宽叶独行菜的耐逆性研究和遗传转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽叶独行菜广泛分布于我国华北与西北地区,在国外亦分布于美国西部,新英格兰海岸,墨西哥、加拿大、澳大利亚等地。这种原产于欧洲东南部的杂草在许多栖息地具有极强的竞争力,特别是在河岸湿地地区。宽叶独行菜在不同的生态环境下具有广泛的适应力。国外的对它的研究主要集中在它的高度耐涝性,而在国内的分布显示它对干旱、盐、低温与高温生境有很强的适应能力。因此研究它对逆境的广谱适应机制具有重要的科学意义。
     本文利用采自我国青海荒漠地区干旱盐渍生境的宽叶独行菜种子,进行了耐盐耐旱的基础生理研究,并为建立遗传转化体系而进行了组织培养研究。
     本实验进行了盐胁迫下种子的萌发情况测定。实验结果表明,随着盐浓度的增加,种子的萌发率及发芽势呈不断下降的趋势,萌发活力指数也受到抑制。在相同盐浓度情况下,宽叶独行菜的种子萌发率和萌发活力指数远高于拟南芥。宽叶独行菜种子萌发阶段可耐受盐浓度范围为0-200mmol/L,而拟南芥种子萌发可耐受的盐浓度范围为0-100 mmol/L。在较高浓度的NaCl胁迫后宽叶独行菜仍然保持较高的种子萌发率和萌发活性,而拟南芥种子却几乎不能萌发。
     实验研究了不同浓度NaCl胁迫下宽叶独行菜的生理响应。结果表明,随着盐浓度的升高,干扰了植物体内的离子平衡,趋势是叶片中的Na+含量不断上升,而K+含量则不断下降,K+/Na+值逐渐降低。在盐胁迫处理之后,宽叶独行菜的叶片相对含水量下降,蒸腾速率和光合速率下降,叶片中叶绿素含量降低,叶片变黄,根系生长受到抑制等。实验还通过与盐芥和拟南芥相对比,结果显示,在盐胁迫处理下,宽叶独行菜表现出良好的耐盐性,拟南芥对盐胁迫最敏感,耐盐性最差。
     本实验以宽叶独行菜的种子、子叶作外植体,以附加30.0g/L蔗糖和7.0g/L琼脂的MS培养基为基本培养基。实验目的是希望发现一个宽叶独行菜的组织培养的优化体系。不同组合的生长调节剂(6-BA、2,4-D、NAA、ZT、IAA )被用来进行愈伤组织和不定芽的诱导。
     结果表明,激素对子叶切块愈伤组织诱导的影响是很明显的。2,4-D对于愈伤组织不定芽的诱导是必不可少的。在不添加2,4-D的培养基中,外植体的愈伤组织诱导率很低,并且需要诱导很长的时间。在添加2,4-D的培养基中,外植体愈伤组织的诱导率几乎达到了100%,但2,4-D浓度过大会导致愈伤组织变成黄色,这样很不利于芽的诱导,适宜的2,4-D浓度为0.5 mg/L。诱导不定芽再生的激素以BA1mg/L+NAA 0.25mg/L为宜。此外,NAA对生根有明显的促进作用。
Lepidium latifolium L. is widely distributed in drought and saline soils of northern and northern-western China, it is also distributed in the western United States, coastal New England, Mexico, Canada and Australia, and in some contries it is treated as an invasive exotic weed. This weed is native to southeastern Europe and is extremely competitive in many habitats, especially in wetlands and riparian areas. Lepidium latifolium L. exhibits a wide range of ecological amplitude of adaptation to different environmental factors. Current researches about it are mainly focused on its flooding tolerance, and its habitats in China implies that it is vet adaptive to drought, salt, both low and high temperature. So, it may have important scientific significance to study is universal stress tolerance and the corresponding mechanism.
     In this paper, L. latifolia , which was collected from drought and salty soils of Qinghai desert area, is used as research materials, and foundmental physiological research on its salt and drought tolerance were carried out. In order to establish a transforming protocol, tissue culture and regeneration system is also optimized.
