009,44(1):56-65.
    [68]Jin D, Ojcius DM, Sun D, et al. Leptospira interrogans induces apoptosis in macrophages via caspase-8- and caspase-3-dependent pathways [J]. Infect Immun.2009,77(2):799-809.
    [69]Lee HJ, Lee HJ, Lee EO, et al. Mitochondria-cytochrome C-caspase-9 cascade mediates isorhamnetin-induced apoptosis [J]. Cancer Lett.2008,270(2):342-353.
    [70]Hao Y, Xu C, Sun SY, et al. Cyclic stretching force induces apoptosis in human periodontal ligament cells via caspase-9 [J].Arch Oral Biol.2009,54(9):864-870.
    [71]Eeva J, Nuutinen U, Ropponen A, et al. The involvement of mitochondria and the caspase-9 activation pathway in rituximab-induced apoptosis in FL cells [J]. Apoptosis. 2009,14(5):687-698.
    [72]Aprigliano I, Dudas J, Ramadori G, et al. Atorvastatin induces apoptosis by a caspase-9-dependent pathway:an in vitro study on activated rat hepatic stellate cells [J]. Liver Int.2008,28(4):546-557.
    [73]Yao H, Tang X, Shao X,et al. Parthenolide protects human lens epithelial cells from oxidative stress-induced apoptosis via inhibition of activation of caspase-3 and caspase-9 [J].Cell Res.2007,17(6):565-571.
    [74]Cai BZ, Meng FY, Zhu SL, et al. Arsenic trioxide induces the apoptosis in bone marrow mesenchymal stem cells by intracellular calcium signal and caspase-3 pathways [J].Toxicol
    Lett.2010,193(2):173-178.
    [75]童 彤,詹启敏.线粒体在细胞凋亡中的作用及分子机制[J].国外医学遗传学分册.2004,27(5):263-269.
    [76]Shevtsova EF, Kireeva EG, Bachurin SO. Mitochondria as the target for neuroprotectors [J]. Vestn Ross Akad Med Nauk.2005,34(9):13-17.
    [77]Bressenot A, Marchal S, Bezdetnaya L, et al. Assessment of apoptosis by immunohistochemistry to active caspase-3, active caspase-7, or cleaved PARP in monolayer cells and spheroid and subcutaneous xenografts of human carcinoma [J]. J Histochem Cytochem.2009,57(4):289-300.
    [78]Yadav S, Shi Y, Wang F,et al. Arsenite induces apoptosis in human mesenchymal stem cells by altering Bcl-2 family proteins and by activating intrinsic pathway [J]. Toxicol Appl Pharmacol.2010,244(3):263-272.
    [79]Richardson A, Kaye SB. Pharmacological inhibition of the Bcl-2 family of apoptosis regulators as cancer therapy [J]. Curr Mol Pharmacol.2008,1(3):244-254.
    [80]Zhou C, Mao XP, Guo Q,et al. Diallyl trisulphide-induced apoptosis in human melanoma cells involves downregulation of Bcl-2 and Bcl-xL expression and activation of caspases [J]. Clin Exp Dermatol.2009,34(8):e537-543.
    [81]Shore GC, Nguyen M.Bcl-2 proteins and apoptosis:choose your partner [J]. Cell. 2008,135(6):1074-1084.
    [82]Song R, Harris LD, Pettaway CA.Downmodulation of Bcl-2 sensitizes metastatic LNCaP-LN3 cells to undergo apoptosis via the intrinsic pathway [J]. Prostate. 2010,70(6):571-583.
    [83]Bray K, Chen HY, Karp CM, et al.Bcl-2 modulation to activate apoptosis in prostate cancer [J]. Mol Cancer Res.2009,7(9):1487-1496.
    [84]How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? [J]. Trends Cell Biol.2008,18(4):157-164.
    [85]Golbano JM, Loppez-Aparicio P, Recio MN, et al. Finasteride induces apoptosis via Bcl-2, Bcl-xL, Bax and caspase-3 proteins in LNCaP human prostate cancer cell line [J]. Int J Oncol.2008,32(4):919-924.
    [86]Deng L, Adachi T, Kitayama K,et al. Hepatitis C virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway [J]. J Virol. 2008,82(21):10375-10385.
    [87]Lan CH, Sheng JQ, Fang DC,et al. Involvement of VDAC1 and Bcl-2 family of proteins in VacA-induced cytochrome c release and apoptosis of gastric epithelial carcinoma cells [J]. J Dig Dis.2010,11(1):43-49.
    [88]Pouliquen D, Bellot G, Guihard G, Mitochondrial membrane permeabilization produced by PTP, Bax and apoptosis:a 1H-NMR relaxation study [J]. Cell Death Differ. 2006,13(2):301-310.
    [89]Kinnally KW, Antonsson B.A tale of two mitochondrial channels, MAC and PTP, in apoptosis [J]. Apoptosis.2007,12(5):857-868.
    [90]Martinez-Caballero S, Dejean LM, Kinnally MS, Assembly of the mitochondrial apoptosis-induced channel, MAC [J]. J Biol Chem.2009,284(18):12235-12245.
    [91]刘丽君,彭建新,洪华珠.线粒体在细胞凋亡中的变化与作用[J].细胞生物学杂志2005,27:117-120.
    [92]Mei Shi, Shi-Gan Yan, Shu-Tao Xie, et al.Tip30-induced apoptosis requires translocation of Bax and involves mitochondrial release of cytochrome c and Smac/DIABLO in hepatocellular carcinoma cells [J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,2008,1783(2):263-274.
    [93]Villa-Morales M,Santos J,Perez-G6mez E,et al. A role for the Fas/FasL system in modulating genetic susceptibility to T-cell lymphoblastic lymphomas [J] Cancer Res, 2007,67(11):5107-5116.
    [94]Pelli N,Floreani A, Torre F,et al. Soluble apoptosis molecules in primary biliary cirrhosis: analysis and commitment of the Fas and tumour necrosis factor-related apoptosis-inducing ligand systems in comparison with chronic hepatitis C [J]. Clin Exp Immunol,2007,148(1): 85-89.
    [95]Chaudhry P, Srinivasan R, Patel FD, et al. Serum soluble Fas levels and prediction of response to platinum-based chemotherapy in epithelial ovarian cancer[J].Int J Cancer,2008, 122(8):1716-1721.
    [96]臧凤琳,张霖,肖绪祺.FLIP基因在乳腺癌组织中表达的初步研究[J].中国肿瘤临床,2007,34(6):308-311.
    [97]Yang BF, Xiao C, Li H, et al. Resistance to Fas-mediated apoptosis in malignant tumours is rescued by KN-93 and cisplatin via downregulation of c-FLIP expression and phosphorylation[J].Clin Exp Pharmacol Physiol,2007,34(12):1245-1251.
    [98]Gu Qing, Wang Ji-de, Harry HX, et al. Activation of the caspase-8/Bid and Bax pathways in aspirin-induced apopto-sisin gastric cancer [J].Carcinogenesis,2005,26(3):541-546.
    [99]王辉,赵连三.肿瘤坏死因子相关调亡诱导配体与肝病[J].实用医院临床杂志,2008,5(3):109-111.
    [100]Gadsby K, Deighton C. Characteristics and treatment responses of patients satisfying the BSR guidelines for anti-TNF in ankylosing spondylitis [J]. Rheumatology (Oxford),2007 46(3):439-441.
    [101]Higuchi Y,Chan TO, Brown MA, et al. Cardio protection afforded by NF-kB ablation is associated with activation of Akt in mice over expressing TNF-alpha[J]. Am J Physiol Heart Circ Physiol,2006,290(2):H590-588.
