铬修饰电极的研制及李氏禾根尖Cr~(3+)和H~+离子流的表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学修饰电极是当前电化学、电分析化学方面十分活跃的研究领域,其通过对电极表面的分子剪裁,可按意图给电极预定的功能,以便在电极上有选择地进行所期望的反应,在分子水平上实现了电极功能的设计。
     目前伏安法测定铬注重对反应体系改进而很少在电极修饰上进行突破,本文制作了银汞合金电极,并在其表面通过自组装修饰上DTPA。利用Cr(III)-DTPA-NO_3~-体系的催化作用测定溶液中的Cr(VI)和无机态Cr(III)。该法无需对样品进行前处理,通过改变扫描前富集方式,分别实现Cr(VI)和无机态Cr(III)的测定,测定的线性范围分别为:5.0×10~(-9)~5.0×10~(-6) mol/L和1.0×10~(-8)~5.0×10~(-6) mol/L,检测限为1.6×10~(-10) mol/L和5.1×10~(-9) mol/L。该法用于实际水样测定,Cr(VI)和Cr(III)的标准加入回收率为98.5%~105.0%。
     伏安分析法测定铬需要在一定催化体系或富集时间下才能完成,这样很难保证对被测样品在完整和接近实际生理状态环境下进行实时、连续地测定。然而,电位型离子选择性电极却可以实现,但目前使用的电位型离子选择性电极大部分是PVC膜电极,受制作工艺限制,电极难以微型化。本文报道了以碳为基体电极(Ф200μm)的全固型Cr(III)离子选择性修饰微电极的制作方法,该电极无需内参比和内参比液,比PVC膜电极更易于制作和微型化。该修饰电极在Cr(III)浓度1.0×10~(-6)~1.0×10~(-4) mol/L范围内呈线性关系,能斯特响应工作曲线的斜率为32.5±0.4 mV,检测限为3.6×10~(-7) mol/L,响应时间为1.2 s,电极的重现性好,稳定性好,可在2个月内使用。利用该电极,成功地对工业废水中的Cr(III)进行测定,取得了令人满意的结果。
     生物的生长和适应环境的能力受制于它们对营养物质摄取和代谢废物排放过程的控制能力,植物细胞表面离子流是这种过程的一种具体体现。本文制作了铂微电极(Ф20μm),通过自组装修饰上DTPA,制备了一种测定Cr(III)的全固型化学修饰选择性微电极,用该电极对铬超积累植物李氏禾根尖的Cr(III)离子流进行微区、在线和连续监测。发现位于根的尖端1.0~1.5 mm处Cr(III)离子浓度较小;对李氏禾根尖表面的Cr(III)电位响应与时间和垂直距离的关系进行测定,发现在根尖表面出现Cr(III)的电位响应从平稳到上升后又略有下降再到平稳的现象;白天根尖端1.2 mm处Cr(III)离子浓度较之夜间要低,而且出现了较大波动性。
     具有螯合能力的有机酸在超富集植物对外部金属离子排斥(避性)过程中具有重要作用。本文采用电化学沉积法将铱氧化膜修饰在铱丝上,制备了氧化铱膜修饰微电极(Ф20μm),利用该电极在保持李氏禾样品完整和接近实际生理状态环境下灵敏、直观地测定了铬逆境下李氏禾根尖的有机酸的微量变化。实时、连续地获得李氏禾在逆境胁迫后释放有机酸的生理指标。
The emergence of chemically modified electrode prompted the development of electrochemistry, which has become an important research direction in the field of modern electroanalytical chemistry. The aim of chemically modified electrodes is to carry out the molecular design on the electrode surface. In other words, some molecule, ion and polymer with excellent properties are immobilized on electrode surface and the electrode with specially chemical and physical properties is obtained.
     At present voltammetry determination of chromium focus on improving the reaction system and pay no attention to electrode modification. Solid silver-amalgam electrode modified with Diethylenetriaminepentaacetic acid (DTPA) has been fabricated to detect chromium species utilizing the electrode surface DTPA pre-extraction and the catalytic system Cr(III)-DTPA-NO_3~-. By use of this method, the samples need no pretreatment and just change the way of pre-concentration, the Cr(VI) and inorganic Cr(III) has been detected respectively. The peak current linear with the Cr(VI) and inorganic Cr(III) concentrations were, respectively, 5×10~(-9)~5×10~(-6) mol/L and 1×10~(-8)~5×10~(-6) mol/L. The detection limit and the recovery of Cr(VI) and inorganic Cr(III) were, respectively, 1.6×10~(-10) mol/L and 5.1×10~(-9) mol/L. The results suggested that this modified electrode was effective for the determination of trace amount of Cr(VI) and inorganic Cr(III).
     Voltammetry determination of chromium must needs a certain catalyst system or a periode preconcentration time, so this method quite difficulty to real-time and continuous determination of chromium which keeping the sample integrated and approaching to practical situation. Potentiometric method provided a convenient, fast and‘on-line’analytical method. However, these electrodes suffer from the disadvantages of difficulty in fabrication, especially in miniaturization and microfabrication. One of the important aspects of using modified wire ion-selective microelectrodes is that it not only needs a very small volume of sample, but also has other advantages such as the elimination of the inner reference solution, the decrease in the time, lower cost, mechanical flexibility (i.e., the electrode can be used at any angle), and the possibility of miniaturization and microfabrication, even making intercellular or other in vivo electrochemical measurements possible. A new microelectrode for micro-amount chromium(III) determination was prepared. For this purpose, fuchsin basic was electro polymerized onto a carbon micro disc electrode (Ф200μm), diethylenetriamminepentaacetic acid (DTPA) was then self-assembled on the electrode surface by the reaction between DTPA and poly(fuchsin basic). The electrode gave a linear response in Cr~(3+) ions concentration range of 1.0×10~(-6)~1.0×10~(-4) mol/L and has the Nernstian slope of 32.5±0.4 mV per decade. The detection limit is 3.6×10~(-7) mol/L. The response time of the electrode is less than 1.2 s, and it can be used for at least 2 months with limited considerable divergences in its potentials. The proposed electrode was applied for monitoring the chromium ion level in wastewater of chromate industries.