     This study was conducted to evaluate the effect of salinity on the germination. Based on the results of the experiment, germination tendency and germination percentage decreased with increased salt concentration, the germination vigour index was also inhibited. But in the same salt concentration, both germination rate and germination activity of Lepidium latifolium were much higher than that of Arabidopsis thaliana. L. latifolia can suffer salinity range of 0-200 mmol/L in germination period, and A. thaliana can only survive salinity range of 0-100 mmol/L. At higher concentrations of NaCl stress, L. latifolium remained high germination rate and germination activity, while almost no seed germination of Arabidopsis thaliana.
     The effects of different NaCl concentration on growth of seedling were investigated. The results showed that with the increasing salt concentration, the ionic balance in plants was disturbed.The trend is the Na+ content of leaves was increasing, while the K+ content of leaves was declining, K+/ Na+ was decreased.Under salt stress, the liquid water content of leaves was decreased, transpiration rate and photosynthetic rate were decreased, the chlorophyll content of leaves was also decreased and the leaves were yellowing. Compared with Thellungiella halophila and Arabidopsis thaliana. Lepidium latifolium showed high salt tolerance in the experiment.
     In this experiment, in vitro plantlet regeneration of Lepidium latifolium L.was investigated by using seeds and cotyledons as explants and MS medium supplemented with 30.0g / L sucrose and 7.0g / L agar as basal medium. The aim of this study was to develop an efficient tissue culture system for this species. The composition of plant growth regulators(6-BA, 2,4-D,NAA , ZT, IAA)was used for the callus induction and the shoot induction.
     The results show that the impact of hormone on callus induction from cotyledon is obvious. Inducing callus formation with 2,4-D was an absolute requirement for shoot regeneration to occur.Without added 2,4-D in the medium, explant callus induction rate is very low, and needed a very long time to induct. Adding 2,4-D in the medium, the explant callus induction rate was almost 100%, but the excessive concentration of 2,4-D leaded the callus became yellow, so it is not conducive to shoot induction, the suitable 2,4-D concentration was 0.5 mg/L. The best rate of shoot induction was BA1mg / L + NAA 0.25mg / L . In addition, NAA was significant for the root induction.
引文
[1] Hasegawa PM ,Bressan RA,Handa AK. Growth characteristics of NaCl-selected and nonselected cells of Nicotiana tabacum L. [J]. Plant and cell physiology ,1980,21(8):1347-1355.
    [2] CM Grieve, LE Francois, EV Maas. Salinity affects the timing of phasic development in spring wheat [J]. Crop Science, 1994,34:1544-1549.
    [3] R Munns, PA Gardner, ML Tonnet and HM Rawson. Growth and Development in NaCl-Treated Plants. II. Do Na+ or Cl- Concentrations in Dividing or Expanding Tissues Determine Growth in Barley [J].Australian Journal of Plant Physiology. 1988,15(4) :529-540.
    [4] Munns R. A Termaat. Whole plant responses to salinity [J]. Plant Physiol,1986,13:143-160.
    [5] K.M.Volkmar,Y.Hu,H. Steppuhn.Physiological responses of plants to salinity:A reivew [J].Can J Plant Sci,1998,78:19-27.
    [6] Saiz JF,Leidi EO. Is salinity tolerance related to Na accumulation in Upland cotton seedlings? [J].Plant and Soil,1997,190:67-75.
    [7] Tester M ,Davenport R. Na+ tolerance and Na+ transport in higher plants [J].Ann Bot, 2003, 91, 5: 503-507.
    [8] Shono M, Wada M, Hara Y, et al. Molecular cloning of Na+-ATPase cDNA from a marine alga, Heterosigma akashiwo[J].Biochim Biophys Acta, 2001, 1511: 193-199.
    [9] Clark R. Water: The International Crisis [M]. London: Earthscan Publications LTD,1997,3-40.
    [10] Shouh, Bordallop, Fan J B, Yeakley J M, Bibikova M, Sheen J, Wang K. Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize [J]. Proc. Natl. Sci, USA, 2004, 101(3):298-303.
    [11] Qiu Q S, Gum Y, Dieirich M A, Schumaker K S, Zhu J K. Regulation of SOS1,a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana,by SOS2 and SOS3 [J]. Proc. Natl. Sci, USA, 2002, 99(8):436-441.