    [102]Nair B,Raval G,Mehta P. TNF-alpha inhibitor etanercept and hematologic malignancies: report of a case and review of the literature[J].Am J Hematol,2007,82(11):1022-1024.
    [103]Tephly LA,Carter AB.Differential expression and oxidation of MKP-1 modulates TNF-alpha gene expression[J].Am J Respir Cell Mol Biol,2007,37(3):366-374.
    [104]Huang Y, Sheikh MS.TRAIL death receptors and cancer therapeutics[J]Toxicol Appl Pharmacol,2007,224(3):284-289.
    [105]胡璧,王建军,徐根兴.肿瘤坏死因子诱导凋亡配体(TRAIL)抗肿瘤治疗研究进展[J].药 学与临床研究,2008,16(3):194-199.
    [106]Dumitru CA, Carpinteiro A, Trarbach T. Doxorubicin enhances TRAIL-induced cell death via ceramide-enriched membrane platforms [J].Apoptosis,2007,12(8):1533-1541.
    [107]Miihlethaler-Mottet A,Flahaut M, Bourloud KB,et al. Histone deacetylase inhibitors strongly sensitise neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro- to anti-apoptotic proteins ratio [J].BMC Cancer,2006,24(6):214.
    [108]Schuchmann M, Schulze BH, Fleischer F, et al. Histone deacetylase inhibition by valproic acid down-regulates c-FLIP/CASH and sensitizes hepatoma cells towards CD95 and TRAIL receptor-mediated apoptosis and chemotherapy[J].Oncology Reports,2006,15(1):227-230.
    [109]Simone Fulda. Caspase-8 in cancer biology and therapy [J].Cancer Letters,2009,281(2): 128-133.
    [110]Nachman Mazurek, James C. Byrd, Yun Jie Sun, et al. W1930 Nuclear Galectin-3 Confers Robert Bresalier. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Resistance to Colon Cancer Cells By Inhibiting Caspase-8 Activation [J].Gastroenterology,2009,136(5):A-756.
    [111]Blomgran R, Zheng L, Stendahl O. Cathepsin-cleaved Bid promotes apoptosis in human neutrophils via oxidative stress-induced lysosomal membrane permeabilization [J].J Leukoc Biol,2007,81(5):1213-1223.
    [112]Gu Qing, Wang Ji-de, Harry HX, et al. Activation of the caspase-8/Bid and Bax pathways in aspirin-induced apopto-sisin gastric cancer [J].Carcinogenesis,2005,26(3):541-546.
    [113]Chou AH, Tsai H, Wei FW, et al. Hepatitis C virus core protein modulates TRA IL-mediated apoptosis by enhancing Bid cleavage and activation of mitochondria apoptosis signaling pathway [J]. Journal of Immunology.2005,174 (4):2160-2166.
    [114]Ma Y, Hendershot L M. The role of the unfolded protein response in tumor development:friend or foe? [J]. Nat Rev Cancer,2004,4:966-977.
    [115]Sundar Rajan S, Srinivasan V, Balasubramanyam M. Endoplasmic reticulum(ER) stress & diabetes [J]. Indian J Med Res,2007,125:411-424.
    [116]Eva S, Susan E L, Adrienne M, et al. Mediators of endoplasmic reticulum stress-induced apoptosis [J]. EMBO reports,2006,7(9):880-885.
    [117]Jiang H Y, Wek R C. Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2(eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition [J]. J Biol Chem,2005,280:14189-14202.
    [118]翟丽,杨月,郭秀丽,等.内质网应激介导的细胞凋亡途径及新靶点药物[J].中国药学杂志,2008 43(18):1361-1364.
    [119]Back SH, Schr derM, Lee K, et al. ER stress signaling by regulated splicing:IRE1 /HAC1/XBP1 [J]. Methods,2005,35 (4):395-416.
    [120]马涛,薛承锐.内质网未折叠蛋白反应与凋亡信号机制研究进展[J].医学综述,2008,23(14):3565-3567.
    [121]Yoshida H, Matsui T, Yamamoto A, et al.XBP1 mRNA is induced by ATF6 and spliced by IRE-1 in response to ER stress to produce a highly active transcription factor [J].Cell,2001,107:881-891.
    [122]Lee A H, Iwakoshi N N, Glimcher L H.XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response [J]. Mol Cell Biol,2003,3:7448-7459.
    [123]Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress [J]. Cell Death Differ,2004,11:381-389.
    [124]Diane R F, Constantinos K. The PERK/eIF2a/ATF4 module of the UPR in hypoxia resistance and tumor growth [J]. Cancer Biology & Therapy,2006,5(7):723-728.
    [125]Woo K J, Lee T J, Lee S H, et al. Elevated gadd153/chop expression during resveratrol-induced apoptosis in human colon cancer cells [J].Biochemical Pharmacology,2007,73:68-76.
    [126]Nobumichi O, Satoshi Y, Takayuki H.TRB3,a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death [J]. The EMBO Journal,2005,24:1243-1255.
    [127]Hegedus Z, Czibula A, Kiss-Toth E. Tribbles:novel regulators of cell function; evolutionary aspects [J]. Cell. Mol. Life Sci,2006,63(14):1632-1641.
    [128]Hatai T, Matsuzawa A, Inoshita S, Yonehara S, et al. Execution of apoptosis signal regulating kinase 1(ASK1)-induced apoptosis by the mitochondria-dependent caspase activation [J]. J Biol Chem,2000,275:26576-26581.
    [129]Roy S, Sharom J R, Houde C, et al. Confinement of caspase-12 proteolytic activity to autoprocessing [J]. PNAS,2008,105 (11):4133-4138.
    [130]Breckenridge D G, Nguyen M, Kuppig S, et al. The procaspase-8 isoform, procaspase-8L, recruited to the BAP31 complex at the endoplasmic reticulum [J]. Proc Natl Acad Sci,2002,99:4331-4336
    [131]Shore GC, Nguyen M.Bcl-2 proteins and apoptosis:choose your partner [J]. Cell. 2008,135(6):1074-1084.
    [132]Xu C Y, Beatrice B M, John C R. Endoplasmic reticulum stress:cell life and death decisions [J]. The Journal of Clinical Investigation,2005,115(10):2656-2664.
    [133]Szabadkai G, Rizzuto R. Participation of endoplasmic reticulum and mitochondrial calcium handling in apoptosis:more than just neighborhood[J]. FEBS Lett,2004,567(1): 111-115.
    [134]Verkhratsky A. Toescu EC. Endoplasm ic reticulum Ca2+ homeostasis and neuronal death [J]. J Cell Mol Med.2003,7(4):351-361.
    [1]顾关云,蒋昱.芦笋的化学成分和生物活性[J].国外医药·植物药分册,2007,22(2):47-50.
    [2]周利亘,王春辉,王君虹,等.芦笋活性成分及其生物学功能[J].安徽农学通报,2006,12(2):23-26.
    [3]孙春艳,赵伯涛,郁志方,等.芦笋化学成分及药理作用研究进展[J].中国野生植物资源,2004,23(5):1-5.
    [4]许申,胡谷丰,方浩徽.芦笋颗粒在肿瘤治疗中的作用[J].临床肺科杂志,2008,13(6):678-679.
    [5]李娟,王凤山.芦笋多糖的研究进展[J].中国生化药物杂志,2009,30(3):215-217.
    [6]Xue F H, Ling Y K. Steroidal saponins from roots of Asparagus officinalis [J]. Steroids, 2006,71:171-176.