     Growth and adaptation ability of biology were enslaved to their nutrient uptake and emission. Membrane-transport processes was the key link of the nutrient uptake and emission processes, ion flux of the cell surface was the nutrient uptake and emission processes concrete reflection. A new all solid-state selective microelectrode for chromium(III) fluxes determination was prepared. For this purpose, fuchsin basic was electro polymerized onto a Pt micro disc electrode (Ф20μm), diethylenetriamminepentaacetic acid (DTPA) was then self-assembled on the electrode surface by the reaction between DTPA and poly(fuchsin basic). Chromium(III) fluxes along the roots of hyper-accumulator plants Leersia hexandra Swartz has been investigated. In the root zones 1.0 to 1.5 mm behind tips the chromium(III) ion influx obviously. At 1.2 mm behind tips, the concentration of the chromium(III) in daytime lower and more oscillatory then at night.
     The resistance of plants to metals includes avoidance and tolerance, while the organic acids with chelating ability in plants play an important role in the detoxification of metals both externally and internally. Iridium metal wire modified iridium oxide has been developed for detection of the organic acid. The dimensions and response time allowed that use this electrode (Ф20μm) in the measuring H+ fluxes along Leersia hexandra Swartz roots. H+ fluxes showed marked spatial and exhibited an oscillatory pattern. In the external metal detoxification, Leersia hexandra Swartz roots excrete organic acids into rhizosphere, and the metal pollutants are detained outside the roots by the formation of metal-organic acid complex, and their toxicity is reduced.
引文
[1]朱民,施国跃,刘敏,等. ED/Au/I-复合物修饰电极在细胞色素C测定中的应用.华东师范大学学报(自然科学版), 2003, 1: 68~73
    [2]王宝兴,董绍俊.同多酸和杂多酸修饰微电极的电化学研究VII.磷钒铝杂多酸薄膜修饰微电极和杂多酸/聚苯胺薄膜修饰微电极的制备和电化学性质.分析化学, 1996, 24(4): 382~385
    [3]王宝兴,董绍俊.同多酸和杂多酸修饰微电极的电化学研究IV. 1:2-磷钼杂多酸薄膜修饰碳纤维微电极的制备和电化性质.分析化学, 1992, 20(9): 1069~1073
    [4]毛燕宁,胡劲波,李启隆,等.吡柔比星在钴离子注入修饰微电极上电化学行为及其应用.高等学校化学学报, 2001, 22(8): 1310~1314
    [5]庄乾坤,钱胜春,陈洪渊,等.微电极研究XII Nafion修饰微电极伏安特性研究及其在痕量测定中的应用.化学传感器, 1993, 13(3): 24~27
    [6]田敏,吴晓丹,董绍俊.硅钨杂多酸修饰微电极的研究.分析化学, 1996, 24(8): 902~905
    [7]刘灵芳,王翠红,张娟,等.聚甘氨酸修饰碳纤维微电极差示脉冲伏安法测定尿酸.天津师范大学学报(自然科学版), 2001, 21(4): 28~33
    [8]万其进,张学记,张春光,等.聚苯胺修饰碳纤维超微pH传感器研究及其在植物柱头活体测试中的应用.高等学校化学学报, 1997, 18(2): 226~228
    [9]郝必正,任乃林,拓宏桂,等.铁氰酸钴膜修饰微电极的研究及其应用.延安大学学报(自然科学版), 1994, 13(4): 33~36
    [10]王宝兴,胡刚,董绍俊,等.非化学计量的混合价态氧化钼(VI, V)修饰微电极的电化学制备.化学学报, 1996, 54: 598~604
    [11]鲜跃仲,应向阳,金利通,等. Nafion?聚[N', N''- (1, 3-丙二亚甲基)双(1, 2?苯二氨基) -N, N', N'', N''' ]合镍修饰微电极用于测定一氧化氮的研究.高等学校化学学报, 1998, 19(6): 866~870
    [12]鲜跃仲,徐继明,陆嘉星,等. PVP/Pd/IrO2/Nation修饰微电极用于成纤维细胞中一氧化氮释放的研究.化学学报, 2002, 60(8): 1459~1464
    [13]胡深,李培标,程介克.儿茶酚胺类神经递质的修饰微电极伏安法研究.分析试验室, 1996, 15(4): 1~3
    [14]康彩艳,张春光,周性尧,等.聚苯胺修饰微电极对抗坏血酸的电催化氧化.武汉大学学报(自然科学版), 1995, 41(4): 429~433
    [15]万其进,张学记,张春光.过氧化聚吡咯膜修饰微电极的制备及其电化学特性.分析化学, 1997, 25(9): 1031~1033
    [16]鲜跃仲,朱民,张文,等.铜铂微粒修饰微电极测定一氧化氮.分析化学, 1999, 27(10): 1168~1171
    [17]方成,李建平,顾海宁.铜离子选择性微电极及用于银杏根尖离子流的时空监测.分析化学, 2006, 34(5): 691~694
    [18]黄若双,胡融刚,杜荣归,等. IrO2-pH微电极的研制及钢筋/混凝土界面pH的测量.腐蚀科学与防护技术, 2002, 15(5): 305~308
    [19]陆华,李勇,施国跃. W/WO3/Nafion新型pH修饰电极的研究及其应用.传感器技术, 2003, 22(7): 15~18
    [20]王朝瑾,李云峰,应太林.针型钨丝pH传感器的研究及在番茄测试中的应用.化学传感器, 2000, 20(3): 37~40
    [21]刘焕来,叶淑琴.用于活体组织实时监测的针形pH传感器.化学传感器, 2002, 22(3): 58~61
    [22]李建平,杨志宇,唐飞.纳米六氰合铁酸铜化学修饰丝网印刷电极对H2O2电催化性能的研究.分析化学, 2006, (8): 1141~1144
    [23]徐肖邢,吴秋君.抗坏血酸在普鲁士蓝修饰的丝网印刷电极上的电催化氧化.分析试验室, 2004, 23(9): 62~64
    [24]陈荣生,肖华,黄卫华,等.单壁碳纳米管修饰的高灵敏纳米碳纤维电极.高等学校化学学报. 2003, 5(24): 808~810
    [25]杨丽菊,彭图治.蒙脱土修饰碳纤维电极的制备及其应用于活体测定脑神经递质,高等学校化学学报. 2001, 2(22): 197~200
    [26]董绍俊,车广礼,谢远武.化学修饰电极[M].北京:科学出版社, 2003
    [27] Deinhammer R S, Ho M, Anderegg J W, et al. Electrochemical Oxidation of Amino- Containing Compounds: A Route to the Surface Modification. Langmuir, 1994, 10(4), 1306~1313
    [28] Lindholm B. Ac-impedance studies of charge transport and redox capacities at poly-4-vinylpyridine films on electrode surfaces. J. Electroanal. Chem., 1990, 289: 85~101