    [12] Thiery L, Leprince A S, Lefebvre D, Ghars M A, Debarbieux E, Savoure A. Phospholipase D is a negative regu1ator of proline biosynthesis in Arabidopsis thaliana [J]. J. Bio1. Chem, 2004,279 (14):812-818.
    [13] Shinozaki K, Yamaguchi Shinozaki K. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signalling pathways [J]. Curr. Opin. PlantBio1, 2000,3:217-223.
    [14] Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response [J]. Trends Plant Sci,2004, 9:244-252.
    [15] Sung D Y, Guy C L. Physiological and molecular assessment of altered expression of Hsc 70-1 in Arabidopsis. Evidence for pleiotropic consequences [J]. Plant Physio1,2003,132:979-987.
    [16] Chandra B R, Zhan G J, Blum A, Hod T H D, Wue R, Nguyen H T. HVAl,a LEA gene from barley confers dehydration tolerance in transgenic rice (oryza sativa L ) via cell membrane protection [J]. Plant Sci.2004, 166:855-862.
    [17] Bohnert H J, Sheveleva E. Plant stress adaptations making metabolism move [J].Curr .Opin .Plant. Bio1,1998,1:267-274.
    [18] Tyerman S D, Bohnert H J, Maurel C, Steudle E, Smith j A C. Plant aquaporins: their molecular biology, biophysics and significance for plant water relations [J]. J. Exp. Bot.,1999, 50:1055-1071.
    [19] Blumwald E. Sodium transport and salt tolerance in plants [J]. Curr .Opin .Plant. Bio1,2000,12:431-434.
    [20] Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinoz Aki K. Molecular responses to drought, salinity and frost: common and different paths for plant protection [J] . Curr .Opin .Biotechnol,2003,14:194-199.
    [21] Adams P., Nelson D.E., Bohnert H.J. et al. Growth and development of Mesembruanthemum crustallinum (Aizoaceae) [J].New Phytologist, 1998, 138: 171-190.
    [22] Jian-Kang Zhu. Plant salt tolerance [J].Trends in Plant Science, 2001, 6: 66-71.
    [23] Jian-Kang Zhu, Salt and drought stress signal transduction in plants [J].Annu Rev Plant Bio, 2002,53: 247-273.
    [24] Maris P. Apse, Eduardo Blumwald et al. Salt Tolerance conderred by Overexpression of a Vacuolar Na+/H+ antiporter in Arabidopsis [J].Science, 1999, 285: 1256-1258.
    [25]宋婷,盐芥激活标记突变体库的构建[D] .山东师范大学,2005,5-7.
    [26] Volkov V.,Wang B.Dominy P.J.et al.Thellungiella halophila,a salt tolerant relative of Arabidopsis thaliana,possesses effective mechanisms to discriminate between potassium and sodium[J].Plant,Cell and Envimument,2003,27:1-13.
    [27] Bressan R.A., Zhang C.Q.,Zhang H.et al.Learning from the Arabidopsis experience.The next genesearch paradigm[J].Plant Physiol,2002,127:1354-1360.
    [28] Taji T.,Seki M.,Satou T.et al.Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray [J].Plant Physiol,2004,135: 1697-1709.
    [29] Inan G., Zhang Q., Li PH.et al.Salt Cress.A Halophyte and Cryophyte Arabidopsis Relative Mod el System and Its Applicability to Molecular Genetic Analyses of Growth and Development of Extremophiles [J].Plant Physiol,2004,135:1-20.
    [30] Jian-Kang Zhu. Plant salt tolerance [J]. Trends in Plant Science, 2001, 6: 66-71.
    [31] Herrera Estrella L,Van den Broeck G,Maenhant R,et a1.Light-inducible and chloroplast-associated expression of a chimaeric gene introduced into Nicotiana tabacum using a Ti plasmid vector [J]. Nature,1984,310:115-120.
    [32] Uchimiya H, Fushimi T, Hashimoto H, Harada H,Syono K and Sugawara Y. Expression of a foreign gene in callus derived from DNA-treated protoplasts of rice [J].Molecular General Genetics,1986,204:204-207.