    [7]姜云云.芦笋质量控制的现代分析方法研究[D].第二军医大学,2009.
    [8]韩江余,张光霁,石森林.植物多糖抗肿瘤研究近况[J].浙江中医药大学学报,2008,32(2):281-282.
    [9]李玉芳.中药多糖抗肿瘤机制研究进展[J].实用癌症杂志,2007,22(5):546-550.
    [10]王惠,刘姣,鲍延伟.化学合成具有抗肿瘤活性甾体皂苷的研究进展[J].中国药物化学杂志,2008,18(1):70-78.
    [11]VINCKEN J P, HENG L, De GROOT A, et al. Saponins, classification and occurrence in the plant kingdom[J].Phytochemistry,2007,68(3):275-297.
    [12]单磊,张卫东,张川.皂苷类成分抗肿瘤活性的研究进展[J].中草药,2005,36(2):295-298.
    [13]廖子君.现代肿瘤治疗药物学[M].西安:世界图书出版公司,2003.
    [14]谢峻,谈锋.植物来源抗肿瘤药物研究进展[J].中草药,2007,38(2):285-289.
    [1]Liu W M, Dalgleish A G.MTT assays can underestimate cell numbers [J]. Cancer Chemother Pharmacol.2009,64(4):861-862.
    [2]Muraina I A, Suleiman M M, Eloff J N. Can MTT be used to quantify the antioxidant activity of plant extracts? [J]. Phytomedicine.2009,16(6-7):665-668.
    [3]Xiao Y, Li J D, Shi H L, et al. Predictive value of in vitro MTT assay chemosensitivity test of cytotoxic drug activity in cervical cancer [J]. Ai Zheng.2007,26(4):386-389.
    [4]Funk D, Schrenk H H, Frei E. Serum albumin leads to false-positive results in the XTT and the MTT assay [J].Biotechniques.2007,43(2):178-182.
    [5]Houghton P, Fang R, Techatanawat I, et al. The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity [J].Methods.2007,42(4):377-387.
    [6]Henriksson E, Kjellen E, Wahlberg P, et al. Differences in estimates of cisplatin-induced cell kill in vitro between colorimetric and cell count/colony assays [J].In Vitro Cell Dev Biol Anim.2006,42(10):320-323.
    [7]Chen Q, Zhang J H, Chen J T, et al. MTT assay for detecting osteosarcoma cell apoptosis [J]. Nan Fang Yi Ke Da Xue Xue Bao.2009,29(9):1899-901.
    [8]汲晨锋,邹翔,高世勇.MTT法测定3种仙人掌多糖对人癌细胞的作用[J].哈尔滨商业大学学报(自然科学版),2004,20(4):383-386.
    [9]Xue F H, Yu Y L, Ling Y K. Steroids from the Roots of Asparagus officinalis and Their Cytotoxic Activity [J]. Journal of Integrative Plant Biology,2008,50 (6):717-722.
    [1]Liu D, Niu Z X.The structure, genetic polymorphisms, expression and biological functions of complement receptor type 1 (CR1/CD35) [J]. Immunopharmacol Immunotoxicol,2009, 31(4):524-535.
    [2]郭峰,钱宝华.现代红细胞免疫学[M].上海:第二军医大学出版社,2002:115.
    [3]Baranyay F. Histochemical contributions to the binding mechanism of complement (CR1, CR2) receptors [J]. Pathol Oncol Res,2009,15(4):639-644.
    [4]Lambert JC, Heath S, Even G, et al.Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease [J]. Nat Genet,2009,41(10):1094-1099.
    [5]Jalava-Karvinen P, Hohenthal U, Laitinen I,et al. Simultaneous quantitative analysis of Fc gamma RI (CD64) and CR1 (CD35) on neutrophils in distinguishing between bacterial infections, viral infections, and inflammatory diseases[J]. Clin Immunol,2009,133(3): 314-23.
    [6]Seregin S S, Aldhamen Y A, Appledorn D M, et al.CR1/2 is an important suppressor of Adenovirus-induced innate immune responses and is required for induction of neutralizing antibodies [J]. Gene Ther,2009,16(10):1245-1459.
    [7]Sinha S, Jha G N, Anand P, et al.CR1 levels and gene polymorphisms exhibit differential association with falciparum malaria in regions of varying disease endemicity [J]. Hum Immunol,2009,70(4):244-50.
    [8]Senbagavalli P, Geetha S T, Karunakaran K, et al. Reduced erythrocyte CR1 levels in patients with pulmonary tuberculosis is an acquired phenomenon [J]. Clin Immunol,2008, 128(1):109-15.
    [9]LI H L, JIN P, HUANG Y K, et al. Relationship between the erythrocyte CR1 genomic density polymorphism and erythrocyte immune function in children with recurrent respiratory tract infections [J]. Immunol J,2006,22(4):423-428.
    [10]郭峰.血液免疫反应路线图理论[J].肿瘤学杂志,2005,11(3):157-158.
    [11]郭峰.构建现代系统免疫学新的实验研究体系[J].解放军医学杂志,2006,31(2):89-91.
    [12]郭峰,花美仙,张乐之,等.抗原激活系统血液免疫反应实验研究[J].中国免疫学杂志,2007,23(8):732-738.
    [13]郭峰,李平,卞琦,等.肺癌患者抗原激活系统血液快速固有免疫反应比较实验研究[J].肿瘤学杂志,2009,15(6):534-536.
    [14]查占山,钱宝华,郭峰,等.红细胞CD35在抗原激活淋巴细胞免疫反应中的作用[J]解放军医学杂志,2006,31(2):104-105.
    [1]季宇彬,闵永翠,汲晨锋.芦笋多糖对S180小鼠红细胞CR1(CD35)数量及活性的影响[J1.中国药学杂志,2009,44(14):1066-1069
    [2]季宇彬,汲晨锋,陈学军.芦笋多糖对S180小鼠红细胞氯离子浓度及膜电位影响的研究[J].中国药学杂志,2008,43(15):1146-1149
    [3]季宇彬,陈学军,汲晨锋.HPCE分析芦笋多糖对荷瘤小鼠红细胞的影响[J].哈尔滨商业大学学报(自然科学版),2006,22(5):1-3
    [4]汲晨锋,肖凤.青龙衣多糖对S180小鼠红细胞膜组分的影响[J].哈尔滨商业大学学报(自然科学版),2008,24(4):391-395
    [5]Brad S.Karon, James D.Hoyer, James R.Stubbs, et al. Changes in Band 3 oligomeric state precede cell membrane phospholipid loss during blood bank storage of red blood cells[J]. Transfusion,2009,49(7):1435-1442
    [6]Angel Hernandez-Hernandez, Marina C.Rodriguez, Abel L6pez-Revuelta, et al. Alterations in erythrocyte membrane protein composition in advanced non-small cell lung cancer [J]. Blood Cells, Molecules, and Diseases,2006,36(3):355-363
    [7]Anacleto FE, Bruce LJ, Clayton P, et al. Distal renal tubular acidosis in Filipino children, caused by mutations of the anion-exchanger SLC4A1 (AE1, Band 3) gene[J]. Nephron Physiol.2010,114(2):19-24.
    [8]Chu C, Woods N, Sawasdee N, et al. Band 3 Edmonton I, a novel mutant of the anion exchanger 1 causing spherocytosis and distal renal tubular acidosis[J]. Biochem J, 2010,426(3):379-388.