    [29] Lang G, Inzelt G. Some problems connected with impedance analysis of polymer film electrodes: effect of the film thickness and the thickness distribution. Electrochim Acta., 1991, 36: 847~854
    [30] Nilgun O, Raistrick I D. Electrochemical properties of sol-gel deposited vanadium pentoxide films. J. Electrochem. Soc., 1980, 127:343~350
    [31] Lindholm B, Sharp M, Armstrong R.D. AC-impedance studies of carbon electrodes coated with poly-4-vinylpyridine films containing the Fe (CN) 63-/4- redox couple. J. Electroanal. Chem. 1987, 235, 169~177
    [32] Sharp M, Lindholm B, Linel E L, Aspects of charge propagation through Nafion /Os (bipy) 32+/3+films on glassy carbon electrodes. J. Electroanal. Chem., 1989, 274:35~60
    [33] Larsson H, Lindholm B, Sharp M. Electron transport in quarterrized poly (4-vinylpyridine) films containing penlacyaaroferrate (II/III) on electrodes the influence of the binding type of the electroactive complex. J. Electroanal. Chem., 1992, 336:263~279
    [34]崔晓丽,蒋殿录,刁鹏,等.硫醇自组装膜的电化学表观有效厚度.电化学, 1999, 5(3): 267~271
    [35]李艳廷,李方.环境中无机铬形态分析研究进展.化学研究与应用, 2000, 12(5): 476~481
    [36]梁奇峰.铬与人体健康.广东微量元素科学, 2006, 13(2): 67~69
    [37] Shanke A K, Cervantes C, Herminia L T, et al. Chromium toxicity in plants. Environment International, 2005, 31: 739~753
    [38]史黎薇,井海宁,任改英,等.不同糖类介质中铬(V)化合物对DNA损伤的影响.中国自然医学杂志, 2005, 7(3): 32~34
    [39] Zayed A M, Terry N. Chromium in the environment: factors affecting biological remediation. Plant and Soil, 2003, 249: 139~156
    [40] Rai V, Vajpayee P, Singh S N, et al. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defence system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Science, 2004, 167: 1159~1169
    [41]岳军,黄碧霞.微量元素铬与健康.明胶科学与技术, 2005, 25(1): 1~3
    [42]石磊,赵由才,牛冬杰.铬渣的无害化处理和综合利用.再生资源研究, 2004, 6: 34~38
    [43] Esteban M, Ari?o C, etal. Expert system for the voltammetric determination of trace metals: Part IV. Methods for speciation of chromium and arsenic. Anal. Chim. Acta, 1994, 285(1-2): 193~208
    [44]李建文,黄坚.铬的形态分析研究与展望.冶金分析, 2006, 26(5): 38~43
    [45]贺冬秀,李贵荣,陈朝猛.微量元素铬的分析方法研究进展.广东微量元素科学, 2002, 9(8): 10~17
    [46] Goez V, Callao M P. Chromium determination and speciation since 2000. Trends Anal. Chem., 2006, 25(10): 1006~1015
    [47] Turyan I, Mandler D. Selective Determination of Cr(VI) by a Self-Assembled Monolayer- Based Electrode. Anal. Chem., 1997, 69(5): 894~897
    [48]孙微,王磊,李一峻.电化学分析方法在元素形态分析中的应用.分析化学, 2004, 32 (4): 541~545
    [49] Vukomanovic D V , vanloon GV ,Nakatsu K,Zontman D E. Determination of Chromium (VI) and (III) by Adsorptive Stripping Voltammetry with Pyrocatechol Violet. Microchem. J., 1997, 57(1): 86~95
    [50] Ghandour M A, ElShatoury S A, Ahmet S M. Selective voltammetric determination of chromium (VI) with DTPA and nitrate. Anal. Lett., 1996, 29 (8): 1431~1445
    [51] Somer G,ünalü. A new and direct method for the trace element determination in cauliflower by differential pulse polarography. Talanta, 2004, 62: 323~328
    [52]路纯明,程淑.示波极谱法测定糖尿病人头发中的铜、铅、镉、锌、铬的含量.河南工业大学学报(自然科学版), 2005, 26(5): 51~54
    [53]郑建斌,倪宏刚.三价铬和烟酸的示波行为及其应用.理化检验-化学分册, 2005, 41(7): 467~469, 472
    [54]孙国军,张寿松.微量Cr6+的示波极谱测定研究.上海环境科学, 1996, 15(5): 28~29
    [55]孟凡昌,李升宽,赵丕虹.极谱络合物吸附波、催化波[M] .武汉:武汉大学出版社, 2001
    [56]李文最,盛丽娜,李一丹.极谱法测定自来水中六价铬.中国公共卫生, 2000, 16(10): 80
    [57]王玉娥.示波极谱法测定水中的六价铬.现代预防医学, 2003, 30(5): 745
    [58]李艳霞,王金中,张建夫.铬VI-溴酸钾-甲基橙催化极谱法测定痕量铬VI.冶金分析, 2006, 26(1): 46~48
    [59]邓春林,但德忠.铬-邻菲啰啉-亚硝酸钠-溴化十六烷基三甲铵体系的极谱催化波.矿物岩石, 1999, 19(1): 94~98
    [60]储海虹,储长群,夏红.络合吸附伏安法同时测定多种重金属离子.分析试验室, 2004, 23(4): 58~59
    [61] Korolczuk M. Application of Pulsed Potential Accumulation for Minimization of Interferences from Surfactants in Voltammetric Determination of Traces of Cr(VI). Electroanalysis, 2000, 12(11): 837~840
    [62] Dominguez O, Sanllorente S, Alonso M A, et al. Application of an Optimization Procedure for the Determination of Chromium in Various Water Types by Catalytic-Adsorptive Stripping Voltammetry. Electroanalysis, 2001, 13(18): 1505~1510