    [33] Varsha LR, Dubey RK, Srivastava AK, Kumar S. Microprojectile mediated plant transformation :A bibliographic search [J].Euphytica.1997,95:269-294.
    [34] Potrykus I. Gene transfer to plants: Assessment of published approaches and results. Annu.Rev.Plant Physiol [J].Plant Molecular Biology,1991,42:205-225.
    [35] Pena DLA, J. Transgenic rye plants obtained by injecting DNA into youg floral tillers [J]. Nature,1987,325:274-276.
    [36] Vasil V, Castillo A M, Fromm ME, et al.Herbicide resistant fertile transgenic wheat plants obtained by micro-projectile bombardment of regenerable embryogenic callus [J].Bio/Tech,1992,10:667-674.
    [37]许新萍,卫剑文,范云六,等.用基因枪法转化籼稻胚性组织获得可育的转基因植株[J].植物学报,1999,26(3):219-227.
    [38]王国英,杜夭兵,张宏,等.用基因枪法将Bt毒蛋白基因转入玉米及转基因植物再生[J].中国科学,1995,25(1):71-76.
    [39] McCabe D E,Swain W F, Martinell B J, et al. Starle transformation of soybean by particle acceleration [J].Bio/Technology,1988,(6):923-926.
    [40] Finer JJ,Vain P, Jones M W, et al. Development of the particle inflow gun for DNA delivery to plant cells [J].Plant Cell Rep,1992,(11):323-328.
    [41] Merton L, Wullenms G L,Molendijk L, et al, In vitro transformation of cultured cells from Nicotians tobacum by Agrobacterium tumedfaciens [J].Nature,1979,277:129-131.
    [42] Zambryski P ,Joos H, Genetello C, et al. Ti plasmid vector for the introductiong of DNA into plant cells without alteration of their normal regeneration capacity [J].The EMBO J,1983,(2):2143-2150.
    [43] Horsch R B,Fry J E, Hofiman N L, et al. A simple and general method for transferring genes ioto plants [J].Science,1985,227:1229-1231.
    [44] Hiei Y, Komari T, Kabo T. Transformation of rice mediated by Agrobacterium tumdfaciens [J].Plant Mol Biol,1997,35:205-218.
    [45] Ishida Y,Saito H, Ohta S.High efficiency transformation of maize mediated by Agrobacterium tumefaciens [J].Nat Biotech,1996,14:745-750.
    [46] Tingay S,Mc Elroy D, Kalla R.Agrobacterium tumefaciens mediated barely transformation [J].Plant J,1997,11:1369-1376.
    [47]徐振彪,许晓明,刘进元.高等植物基因转化研究进展[J].农业生物技术学报,2000,8(3):29-32.
    [48]王志华,夏英武.水稻农杆菌介导转化关键因子研究进展[J].生物技术,1998,8(3):5-8.
    [49] M.K.Razdan, Introduction to Plant Tissue Culture [M]. Enfield Science Publishers,2003, 2: 375pp.
    [50] M.K.Razdan and Bhojwani,S.S. Plant Tissue Culture:Theor and Practice [M].Enfield Science Publishers, 1983, 502 pp.
    [51] Smith,R.H. Plant Tissue Culture: Technique and Experiments [M]. Academic Press,2000,231pp.
    [52] Vasil,I.K. and Thorpe,T.A.(Eds). Plant Cell and Tissue Culture [M].Kluwer,Dordrecht,1994,362pp.
    [53] Street,H.E.,McGonagle,M.P.and McGregor,S.M. Observations on the“staling”of white medium by excised tomato roots.II.Iron availability[J].Physiol.Plant,1952,5:243-276.
    [54] Skoog,F. and Miller,C.O.Chemical tegulation of growth and organ formation in plant tissues [J].Plant Growth Substances.Univ.Wisconsin Press,Madison,Wisconsin,1957,pp.263-285.
    [55] Trigiano,R.N. and D.J.Gray.Plant Tissue Culture Concepts and Laboratory Exercises (Second Edition) [J].CRC Press, Boca Raton,2000,454pp.