    [9]Bordin L, Fiore C, Bragadin M, et al. Regulation of membrane band 3 Tyr-phosphorylation by proteolysis of p72(Syk) and possible involvement in senescence process[J].Acta Biochim Biophys Sin (Shanghai),2009,41(10):846-851.
    [10]Kodippili GC, Spector J, Sullivan C, et al. Imaging of the diffusion of single band 3 molecules on normal and mutant erythrocytes[J]. Blood,2009,113(24):6237-6245.
    [11]Salhany JM. Kinetic evidence for modulation by glycophorin A of a conformational equilibrium between two states of band 3 (SLC4A1) bound reversibly by the competitive inhibitor DIDS [J]. Blood Cells Mol Dis,2009,42(3):185-191.
    [12]Toye AM, Williamson RC, Khanfar M, et al.Band 3 Courcouronnes (Ser667Phe):a trafficking mutant differentially rescued by wild-type band 3 and glycophorin A [J]. Blood, 2008, 111(11):5380-5389.
    [13]杜洪清,傅国辉,姜晓殊.带3蛋白C端和血型糖蛋白A相互作用及其抗原相关性的研究[J].生物化学与生物物理进展,2002,29(2):240-246
    [14]孙瑛,王天英,刘利梅.带3蛋白C末端与血型糖蛋白A在哺乳动物细胞内相互作用的研究[J].哈尔滨医科大学学报,2003,37(2):95-97
    [15]Williamson RC, Toye AM. Glycophorin A:Band 3 aid [J]. Blood Cells Mol Dis, 2008,41(1):35-43.
    [1]Adak S, Chowdhury S, Bhattacharyya M. Dynamic and electrokinetic behavior of erythrocyte membrane in diabetes mellitus and diabetic cardiovascular disease [J]. Biochim Biophys Acta.2008,1780(2):108-115.
    [2]何文,肖礼海,孙安琪,等.壳聚糖及其衍生物对HaCaT细胞膜电位的影响[J].中国药学杂志,2009,44(14):1063-1066.
    [3]樊勇,庞岚,白德成.血黏度增高致脑细胞膜电位及线粒体膜电位变化[J].兰州大学学报(医学版),2009,35(4):39-42.
    [4]Thiruvengadam AP, Chandrasekaran K. Evaluating the validity of blood-based membrane potential changes for the identification of bipolar disorder I. J Affect Disord. 2007,100(1-3):75-82.
    [5]廖杰,于力方,葛学铭.细胞膜电位的动态监测及其在银杏内酯研究中的应用[J].标记免疫分析与临床,2005,12(3):149-151.
    [6]王丙莲,史建国,李雪梅.铅污染对藻细胞膜电位和膜电阻的影响研究[J].山东科学,2009,22(3):11-15.
    [7]胡继鹰,潘克英,李美平,等.甘草三参合剂对大鼠心肌细胞跨膜电位及Na+-K+-ATPase活性的影响[J].中医研究,2005,18(8):10-12.
    [8]Bahlouli S, Hamdache F, Riane H. Modeliation of the contribution of the Na/Ca exchanger to cell membrane potential and intracellular ion concentrations[J]. Gen Physiol Biophys,2008,27(3):194-202.
    [9]董晓静,胡丽娜,朱赞珊,等.能量可控陡脉冲对肿瘤细胞内钙离子浓度及膜电位的影响[J].癌症,2009,28(9):961-966.
    [10]Lang PA, Kaiser S, Myssina S, Wieder T, Lang F, Huber SM. Role of Ca2+-activated K+ channels in human erythrocyte apoptosis [J]. Am J Physiol Cell Physiol.2003, 285(6):C1553-1560.
    [11]Hoffman J F, Geibel J P. Fluorescent imaging of Cl- in Amphiuma red blood cells:how the nuclear exclusion of Cl- affects the plasma membrane potential [J]. Proc Natl Acad Sci U S A.2005,102(3):921-926.
    [12]Cadetti L, Thoreson WB. Feedback effects of horizontal cell membrane potential on cone calcium currents studied with simultaneous recordings [J]. J Neuro physiol.2006,95(3): 1992-1995.
    [1]Adak S, Chowdhury S, Bhattacharyya M. Dynamic and electrokinetic behavior of erythrocyte membrane in diabetes mellitus and diabetic cardiovascular disease [J]. Biochim Biophys Acta,2008,1780(2):108-115.
    [2]Kaestner L, Christophersen P, Bernhardt I, et al. The non-selective voltage-activated cation channel in the human red blood cell membrane:reconciliation between two conflicting reports and further characterization [J]. Bioelectrochemistry,2000,52(2):117-125.
    [3]Gatto C, Milanick M.Red blood cell Na pump:Insights from species differences [J]. Blood Cells Mol Dis,2009,42(3):192-200.
    [4]王敏.Na+,K+-ATP酶信号转导功能的分子机制[J].国际病理科学与临床杂志,2006,26(3):228-231.
    [5]李海英,赵娟,李海生.Na+,K+-ATP酶和Ca2+,Mg2+-ATP酶活性影响因素的研究进展[J].现代中西医结合杂志,2008,17(9):1449-1150.
    [6]姜丽华,陈燕宁,王国年.不同麻醉方法对红细胞膜ATPase活性的影响[J].哈尔滨医科大学学报,2005,39(1):75-77.
    [7]胡继鹰,潘克英,李美平,等.甘草三参合剂对大鼠心肌细胞跨膜电位及Na+-K+-ATPase活性的影响[J].中医研究,2005,18(8):10-12.
    [8]Zylinska L, Gulczynska E, Kozaczuk A. Changes in erythrocyte glutathione and plasma membrane calcium pump in preterm newborns treated antenatally with MgSO4 [J]. Neonatology,2008,94(4):272-278.
    [9]Yazbeck C, Moreau T, Sahuquillo J, Takser L, Huel G. Effect of maternal manganese blood levels on erythrocyte calcium-pump activity in newborns [J]. Sci Total Environ, 2006,354(1):28-34.
    [10]Zemlyanskikh NG, Kofanova OA. Modulation of human erythrocyte Ca2+-ATPase activity by glycerol:the role of calmodulin [J]. Biochemistry (Mosc),2006,71(8):900-905.
    [11]季宇彬,汲晨锋,王翀.羊栖菜多糖对Slso荷瘤小鼠红细胞相关生理功能影响的研究[J].中国药学杂志,2009,44(3):
    [12]Liu F, Mizukami H, Sarnaik S, et al. Calcium-dependent human erythrocyte cytoskeleton stability analysis through atomic force microscopy [J]. J Struct Biol,2005,150(2):200-210.
    [13]Okubo K, Wilawan P, Bork S, et al. Calcium-ions are involved in erythrocyte invasion by equine Babesia parasites [J]. Parasitology,2006,133(Pt 3):289-294.
    [14]Zhang J, Zhao Y, Duan J, et al. Gangliosides activate the phosphatase activity of the erythrocyte plasma membrane Ca2+-ATPase [J]. Arch Biochem Biophys,2005,444(1):1-6.
    [15]Fidalgo da Silva E, Freire M M, Barrabin H, et al.Troponin C/calmodulin chimeras as erythrocyte plasma membrane Ca2+-ATPase activators [J]. Int J Biochem Cell Biol,2006,38 (2):209-21.
    [16]Woollard KJ, Sturgeon S, Chin-Dusting JP, et al. Erythrocyte hemolysis and hemoglobin oxidation promote ferric chloride-induced vascular injury [J].J Biol Chem.,2009,284(19): 13110-13118.