    [63] Dominguez O, Sanllorente S,Alonso M A, et al. Application of an Optimization Procedure in Adsorptive Stripping Voltammetry for the Determination of Chromium with Ammonium Pyrrolidine Dithiocarbamate. Electroanalysis, 2002, 14(15-16): 1083~1089
    [64] Desimoni E, Genevini P, Tambone F, et al. Voltammetric Determination of Cr(VI) in Cr(VI)-and [Cr(VI)+Mn(IV)]-Spiked Reference Soil Samples as a Function of Incubation Time and Extraction Procedures. Electroanalysis, 2000, 12(5):337~342
    [65] Li Y, Xue H. Determination of Cr(III) and Cr(VI) species in natural waters by catalytic cathodic stripping voltammetry. Anal. Chim. Acta, 2001, 448:121~125
    [66] Mieczyslaw K. Determination of Cr(III) and Cr(VI) species in natural waters by catalytic cathodic stripping voltammetry. Anal. Chim., 2004, 14: 165~171
    [67] Palrecha M M, Mathur P K. Adsorptive stripping voltammetric determination of chromium in gallium. Talanta, 1997, 45: 433~436
    [68] Grabarczyk M. Catalytic adsorptive stripping voltammetric determination of Cr(VI) in EDTA extracts from solid samples. Electrochimica Acta, 2006, 51: 2333~2337
    [69] Ye B X, Liu Y, Du L H, et al. Adsorptive Catalytic stripping voltammetry for determination of trace Chromium. Jonrnal of Zheng Zhou University, 1997, 29(4): 62~69
    [70] Korolczuk M , Grabarczyk M. Chromium speciation study in polluted waters using catalytic adsorptive stripping voltammetry and tangential flow filtration. Chem Anal, 1998, 43(2): 257~264
    [71] Boussemart M, Constant M G. The determination of the chromium speciation in sea water using catalytic cathodic stripping voltammetry. Anal. Chim. Acta, 1992, 262: 103~115
    [72] Husakova L, Bobrowski A, Sramkova J, et al. Catalytic adsorptive stripping voltammetry versus electrothermal atomic absorption spectrometry in the determination of trace cobalt and chromium in human urine. Talanta, 2005, 66: 999~1004
    [73] Bobrowski A, Bas B , Dominik J, et al. Chromium speciation study in polluted waters using catalytic adsorptive stripping voltammetry and tangential flow filtration. Talanta, 2004, 63: 1003~1012
    [74] Safavi A, Maleki N, Shahbaazi H R, et al. Indirect determination of hexavalent chromium ion in complex matrices by adsorptive stripping voltammetry at a mercury electrode. Talanta, 2006, 68:1113~1119
    [75] Lin L, Lawrence N S, Wang J, etal. Catalytic adsorptive stripping determination of trace chromium (VI) at the bismuth film electrode. Talanta, 2005, 65: 144~148
    [76] Bas B. Refreshable mercury film silver based electrode for determination of chromium(VI) using catalytic adsorptive stripping voltammetry. Anal. Chim. Acta, 2006, 570: 195~201
    [77] Vukomanovic D V, vanLoon G W, Nakatsu K. Determination of Chromium (VI) and (III) by Adsorptive Stripping Voltammetry with Pyrocatechol Violet. Microchem. J., 1997, 57: 86~95
    [78] Gevorgyan A M, Vakhnenko S V, Artykov A T. Determination of Chromium in Natural Water by Stripping Voltammetry. J. Anal. Chem., 2004, 59(4): 371~373
    [79] Korolczuk M, Grabarczyk M. Application of Voltammetric Method of Total Chromium Determination in the Presence of Cupferron for Selective Determination of Cr(VI) in Water Samples. Microchem. J., 1999, 62: 311~315
    [80]杨洁,唐嗣霖.阴极溶出伏安法测定痕量铬.湘潭大学自然科学学报, 1986, 04:64~70
    [81]王世信,王银兰,林树平.环境水样中铬(Ⅵ)和总铬的伏安法测定的研究.福州大学学报(自然科学版), 1985, 03: 172~179
    [82]陶霞.水环境中无机污染物形态分析的溶出伏安法概述.内蒙古环境保护, 1998, 10(3): 25~27
    [83] Renedo O D, Lomillo M A A, Martinez M J A. Optimisation procedure for the inhibitive determination of chromium(III) using an amperometric tyrosinase biosensor. Anal. Chim. Acta, 2004, 521: 215~221
    [84] Welch C M, Nekrassova O, Compton R G. Reduction of hexavalent chromium at solid electrodes in acidic media: reaction mechanism and analytical applications. Talanta, 2005, 65: 74~80
    [85] Conroy K G, Breslin C. Reduction of hexavalent chromium at a polypyrrole-coated aluminium electrode: Synergistic interactions. J. App. Electrochem, 2004, 34: 191~195
    [86]杨培慧,赵秋香,朱洁晶,等.谷胱甘肽自组装膜修饰电极用于Cr(VI)离子的测定.暨南大学学报(自然科学版), 2004, 25(1): 97~101
    [87] Mahony A M, Scanlon M D, Berduque A. Voltammetry of chromium(VI) at the liquidliquid interface. Electrochem. Commun, 2005, 7: 976~982