    [56]高国训.植物组织培养中的褐变问题[J].植物生理学通讯,1999,35(6):501-506.
    [57]李浚明.植物组织培养教程[M].北京:中国农业大学出版社,2002:65-67.
    [58] Fernando SC.Gantage CKA.Abseisie Acid Induced Somatic Embryogenesis in Immature Embryo Exphnts of Co conut(Cocos nucifera L.) [J].Plant Sci,2000,15 (l):193-198.
    [59] Liu GS,Liu JS,Qi DM,Chu CC et a1.Factors Affecting Plant Regeneration from Tissue Cultures of Chinese Leymus(Leymus chinensis) [J].Plant Cell Tiss Org,2004,76:175-178.
    [60] Ramage C., Williams R. R. Mineral lqutrition and Plant Morphogenesis. [J]. In VitroCell.Dev.Biol.Plant, 2002,38:116-124.
    [61] Wu Z Y, Raven P H eds. Flora of China [M] . 2001,8: 28-33.
    [62]张博.悄然兴起的三种叶类蔬菜[J].北京农业科学,2000,18(2): 34-35.
    [63] Durrett T, Benning C and Ohlrogge JB. Plant triacylglycerols as feedstocks for the production of biofuels [J].Plant J ,2008,54:593-607.
    [64] Dyer JM, Stymne S, Green AG, Carlsson AS. High-value oils from plants [J].Plant J. 2008,54: 640-655.
    [65] Zhu J K. Plant salt tolerance [J].Trends Plant Sci,2001,6:66-71.
    [66] Dennis Eriksson. Towards the Domestication of Lepidium campestre as an Undersown Oilseed Crop.[D], Doctoral Thesis of Swedish University of Agricultural Sciences, 2009 , ISBN 978-91-576-7412-8.
    [67] Nath UK, Wilmer JA, Wallington EJ, Becker HC, M?llers C. Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT+Bn-fae1 transgenes in rapeseed (Brassica napus L.) [J].Theor Appl Genet,2009, 118: 765-773.
    [68] Dennis Eriksson and Arnulf Merker. An efficient shoot regeneration protocol for Lepidium campestre (L.) R. Br. [J]. Propagation of Ornamental Plants2009,9(2):78-83.
    [69] Young, J.A., Turner, C.E., James, L.F. Perennial pepperweed [J]. Rangelands , 1995,17, 121-123.
    [70] Rollins, R.C. The Cruciferae of Continental North America [J]. Stanford University Stanford,1993.
    [71] Kloot, P.M. Perennial peppercress, a warning [J]. Agric.South Australia , 1973,76:72-73.
    [72] Bradford, K.J. Effects of soil flooding on leaf gas exchange of tomato plants [J]. Plant Physiol, 1983,73:475-479.
    [73] Vu, J.C.V., Yelenosky, G. Photosynthetic responses of citrus trees to soil flooding[J].Physiol. Plant , 1991,81: 7-14.
    [74] Rollins, R.C. The Cruciferae of Continental North America [J].Stanford University, Stanford, CA,1993.
    [75] Vartapetian, B.B., Jackson, M.B. Plant adaptations to anaerobic stress [J]. Ann. Bot. 79 (Supplement A), 1997:3-20.
    [76] Drew, M.C., Jackson, M.B., Giffard, S. Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding in Zea mays [J]. Planta,1979,147: 83-88.
    [77] Vartapetian, B.B., Jackson, M.B. Plant adaptations to anaerobic stress [J].Ann. Bot. 79 (Supplement A),1997, 3-20.
    [78] Armstrong, W. Aeration in higher plants [J].Adv. Bot. Res, 1979,7:225-331.
    [79] Deepshikha Pande,Sapna Malik,Madhumati Bora.A rapid protocol for in vitro micropropagation of lepidium sativum linn. And enhancement in the yield of lepidine [J]. Societ for in Vitro Biology,2002,38:451-455.
    [80] Lidia Osuna.Micropropagation of Lepidium Virginicum,A plant with antiprotozoal activity[J]. Societ for in Vitro Biology,2006,42:596-600.