    [17]Chernyshev AV, Tarasov PA, Semianov KA, et al Erythrocyte lysis in isotonic solution of ammonium chloride:theoretical modeling and experimental verification [J]. J Theor Biol, 2008,251(1):93-107.
    [18]Decherf G, Bouyer G, Egee S, et al.Chloride channels in normal and cystic fibrosis human erythrocyte membrane [J].Blood Cells Mol Dis,2007,39(1):24-34.
    [19]Jennings ML.Evidence for a second binding/transport site for chloride in erythrocyte anion transporter AE1 modified at glutamate 681 [J]. Biophys J,2005,88(4):2681-2691.
    [20]Akagi T, Kim H, Akashi M. pH-dependent disruption of erythrocyte membrane by amphiphilic poly(amino acid) nanoparticles [J]. J Biomater Sci Polym Ed,2010,21(3): 315-328.
    [21]Wu Y, Huang YX, Kang LL, et al. Effect of pH on molecular constitution and distribution of hemoglobin in living erythrocyte [J]. Biopolymers,2010,93(4):348-354.
    [22]Ahyayauch H, Goni FM, Bennouna M. pH-dependent effects of chlorpromazine on liposomes and erythrocyte membranes [J]. J Liposome Res.2003,13(2):147-155.
    [1]Kuo YC, Chen IC.Evaluation of surface charge density and surface potential by electrophoretic mobility for solid lipid nanoparticles and human brain-microvascular endothelial cells [J]. J Phys Chem B,2007,111(38):11228-11236.
    [2]Purlo N V, Popova O V, Biriukova L S, et al. Electrophoretic mobility of erythrocytes as an indicator of evaluation of the functional intactness of erythrocyte membranes [J].Klin Lab D iagn,2005,14(1):40-44.
    [3]Sheremet'ev Iu A, Sheremet'eva A V. Effect of La(3+) on electrophoretic mobility and aggregation of intact human erythrocytes and those treated with low concentrations of glutaric aldehyde[J].Biofizika,2003,48(1):63-67.
    [4]Matyushichev V B, Sham ratova V G, Akhunova A R. Correlation of erythrocyte electrophoretic mobility and the velocity of their sedimentation in the norm and renal pathology[J]. Klin Lab Diagn,2004,13(4):22-24.
    [5]Matiushichev VB, Shamratova VG. Dependence of erythrocyte electrophoretic mobility of human and rat blood on cell volume in health and pathology [J]. Patol Fiziol Eksp Ter,2006, (4):17-18.
    [6]Matiushichev VB, Shamratova VG.The indirect effect of hemoglobin on the electrophoretic mobility of human blood erythrocytes [J]. Biofizika,2005,50(2):307-309.
    [7]Krylov V N, Deryugina A V. Typical changes in electrophoretic mobility of erythrocytes under stress conditions[J].Bull Exp BiolMed,2005,139 (4):377-379.
    [8]陈义.毛细管电泳技术及应用[M].第2版.北京:化学工业出版社,2006:295
    [9]Matyushichev V B, Sham ratova V G. Potentialities of enhancing the diagnostic efficiency in registering the electrophoretic mobility of erythrocytes [J]. Klin Lab D iagn,2004, 13(11):50-52.
    [10]Haugg M, Kaiser V, Schmidtkunz C, et al. The effect of aggregation on the separation
    [1]Dmitri V. Krysko, Tom Vanden Berghe, Katharina D Herde. Apoptosis and necrosis: Detection, discrimination and phagocytosis [J]. Methods,2008,44:205-221.
    [2]Partha Mukhopadhyay, Mohanraj Rajesh, Gyorgy Hasko. Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy [J]. Nat Protoc.2007,2(9):2295-2301.
    [3]Zhang JF, Liu JJ, Lu MQ, et al. Rapamycin inhibits cell growth by induction of apoptosis on hepatocellular carcinoma cells in vitro [J]. Transpl Immunol,2007,17(3):162-168.
    [4]Francesca Doonan, Thomas G. Cotter. Morphological assessment of apoptosis [J]. Methods, 2008,44:200-204.
    [5]Katarzyna Augustowska, Zofia Magnowska, Maria Kapiszewska, et al. Is the natural PCDD/PCDF mixture toxic for human placental JEG-3 cell line? The action of the toxicants on hormonal profile, CYP1A1 activity, DNA damage and cell Apoptosis [J]. Human & Experimental Toxicology,2007,26:407-417.
    [6]Zeng Y, Wu Y, Deng Z, et al. Apoptosis induced by lipid-associated membrane proteins from Mycoplasma penetrans is mediated by nuclear factor kB activation in mouse macrophage [J]. Can J Microbiol,2008,54(2):150-158.
    [7]Gabriela Brumatti, Clare Sheridan, Seamus J. Martin. Expression and purification of recombinant annexin V for the detection of membrane alterations on apoptotic cells [J]. Methods,2008,44:235-240.
    [8]Li GH, Qian W, Song GQ, et al. Effect of vasoactive intestinal peptide on gastric adenocarcinoma[J]. Gastroenterol Hepatol,2007,22(8):1328-1335.
    [9]Han Y, Bu LM, Ji X, et al. Modulation of multidrug resistance by and rographolid in a HCT-8/5-FU multidrug-resistant colorectal cancer cell line [J]. Dig Dis,2005,6(2):82-86.
    [10]Wan X, Li J, Xie X, et al. PTEN augments doxorubicin-induced apoptosis in PTEN-null Ishikawa cells [J]. Gynecol Cancer,2007,17(4):808-812.
    [1]Franke JC, Plotz M, Prokop A, et al. New caspase-independent but ROS-dependent apoptosis pathways are targeted in melanoma cells by an iron-containing cytosine analogue [J]. Biochem Pharmacol.2010,79(4):575-586.
    [2]Jin S, Zhang QY, Kang XM, et al. Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway [J]. Ann Oncol.2010,21(2):263-268.
    [3]Kim BM,. Choi YJ, Han Y, et al. N, N-dimethyl phytosphingosine induces caspase-8-dependent cytochrome c release and apoptosis through ROS generation in human leukemia cells [J]. Toxicol Appl Pharmacol.2009,239(1):87-97.
    [4]Zhang Y, Liu H, Jin J, et al. The role of endogenous reactive oxygen species in oxymatrine-induced caspase-3-dependent apoptosis in human melanoma A375 cells [J]. Anti-cancer Drugs.2010,21 (5):494-501.
    [5]Su CC, Lin JG, Li TM, et al. Curcumin-induced apoptosis of human colon cancer colo 205 cells through the production of ROS, Ca2+ and the activation of caspase-3 [J]. Anticancer Res. 2006,26(6B):4379-4389.
    [6]Oh SH, Lim SC.A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation [J]. Toxicol Appl Pharmacol.2006, 212(3):212-223.
    [7]Lee JH, Li YC, Ip SW, et al. The role of Ca2+ in baicalein-induced apoptosis in human breast MDA-MB-231 cancer cells through mitochondria- and caspase-3-dependent pathway [J]. Anticancer Res.2008,28(3A):1701-1711.
    [8]Chattopadhyay P, Chaudhury P, Wahi AK.Ca2+concentrations are key determinants of ischemia-reperfusion-induced apoptosis:significance for the molecular mechanism of Bcl-2 action [J]. Appl Biochem Biotechnol.2010,160(7):1968-1977.
    [9]Chang HC, Huang CC, Huang CJ, et al. Desipramine-induced apoptosis in human PC3 prostate cancer cells:activation of JNK kinase and caspase-3 pathways and a protective role of [Ca2+]i elevation [J]. Toxicology.2008,250(1):9-14.