    [88] Abbaspour A, Izadyar A. Chromium(III) ion-selective electrode based on 4-dimethyl- aminoazobenzene. Talanta, 2001, 53: 1009~1013
    [89] Sharma R K, Goel A. Determination of trace amount of bismuth(III) by adsorptive anodic stripping voltammetry at carbon paste electrode. Anal. Chim. Acta, 2005, 534: 137~142
    [90] Velikanova T V, Malkova M A. Chromium(III)-Selective Electrodes Based on Titanium Dichalcogenides Intercalated with Chromium. J. Anal. Chem., 2001, 56(7): 666~670
    [91] Khalil S, Wassel A A, Belal F F. Coated graphite-epoxy ion-selective electrode for the determination of chromium(III) in oxalic medium. Talanta, 2004, 63: 303~307
    [92] Sil A, Ijeri V S, Srivastava A K. Coated wire chromium(III) ion-selective electrode based on azamacrocycles. Anal. Bioanal. Chem., 2004, 378: 1666~1669
    [93] Gupta V K, Jain A K, Kumar P, et al. Chromium(III)-selective sensor based on tri-o- thymotide in PVC matrix. Sensors and Actuators B, 2006, 113: 182~186
    [94] Ganjali M R, Norouzi P, Faridbod F, et al. Highly selective and sensitive chromium(III) membrane sensors based on a new tridentate Schiff's base. Anal. Chim. Acta, 2006, 569: 35~41
    [95] Gholivand M B, Sharifpour F. Chromium(III) ion selective electrode based on glyoxal bis(2-hydroxyanil). Talanta, 2003, 60: 707~713
    [96] Singh L P, Bhatnagar J M, Tanaka S, et al. Selective anion recognition: Charged diaza crown ethers based electrochemical sensors for chromate ions. Anal. Chim. Acta, 2005, 546: 199~205
    [97] Zazoua A, Zougar S, Kherrat R, et al. Development of a hexavalent chromium ISFET sensor with a polymeric membrane including tributylphosphate. Mater. Sci. Eng. C, 2006, 26: 568~570
    [98] Jain A K, Gupta V K, Singh L P, et al. Anion recognition through novel C-thiophenecalix [4] resorcinarene: PVC based sensor for chromate ions. Talanta, 2005, 65: 716~721
    [99] Chapipion C. Stimulation electromyography in experimental toxicology. Anal. Chem., 1970, 42: 1210~1215
    [100] Markova I V. Coulometric Determination of Chromium(VI) and Copper(II) Present Simultaneously. J. Anal. Chem., 2001, 56(9): 859~863
    [101]刘玉峰,杜宝中,姚秉华,等.恒电流库仑法测定工业废水中Cr(VI)的方法研究.分析科学学报, 2005, 21(4): 411~413
    [102]曹莉敬,杜宝中,杨百勤.恒电流库仑法测定制革废水中铬(VI).中国皮革, 2002, 31(17): 3~5, 16
    [103]王焕英.库仑滴定法测定重铬酸钾试剂的纯度.无机盐工业, 2005, 37(9): 53~54
    [104]林新华,陈伟,黄丽英.微机控制-薄层流动计时库仑分析法测定电镀废水中的铬.福建医科大学学报, 2002, 36(1): 82~84
    [105] Stefan R I, Bairu S G, Staden J F. Diamond paste-based electrodes for determination of Cr(III) in pharmaceutical compounds. Anal. Bioanal. Chem., 2003, 376: 844~847
    [106] Ivaska A, Virtab M, Kahru A. Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil. Soil Biology & Biochemistry, 2002, 34: 1439~1447
    [107]齐菊锐,李陟,宋文波,等.四羟基蒽醌修饰活性炭碳糊电极流动注射安培法测定铬(Ⅵ).分析化学, 2004, 32(11): 1455~1458
    [108]朱俊英,高荣孚,许越.选择性微电极在植物生理学研究中的应用.植物生理与分子生物学学报, 2007, 33(2): 101~108
    [109] Pineros M A, Shaff J E, Kochian L V. Development, Characterization, and Application of a Cadmium-Selective Microelectrode for the Measurement of Cadmium Fluxes in Roots of Thlaspi Species and Wheat. Plant Physiol., 1998, 116: 1393~1401
    [110] Shabala S, Shabala L, Volkenburgh E V, Newman I. Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves. J. Exp. Bot., 2005, 56: 1369~1378
    [111] Shabalaa S, Cuina T A, Pottosinb I. Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Letters, 2007, 581: 1993~1999
    [112] Gilliham M, Sullivan W, Tester M, et al. Simultaneous flux and current measurement from singleplant protoplasts reveals a strong link between K+ fluxes and current, but no link between Ca2+ fluxes and current The Plant Journal, 2006, 46: 134~144
    [113] Hinke J A M. Glass microelectrode for measuring intracellular activities of sodium and potassium. Nature, 1959, 184: 1257~1258
    [114] Berman H J, Hebert N C. Ion-Selective Microelectrodes. New York and London: Plenum Press, 1974
    [115] Sykova E, Hnik P, Vyklicky L. Ion-selective Microelectrodes and Their Use in Excitable Tissues. New York and London: Plenum Press, 1981