    [81] Murashige, T., Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures [J]. Physiol Plant, 1962, 15:473-497.
    [82]阎志红,刘文革,石宝玉,等.NaCl胁迫对不同染色体倍性西瓜种子发芽特性的影响[J].中国农学通报,2005,21(1):204-207.
    [83]西北农业大学植物生理生化教研组.植物生理学实验指导[M].西安:陕西科技出版社,1986,47-48.
    [84]波钦诺克.植物生物化学分析方法[M].北京:科学出版社,1981.
    [85]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,134-137.
    [86] A li H, Tucher T C, Thompson T L , et al. Effects of salinity and mixed ammonium and nitrate nutrition on the growth and nitrogen utilization of Barley [J].Agron Crop Sci, 2001, 186: 223 -228.
    [87] Parida A K, DasA B. Salt tolerance and salinity effects on plants:a review [J].Eco toxicology and Environmental Safety, 2005, 60:324- 349.
    [88]李海云,赵可夫,王秀峰.盐对盐生植物种子萌发的抑制[J].山东农业大学(自然科学版) , 2002, 33 (2) : 170- 173.
    [89]宋丹,张华新,耿来林,等.植物耐盐种质资源评价及耐盐生理研究进展[J].世界林业研究, 2006, 19 (3) : 27- 32.
    [90] Farquhar GD,Sharkey TD.Stomatal conductance and photosynthesis[J].Annual Review of Plant Physiology and Plant Molecular Biology,1982,33:317-345.
    [91] Godfrey W N, John C O, Erwin B. Sorghum and Salinity: I. Response of Growth, Water Relations, and Ion Accumulation to NaCl Salinity [J], Crop Sci, 2004,44:797-805.
    [92] Niu X,Bressan R A,Hasegawa P M,et a1.Ion homeostasis in NaC1 stress environments[J].Plant Physiology,1995,109:735-742.
    [93] Serrano R,Culiafaz Macid A,Moreno V.Genetic engineering of salt and drought tolerance with yeast regulatory genes [J].Scientia Horticulturae,1999,78:261-269.
    [94]王宝山,邹琦,赵可夫.盐胁迫对高梁不同器官的离子分布的影响[J].作物学报,2000,26(6):845-850.
    [95] Pitman M G.Transport across the root and shoot/root interaction[A].In:Staples R C,Toennissen G H.Salinity Tolerance in Plant Strategies for Crop Improvement[M].New York:John Wiley,1984,93-123.
    [96] Durrett T, Benning C and Ohlrogge JB. Plant triacylglycerols as feedstocks for the production of biofuels [J].Plant J ,2008,54:593-607.
    [97] Gairi A., Rashid A. TDZ-induced somatic embryogenesis in non-responsive caryopses of rice using a short treatment with 2,4-D[J].Plant Cell, Tissue and Organ Culture,2003, 76: 29-33.
    [98] Lee E. K., Cho D. Y., Soh W. Y. Enhanced production and germination of somatic embryos by temporary desiccation in tissue cultures of Daucus carota [J]. Plant Cell Reports, 2001,20: 408-415.
    [99] Isa S., Koyro H. W., Kogel K. H., Imani J.Induction of somatic embryogenesis in cultured cells of Chenopodium quinoa [J].Plant Cell, Tissue and Organ Culture, 2005,81: 243-246.
    [100] Chakrabarty R., Viswakarma N., Bhat S. R., Kirti P. B., Singh B. D., Chopra V.Agrobacterium mediated transformation of cauliflower:Optimization of protocol and development of Bt-transgenic cauliflower[J].Journal of Biosciences,2002,27(5): 495-502.
    [101] Skoog, F. and C. Mille. Chemical regulation of growth and organ formation in plant tissues cultured in Vitro [J].Symp.SocExp.Biol,1957, 11: 118-130.
    [102]何道一等.植物组织培养材料分化与脱分化过程中的生理生化变化[J].山东农业大学学报,1992,23(3):3 27-331.
    [103] Loescher Whet al. physiologia Plantanum [J],1979,4 (7):250.
    [104] Pitman M G. Transport across the root and shoot/root interactiong [A]. New York:John Wiley,1984,93-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700