    [10]Feng B, Huang CG, Chen RH, et al.2'-Epi-2'-O-acetylthevetin B induces apoptosis partly via Ca2+-mediated mitochondrial pathway in human hepatocellular carcinoma HepG2 cells [J]. Cell Biol Int.2009,33(9):918-925.
    [11]Giacomello M, Drago I, Pizzo P, et al. Mitochondrial Ca2+ as a key regulator of cell life and death [J]. Cell Death Differ.2007,14(7):1267-1274.
    [12]Ghoneum M, Matsuura M, Braga M,et al. S. cerevisiae induces apoptosis in human metastatic breast cancer cells by altering intracellular Ca2+ and the ratio of Bax and Bcl-2 [J]. Int J Oncol.2008,33(3):533-539.
    [13]林丹樱,刘晓晨,马万云.利用三通道实时荧光成像方法研究单个活细胞凋亡与胞浆pH值变化的关系[J].光谱学与光谱分析,2009,29(6):1581-1585.
    [14]Babu US, Gaines DM, Wu Y,et al. Use of flow cytometry in an apoptosis assay to determine pH and temperature stability of shiga-like toxin 1 [J]. J Microbiol Methods.2008, 75(2):167-171.
    [15]Becelli R, Renzi G, Altieri F, et al. Intracellular and extracellular tumor pH measurement in a series of patients with oral cancer [J]. J Craniofac Surg,2007,18:1051-1054.
    [16]高艳,赵伟,沈炜炜,等.胃癌AGS细胞内pH值的测定及酸性环境对其增殖和凋亡的影响[J].现代生物医学进展,2008,8(9):1656-1659.
    [17]Hayashi T, Hayashi I, Shinohara T, et al. Radiation-induced apoptosis of stem/progenitor cells in human umbilical cord blood is associated with alterations in reactive oxygen and intracellular pH [J]. Mutat Res.2004,556(1-2):83-91.
    [18]Di Sario A, Bendia E, Omenetti A, et al. Selective inhibition of ion transport mechanisms regulating intracellular pH reduces proliferation and induces apoptosis in cholangiocarcinoma cells [J]. Dig Liver Dis.2007,39(l):60-69.
    [19]芦颖,李庆华,庞天翔.肿瘤细胞内pH值改变与肿瘤多药耐药的关系[J].中国药理学通报,2007,23(9):1128-1130.
    [20]Wang L, Luo HS, Xia H.Sodium butyrate induces human colon carcinoma HT-29 cell apoptosis through a mitochondrial pathway [J]. J Int Med Res.2009,37(3):803-811.
    [21]Eom HS, Lee EJ, Yoon BS, et al. Propolis inhibits the proliferation of human leukaemia HL-60 cells by inducing apoptosis through the mitochondrial pathway [J]. Nat Prod Res. 2010,24(4):375-386.
    [1]Lee J. Martin. The mitochondrial permeability transition pore:A molecular target for amyotrophic lateral sclerosis therapy [J].Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease,2010, 1802(1):186-197.
    [2]Anna W.C. Leung, Andrew P. Halestrap. Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2008,1777(7-8):946-952.
    [3]Evgeny Pavlov, R. Carolina Gutierrez, Yuan Zhang, et al. High-Frequency Photoconductive Stimulation Reveals Central Role of Mitochondrial Permeability Transition Pore in Activity-Driven Neuronal Cell Death [J].Biophysical Journal,2010,98(3):378a
    [4]Nadezhda I. Fedotcheva, Vera V. Teplova, Tatiana A. Fedotcheva, et al. Effect of progesterone and its synthetic analogues on the activity of mitochondrial permeability transition pore in isolated rat liver mitochondria [J].Biochemical Pharmacology,2009,78(8): 1060-1068.
    [5]Andrew P. Halestrap. What is the mitochondrial permeability transition pore? [J]. Journal of Molecular and Cellular Cardiology,2009,46(6):821-831.
    [6]Christopher P. Baines. The molecular composition of the mitochondrial permeability transition pore [J].Journal of Molecular and Cellular Cardiology,2009,46(6):850-857.
    [7]Keiichi Odagiri, Hideki Katoh, Hirotaka Kawashima, et al. Local control of mitochondrial membrane potential, permeability transition pore and reactive oxygen species by calcium and calmodulin in rat ventricular myocytes [J].Journal of Molecular and Cellular Cardiology, 2009,46(6):989-997.
    [8]Keiichi Odagiri, Hideki Katoh, Hirotaka Kawashima, et al. Local control of mitochondrial membrane potential, permeability transition pore and ROS by calcium and calmodulin in rat ventricular myocytes [J].Journal of Molecular and Cellular Cardiology,2008,45(4):S9.
    [9]Shiang Y. Lim, Sean M. Davidson, Derek J. Hausenloy, et al. Preconditioning and postconditioning:The essential role of the mitochondrial permeability transition pore [J]. Journal of Molecular and Cellular Cardiology,2007,42(6):S171
    [10]Mayte Montero, Laura Vay, Esther Hernandez-SanMiguel, et al.Mitochondrial free [Ca2+] and the permeability transition pore [J].Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2008,1777(Supplement 1):S29
    [11]Johan Haumann, James S. Heisner, Age D. Boelens, et al. Hypothermic Cardioprotection Attenuates Mitochondrial Permeability Transition Pore Opening and Calcium Loading in Isolated Cardiac Mitochondria [J]. Biophysical Journal,2010,98(3):735a-736a.
    [12]Thomas Eissing, Steffen Waldherr, Frank Allgower, et al.Response to Bistability in Apoptosis:Roles of Bax, Bcl-2, and Mitochondrial Permeability Transition Pores [J]. Biophysical Journal,2007,92(9):3332-3334.
    [13]E.Z. Bagci, Y. Vodovotz, T.R. Billiar, et al.Bistability in Apoptosis:Roles of Bax, Bcl-2, and Mitochondrial Permeability Transition Pores [J].Biophysical Journal,2006,90(5): 1546-1559.
    [14]Victor V. Lemeshko. Potential-dependent membrane permeabilization and mitochondrial aggregation caused by anticancer polyarginine-KLA peptides [J].Archives of Biochemistry and Biophysics,2010,493(2):213-220.
    [15]Jorge Lago, Francisco Santaclara, Juan M. Vieites, et al.Collapse of mitochondrial membrane potential and caspases activation are early events in okadaic acid-treated Caco-2 cells [J].Toxicon,2005,46(5):579-586.
    [16]Jayanta Sarkar, Neetu Singh, Sanjeev Meena, et al. Staurosporine induces apoptosis in human papillomavirus positive oral cancer cells at G2/M phase by disrupting mitochondrial membrane potential and modulation of cell cytoskeleton [J]. Oral Oncology,2009,45(11): 974-979.
    [17]Takehiko Iijima.iviitochondrial membrane potential and ischemic neuronai death [J].Neuroscience Research,2006,55(3):234-243.
    [18]Sundararajan Jayaraman. Flow cytometric determination of mitochondrial membrane potential changes during apoptosis of T lymphocytic and pancreatic beta cell lines: Comparison of tetramethylrhodamineethylester (TMRE), chloromethyl-X-rosamine (H2-CMX-Ros) and MitoTracker Red 580 (MTR580) [J]. Journal of Immunological Methods, 2005,306(1-2):68-79.
    [19]Zhonghai Li, Jingze Wang. A forskolin derivative, FSK88, induces apoptosis in human gastric cancer BGC823 cells through caspase activation involving regulation of Bcl-2 family gene expression, dissipation of mitochondrial membrane potential and cytochrome c release [J]. Cell Biology International,2006,30(11):940-946.