    [116] Bowling D F T. Measurement of profiles of potassium activity and electrical potential in the intact root. Planta, 1972, 108: 147~151.
    [117] Walker D J, Smith S J, Miller A J. Simultaneous measurement of intracellular pH and K+ or NO3- in barley root cells using triple-barreled ion-selective microelectrodes. Plant Physiol., 1995, 108: 743~751
    [118] Carden D E, Diamond D, Miller A J. An improved Na+-selective microelectrode for intracellular measurements in plant cells. J. Exp. Bot., 2001, 52: 1353~1359
    [119] Smith P J S, Hammar K, Porterfield D M, et al. Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microsc. Res. Tech., 1999, 46: 398~417
    [120] Newman I A, Kochian L V, Grusak M A, Lucas W J. Fluxes of H+ and K+ in corn roots Characterization and stoichiometries using ion-selective microelectrodes. Plant Physiol., 1987, 84: 1177~1184
    [121] Shabala S. Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant Cell Environ., 2000, 23: 825~837
    [122] Shabala S, Babourina O, Newman I. Ion-specific mechanisms of osmoregulation in bean mesophyll cells. J. Exp. Bot., 2000, 51: 1243~1253
    [123] Newman I A. Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ., 2001, 24: 1~14
    [124] Shabala S, Hariadi Y. Effects of magnesium availability on the activity of plasma membrane ion transporters and light-induced responses from broad bean leaf mesophyll. Planta, 2005, 221: 56~65
    [125] Kunkel J G, Lin L Y, Xu Y, et al. The strategic use of good buffers to measure proton gradients about growing pollen tubes. In: Geitmann A. Cell Biology of Plant and Fungal Tip Growth. Amherst: IOS Press, 2001, 52: 81~94
    [126] Vincent P, Chua M, Nogue F, et al. A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J. Cell Biol., 2005, 168: 801~812
    [127] Xu Y, Sun T, Yin L P. Application of non-invasive microsensing system to simultaneously measure both H+ and O2 fluxes around the pollen tube. J. Integr. Plant Biol., 2006, 48(7): 823~831
    [128] Shabala S N, Lew R R. Turgor regulation in osmotically stressed Arabidopsis epidermal root cells: Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol., 2002, 129: 290~299
    [129] Pang J Y, Newman I, Mendham N, et al. Microelectrode ion and O2 fluxes measurements reveal differential sensitivity of barley root tissues to hypoxia. Plant Cell Environ, 2006, 29: 1107~1121
    [130] Shabala S, Shabala L, Gradmann D, et al. Oscillatons in plant membrane transport: model predictions, experimental validation, and physiological implications. J. Exp. Bot., 2006, 57: 171~184
    [131]许越,邱泽生.膜片钳技术及其在高等植物细胞研究中的应用与展望.植物生理学通讯, 1993, 29 (3): 169~174
    [132] Zhu J Y, Yan H, Yin W L. Gao R F. Protoplasts isolation and patch clamp whole cell recording of Hippophae rhamnoides cotyledon. Doctoral forum of China, 2006, 1250~1256
    [133] Tyerman S D, Beilby M, Whittington J,et al. Oscillations in proton transport revealed from simultaneous measurements of net current and net proton fluxes from isolated root protoplasts: MIFE meets patch-clamp. Aust. J. Plant Physiol., 2001, 28: 591~604
    [134] Knowles A, Shabala S. Overcoming the problem of non-ideal liquid ion exchanger selectivity in microelectrode ion flux measurements. J. Membr. Biol., 2004, 202: 51~59
    [135] Felle H. Ca2+-selective microelectrodes and their application to plant cells and tissues. Plant Physiol., 1989, 91: 1239~1242
    [136] Michalska A. Optimizing the analytical performance and construction of ion-selective electrodes with conducting polymer-basedion-to-electron transducers. Anal. Bioanal. Chem., 2006, 384: 391~406
    [137] Wolfbeis O S. Fiber-optic chemical sensors and biosensors. Anal. Chem., 2006, 78: 3859~3874
    [138] Bakker E, Qin Y. Electrochemical sensors. Anal. Chem., 2006, 78: 3965~3984
    [139] Shanke A K, Cervantes C, Herminia L T, et al. 2004 Chromium Toxicity in Plants: A review. Environment International, 2005, 31(5): 739~753
    [140] Rai V, Vajpayee P, Singh S N, et al. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defence system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci., 2004, 167: 1159~1169
    [141] Goez V, Callao M P. Chromium determination and speciation since 2000. Trends Anal. Chem., 2006, 5(10): 1006~1015
    [142] Wang J, Lu J, Olsen K. Reduction of the in Vitro Cytotoxic Lymphocyte Response Produced by in Vivo Exposure to Semiallogeneic Cells: Recruitment or Active Suppression. Analyst, 1992, 117: 1913~1921
    [143] Sander S, Navrail T, Novotny L. Study of the Complexation, Adsorption and Electrode Reaction Mechanisms of Chromium(VI) and (III) with DTPA Under Adsorptive Stripping Voltammetric Conditions. Electroanalysis, 2003, 15(19): 1513~1521
    [144] Lin L, Wang J, Lin Y H. Catalytic adsorptive stripping determination of trace chromium (VI) at the bismuth film electrode. Talanta, 2005, 65:144~148
    [145] Ba B. Refreshable mercury film silver based electrode for determination of chromium(VI) using catalytic adsorptive stripping voltammetry. Anal. Chim. Acta., 2006,570: 195~201
    [146]李建平,乐上旺.双硫腙修饰固体银汞合金电极吸附伏安法测定痕量铅.分析测试学报, 2007, 26(1): 100~103
    [147] Li Y J, Xue H B. Determination of Cr(III) and Cr(VI) species in natural waters by catalytic cathodic stripping voltammetry. Anal. Chim. Acta., 2001, 448: 121~134
    [148] Bobrowski A, Bas B, Dominik J, et al. Chromium speciation study in polluted waters using catalytic adsorptive stripping voltammetry and tangential flow filtration. Talanta, 2004, 63: 1003~1012
    [149]顾凯,朱俊杰,陈洪渊.血红蛋白在L-半胱氨酸微银修饰电极上的电化学行为.分析化学, 1999, 27(10): 1172~1174
    [150] Z Grabarek, J Gergely. Zero-length crosslinking procedure with the use of active esters. Anal. Biochem. 1990, 185:131~135
    [151] Hassan S S M, Abbas M N, Moustafa G A E, Hydrogen chromate PVC matrix membrane sensor for potentiometric determination of chromium(III) and chromium(VI) ions. Talanta, 1996, 43:797~804
    [152] Wang Y, Rajeshwar K. Electrocatalytic reduction of Cr(VI) by polypyrrole-modified glassy carbon electrodes. J. Electroanal. Chem. 1997, 425:183~189
    [153] Memon S Q, Bhanger M I, Khuhawar M Y. Preconcentration and separation of Cr(III) and Cr(VI) using sawdust as a sorbent. Anal. Bioanal. Chem. 2005, 383: 619~624
    [154] Sankalia J M, Mashru R C, Sankalia M G, et al. Estimation of Trace Amounts of Chromium(III) in Multi-Vitamin with Multi-Mineral Formulations. Analytical Science. 2004, 20: 1321~1326
    [155] Gao Z Q. Electrochemical behavior of chromium(III)-hexacyanoferrate film modified electrodes: Voltammetric and electrochemical impedance studies. J. Electroanal. Chem. 1994, 370: 95~102
    [156] Yang L, Ciceri E, Mester Z, et al. Application of double-spike isotope dilution for the accurate determination of Cr(III), Cr(VI) and total Cr in yeast. Anal. Bioanal. Chem. 2006, 386: 1673~1680
    [157] Buhlmann P, Pretsch E, Bakker E. Carrier-based ion-selective electrodes and bulk optodes, Innophores for potentiometric and optical sensors, Chem. Rev. 1998, 98: 1593~1687
    [158] Grabarczyk M. A catalytic adsorptive stripping voltammetric procedure for trace determination of Cr(VI) in natural samples containing high concentrations of humic substances. Anal. Bioanal. Chem., 2008, 390: 979~986
    [159] Yalcin S, Apak R. Chromium(III, VI) speciation analysis with preconcentration on a maleic acid-functionalized XAD sorbent. Anal. Chim. Acta, 2004, 505: 25~35
    [160] Singh A.K, Singh R, Saxena P. Tetraazacyclohexadeca Macrocyclic Ligand as a Neutral Carrier in a Cr Ion-Selective Electrode. Sensors, 2004, 4: 187~195
    [161] Singh A K, Panwar A, Singh R, et al. A new macrocyclic polystyrene-based sensor for chromium (III) ions. Anal. Bioanal. Chem. 2002, 372: 506~510
    [162] Masuda Y, Ishida E, Hiraga K, PVC-based Cr(III)-wire electrode with incorporating (Aliquat 336S+-Cr(SCN)4?) ion pair. Nippon Kagaka Kaishi, 1980, 10: 1453~1562
    [163] Gholivand M B, Sharifpour F. Chromium(III) ion selective electrode based on glyoxal bis(2-hydroxyanil). Talanta, 2003, 60:707~713
    [164] Singh A K, Gupta V K, Gupta B. Chromium(III) selective membrane sensors based on Schiff bases as chelating ionophores. Anal. Chim. Acta, 2007, 585: 171~177