    [20]Wang Ruijuan, Toshiro Miura, Harada Nozomu, et al. Changes in Mitochondrial membrane potential and intracellular calcium concentration during oxidative stress and its modification by beta-blocker [J].Journal of Cardiac Failure,2004,10(Supplement 1):S185.
    [21]Aneta Rogalska, Aneta Koceva-Chyla, et al. Aclarubicin-induced ROS generation and collapse of mitochondrial membrane potential in human cancer cell lines [J]. Chemico-Biological Interactions,2008,176(1):58-70.
    [22]Po Yee Chiu, Ka Fai Luk, Hoi Yan Leung, et al. Schisandrin B stereoisomers protect against hypoxia/reoxygenation-induced apoptosis and inhibit associated changes in Ca2+-induced mitochondrial permeability transition and mitochondrial membrane potential in H9c2 cardiomyocytes [J]. Life Sciences,2008,82(21-22):1092-1101.
    [23]Juanita Bustamante, Eloisi Caldas Lopes, Mariana Garcia, et al. Disruption of mitochondrial membrane potential during apoptosis induced by PSC 833 and CsA in multidrug-resistant lymphoid leukemia [J].Toxicology and Applied Pharmacology,2004, 199(1):44-51.
    [1]Guy C. Brown, Vilmante Borutaite. Regulation of apoptosis by the redox state of cytochrome c [J].Biochimica et Biophysica Acta (BBA)-Bioenergetics,2008,1777(7-8): 877-881.
    [2]Luisa De Martino, Gabriella Marfe, Mariangela Longo, et al. Bid cleavage, cytochrome c release and caspase activation in canine coronavirus-induced apoptosis [J]. Veterinary Microbiology,2010,141(1-2):36-45.
    [3]Maneesh H. Singh, Sheila M. Brooke, Ilona Zemlyak, et al. Evidence for caspase effects on release of cytochrome c and AIF in a model of ischemia in cortical neurons [J].Neuroscience Letters,2010,469(2):179-183.
    [4]Mei Shi, Shi-Gan Yan, Shu-Tao Xie, et al.Tip30-induced apoptosis requires translocation of Bax and involves mitochondrial release of cytochrome c and Smac/DIABLO in hepatocellular carcinoma cells [J].Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,2008,1783(2):263-274.
    [5]Luca Scorrano. Opening the doors to cytochrome c:Changes in mitochondrial shape and apoptosis [J].The International Journal of Biochemistry & Cell Biology,2010, 41(10):1875-1883.
    [6]Aline Buda dos Santos, Daniel Junqueira Dorta, Cezar Rangel Pestana,et al. Dehydromonocrotaline induces cyclosporine A-insensitive mitochondrial permeability transition/cytochrome c release [J]. Toxicon,2009,54(1):16-22.
    [7]Valerian E. Kagan, Hiilya A. Bayir, Natalia A. Belikova, et al. Cytochrome c/cardiolipin relations in mitochondria:a kiss of death [J]. Free Radical Biology and Medicine,2009, 46(11):1439-1453.
    [8]Aki Ogura, Shigeru Oowada, Yasuhiro Kon, et al. Redox regulation in radiation-induced cytochrome c release from mitochondria of human lung carcinoma A549 cells [J]. Cancer Letters,2009,277(1):64-71.
    [9]Ha Lim Oh, Haeyoung Lim, Younghee Park, et al. HY253, a novel compound isolated from Aralia continentalis, induces apoptosis via cytochrome c-mediated intrinsic pathway in HeLa cells [J]. Bioorganic & Medicinal Chemistry Letters,2009,19(3):797-799
    [10]R. Kumarswamy, Sudhir Chandna. Putative partners in Bax mediated cytochrome-c release:ANT, CypD, VDAC or none of them? [J].Mitochondrion,2009,9(1):1-8.
    [11]Eun Jeong Choi, Woong Shick Ahn, Su Mi Bae. Equol induces apoptosis through cytochrome c-mediated caspases cascade in human breast cancer MDA-MB-453 cells [J].Chemico-Biological Interactions,2009,177(1):7-11.
    [12]Hyo-Jung Lee, Hyo-Jeong Lee, Eun-Ok Lee, et al. Mitochondria-cytochrome C-caspase-9 cascade mediates isorhamnetin-induced apoptosis [J].Cancer Letters,2008, 270(2):342-353
    [13]Tsyregma Li, Tatiana Brustovetsky, Bruno Antonsson, et al. Oligomeric BAX induces mitochondrial permeability transition and complete cytochrome c release without oxidative stress [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2008,1777(11):1409-1421.
    [14]Ha Lim Oh, Dong-Keun Lee, Haeyoung Lim, et al. HY253, a novel decahydrofluorene analog, from Aralia continentalis, induces cell cycle arrest at the G1 phase and cytochrome c-mediated apoptosis in human lung cancer A549 cells [J]. Journal of Ethnopharmacology, 2010,129(1):135-139.
    [15]Han YH, Moon HJ, You BR, et al. Propyl gallate inhibits the growth of HeLa cells via caspase-dependent apoptosis as well as a G1 phase arrest of the cell cycle [J]. Oncol Rep. 2010,23(4):1153-1158.
    [16]Bressenot A, Marchal S, Bezdetnaya L, et al. Assessment of apoptosis by immunohistochemistry to active caspase-3, active caspase-7, or cleaved PARP in monolayer cells and spheroid and subcutaneous xenografts of human carcinoma [J]. J Histochem Cytochem.2009,57(4):289-300.
    [17]Yaguchi T, Fujikawa H, Nishizaki T. Linoleic acid derivative DCP-LA protects neurons from oxidative stress-induced apoptosis by inhibiting caspase-3/-9 activation [J].Neurochem Res.2010,35(5):712-717.
    [18]Zhao JF, Sun AH, Ruan P, et al. Vibrio vulnificus cytolysin induces apoptosis in HUVEC, SGC-7901 and SMMC-7721 cells via caspase-9/3-dependent pathway [J]. Microb Pathog.2009,46(4):194-200.
    [19]Yasuda Y, Saito M, Yamamura T, et al. Extracellular adenosine induces apoptosis in Caco-2 human colonic cancer cells by activating caspase-9/-3 via A(2a) adenosine receptors [J]. J Gastroenterol.2009,44(1):56-65.
    [20]Jin D, Ojcius DM, Sun D, et al. Leptospira interrogans induces apoptosis in macrophages via caspase-8- and caspase-3-dependent pathways [J]. Infect Immun.2009,77(2):799-809.
    [21]Lee HJ, Lee HJ, Lee EO, et al. Mitochondria-cytochrome C-caspase-9 cascade mediates isorhamnetin-induced apoptosis [J]. Cancer Lett.2008,270(2):342-353.
    [22]Hao Y, Xu C, Sun SY, et al. Cyclic stretching force induces apoptosis in human periodontal ligament cells via caspase-9 [J].Arch Oral Biol.2009,54(9):864-870.
    [23]Eeva J, Nuutinen U, Ropponen A, et al. The involvement of mitochondria and the caspase-9 activation pathway in rituximab-induced apoptosis in FL cells [J]. Apoptosis. 2009,14(5):687-698.
    [24]Aprigliano I, Dudas J, Ramadori G,et al. Atorvastatin induces apoptosis by a caspase-9-dependent pathway:an in vitro study on activated rat hepatic stellate cells [J].Liver Int.2008,28(4):546-557.
    [25]Yao H, Tang X, Shao X,et al. Parthenolide protects human lens epithelial cells from oxidative stress-induced apoptosis via inhibition of activation of caspase-3 and caspase-9 [J].Cell Res.2007,17(6):565-571.
    [26]Cai BZ, Meng FY, Zhu SL, et al. Arsenic trioxide induces the apoptosis in bone marrow mesenchymal stem cells by intracellular calcium signal and caspase-3 pathways [J].Toxicol Lett.2010,193(2):173-178.
    [27]Chien SY, Wu YC, Chung JG,et al. Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in numan breast cancer MDA-MB-231 cells [J].Hum Exp Toxicol.2009,28(8):493-503.
    [28]Yadav S, Shi Y, Wang F,et al. Arsenite induces apoptosis in human mesenchymal stem cells by altering Bcl-2 family proteins and by activating intrinsic pathway [J]. Toxicol Appl Pharmacol.2010,244(3):263-272.
    [29]Richardson A, Kaye SB. Pharmacological inhibition of the Bcl-2 family of apoptosis regulators as cancer therapy [J]. Curr Mol Pharmacol.2008,1(3):244-254.
    [30]Zhou C, Mao XP, Guo Q,et al. Diallyl trisulphide-induced apoptosis in human melanoma cells involves downregulation of Bcl-2 and Bcl-xL expression and activation of caspases [J]. Clin Exp Dermatol.2009,34(8):e537-543.
    [31]Shore GC, Nguyen M.Bcl-2 proteins and apoptosis:choose your partner [J]. Cell. 2008,135(6):1074-1084.
    [32]Song R, Harris LD, Pettaway CA.Downmodulation of Bcl-2 sensitizes metastatic LNCaP-LN3 cells to undergo apoptosis via the intrinsic pathway [J]. Prostate. 2010,70(6):571-583.
    [33]Bray K, Chen HY, Karp CM, et al.Bcl-2 modulation to activate apoptosis in prostate cancer [J]. Mol Cancer Res.2009,7(9):1487-1496.
    [34]How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? [J]. Trends Cell Biol.2008,18(4):157-164.
    [35]Golbano JM, Loppez-Aparicio P, Recio MN, et al. Finasteride induces apoptosis via Bcl-2, Bcl-xL, Bax and caspase-3 proteins in LNCaP human prostate cancer cell line [J]. Int J Oncol.2008,32(4):919-924.
    [36]Deng L, Adachi T, Kitayama K,et al. Hepatitis C virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway [J]. J Virol. 2008,82(21):10375-10385.
    [37]Lan CH, Sheng JQ, Fang DC,et al. Involvement of VDAC1 and Bcl-2 family of proteins in VacA-induced cytochrome c release and apoptosis of gastric epithelial carcinoma cells [J]. J Dig Dis.2010,11(1):43-49.
    [38]Pouliquen D, Bellot G, Guihard G, Mitochondrial membrane permeabilization produced by PTP, Bax and apoptosis:a'H-NMR relaxation study [J]. Cell Death Differ. 2006,13(2):301-310.
    [39]Kinnally KW, Antonsson B.A tale of two mitochondrial channels, MAC and PTP, in apoptosis[J]. Apoptosis.2007,12(5):857-868.
    [40]Martinez-Caballero S, Dejean LM, Kinnally MS, Assembly of the mitochondrial apoptosis-induced channel, MAC [J]. J Biol Chem.2009,284(18):12235-12245.
    [41]Tsou MF, Lu HF, Chen SC,et al. Involvement of Bax, Bcl-2, Ca2+ and caspase-3 in capsaicin-induced apoptosis of human leukemia HL-60 cells [J]. Anticancer Res. 2006,26(3A):1965-1971.
    [42]Yao Y, Huang C, Li ZF, et al.Exogenous phosphatidylethanolamine induces apoptosis of human hepatoma HepG2 cells via the bcl-2/Bax pathway [J]. World J Gastroenterol. 2009,15(14):1751-1758.
    [43]Abdel-Latif AM, Abuel-Ela HA, El-Shourbagy SH.Increased caspase-3 and altered expression of apoptosis-associated proteins, Bcl-2 and Bax in lichen planus [J]. Clin Exp Dermatol.2009,34(3):390-395.
    [44]Xu X, Liu Y, Wang L, Gambogic acid induces apoptosis by regulating the expression of Bax and Bcl-2 and enhancing caspase-3 activity in human malignant melanoma A375 cells [J]. Int J Dermatol.2009,48(2):186-192.
    [1]Han YH, Moon HJ, You BR, et al. Propyl gallate inhibits the growth of HeLa cells via caspase-dependent apoptosis as well as a G1 phase arrest of the cell cycle [J]. Oncol Rep. 2010,23(4):1153-1158.
    [2]Bressenot A, Marchal S, Bezdetnaya L, et al. Assessment of apoptosis by immunohistochemistry to active caspase-3, active caspase-7, or cleaved PARP in monolayer cells and spheroid and subcutaneous xenografts of human carcinoma [J]. J Histochem Cytochem.2009,57(4):289-300.
    [3]Yaguchi T, Fujikawa H, Nishizaki T. Linoleic acid derivative DCP-LA protects neurons from oxidative stress-induced apoptosis by inhibiting caspase-3/-9 activation [J].Neurochem Res.2010,35(5):712-717.
    [4]Zhao JF, Sun AH, Ruan P, et al. Vibrio vulnificus cytolysin induces apoptosis in HUVEC, SGC-7901 and SMMC-7721 cells via caspase-9/3-dependent pathway [J]. Microb Pathog.2009,46(4):194-200.
    [5]Yasuda Y, Saito M, Yamamura T, et al. Extracellular adenosine induces apoptosis in Caco-2 human colonic cancer cells by activating caspase-9/-3 via A(2a) adenosine receptors [J]. J Gastroenterol.2009,44(1):56-65.
    [6]Jin D, Ojcius DM, Sun D, et al. Leptospira interrogans induces apoptosis in macrophages via caspase-8- and caspase-3-dependent pathways [J]. Infect Immun.2009,77(2):799-809.
    [7]Lee HJ, Lee HJ, Lee EO, et al. Mitochondria-cytochrome C-caspase-9 cascade mediates isorhamnetin-induced apoptosis [J]. Cancer Lett.2008,270(2):342-353.
    [8]Hao Y, Xu C, Sun SY,et al. Cyclic stretching force induces apoptosis in human periodontal ligament cells via caspase-9 [J].Arch Oral Biol.2009,54(9):864-870.
    [9]Eeva J, Nuutinen U, Ropponen A, et al. The involvement of mitochondria and the caspase-9 activation pathway in rituximab-induced apoptosis in FL cells [J]. Apoptosis. 2009,14(5):687-698.
    [10]Aprigliano I, Dudas J, Ramadori G, et al. Atorvastatin induces apoptosis by a caspase-9-dependent pathway:an in vitro study on activated rat hepatic stellate cells [J].Liver Int.2008,28(4):546-557.
    [11]Yao H, Tang X, Shao X,et al. Parthenolide protects human lens epithelial cells from oxidative stress-induced apoptosis via inhibition of activation of caspase-3 and caspase-9 [J].Cell Res.2007,17(6):565-571.
    [12]Cai BZ, Meng FY, Zhu SL, et al. Arsenic trioxide induces the apoptosis in bone marrow mesenchymal stem cells by intracellular calcium signal and caspase-3 pathways [J].Toxicol Lett.2010,193(2):173-178.
    [13]Chien SY, Wu YC, Chung JG, et al. Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells [J].Hum Exp Toxicol.2009,28(8):493-503.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700