    [165] Gupta V K, Jain A K, Kumar P, et al. Chromium(III)-selective sensor based on tri-o-thymotide in PVC matrix. Sensors and Actuators B, 2006, 113: 182~188
    [166] Schnierie P, Kappes T, Hauser P C. Capillary Electrophoretic Determination of Different Classes of Organic Ions by Potentiometric Detection with Coated-Wire Ion-Selective Electrodes. Anal. Chem. 1998, 70: 3585~3589
    [167] Cattrall R W, Freiser H. Voltammetric Heparin-Selective Electrode Based on Thin Liquid Membrane with Conducting Polymer-Modified Solid Support. Anal. Chem., 1971, 43: 1905~1906
    [168] Abbas M N, Zahran E. Novel solid-state cadmium ion-selective electrodes based on its tetraiodo- and tetrabromo-ion pairs with cetylpyridinium. J. Electroanal. Chem. 2005, 576: 205~213
    [169] Sil A, Ijeri V S, Srivastava A K. Coated wire chromium(III) ion-selective electrode based on azamacrocycles. Anal. Bioanal. Chem., 2004, 378: 1666~1673
    [170] Abbaspour A, Izadyar A. Carbon nanotube composite coated platinum electrode for detection of Cr(III) in real samples. Talanta, 2007, 71: 887~892
    [171] Sun D M, Gu H Y, Yu A M, et al. Preparation of Poly(fuchsin basic)Modified Electrode and Its Application. Chemical Journal of Chinese Universities, 1997, 18: 376~383
    [172] Umezawa Y, Umezawa K, Sato H. Selectivity Coefficients for Ion-Selective Electrodes: Recommended Methods for Reporting Methods for Reporting KpotA,B. Pure Appl. Chem. 1995, 67: 507~518
    [173] Zhang X H, Liu J, Huang H T, et al. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere, 2007, 67: 1138~1143
    [174]乐上旺,李建平.电化学分析法在铬的形态分析中应用进展.分析科学学报, 2007, 23: 729 ~733
    [175] U.S. Environmental Protection Agency. Toxicological Review of Hexavalent Chromium. National Center for Environmental Assessment, Office of Research and Development, Washington, DC. , 1998
    [176] Boddu, V M, Abburi, K, Talbot, J L, Smith, E D. Removal of hexavalent chromium from wastewater new composite chitosan biosorbent. Environ. Sci. Technol., 2003, 37:4449~4456
    [177] Gokhale S V, Jyoti K K, Lele S S. Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour. Technol., 2008, 99: 3600~3608
    [178] Chojnacka K, Chojnacki A, Gorecka H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere, 2005, 59: 75~84
    [179] Namasivayam C, Sureshkumar M V. Removal of chromium(VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent. Bioresour. Technol., 2008, 99: 2218~2225
    [180] Liu D H, Zou J H, Wang M, et al. Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L.. Bioresour. Technol., 2008, 99: 2628~2636
    [181]周启星,宋玉芳.污染土壤修复原理与方法[M] .北京:科学出版社. 2004
    [182] Reeves R D, Baker A J M. Metal-accumulating plants. In: Raskin I and Ensley B D eds. Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. New York: John Wiley &Sons, 2000
    [183]张学洪,罗亚平,黄海涛,等.一种新发现的湿生铬超积累植物-李氏禾(Leersia hexandra Swartz).生态学报, 2006, 6(3): 980~953
    [184] Cui C, Adler J. Effect of potassium-efflux system on mechanonsitive channels in the cytoplasmicmembrane of Escherichia coli. J. Membr. Biol, 1996, 10: 143~152
    [185]Budde B B, Jakobsen M. Real-time measurements of the interaction between single cells of Listeria monocytogenes and nisin on a solid surface. Appl. Environ. Microbiol., 2000, 66: 3568~3591
    [186] Beer D, Schramm A, Santegoeds C M, et al. A nitrite microsensor for profiling environmental biofilms. Appl. Environ. Microbiol., 1997, 63: 973~977
    [187] Lindner E, Buck R P. Microfabricated potentiometric electrodes and their in vivo applications. Anal. Chem., 2000, 72: 336A~345A
    [188] Brooks R R. Plants that hyperaccumulate heavy metals [M]. Wallingford: CAB, International, 1998, 110
    [189]乐上旺,李建平,林庆宇. DTPA修饰固体汞合金电极测定铬(VI)和无机态铬(III).化学通报, 2008, 71(5): 278 ~283
    [190] Wei C Y, Chen T B. Hyperaccumulators and phytoremediation of heavy metal contaminated soil: a review of studies in China and abroad. Acta Ecologica Sinica, 2001, 21(7): 1196~1203
    [191] Wei C Y, Chen T B, Huang Z C , et al. Arsenic hyperaccumulator Pteris Vittata L. and its arsenic accumulation. Chin. Sci. Bull., 2002, 47(11): 902~905
    [192] Yang X, Long X X, Ni W Z, et al. Sedum alf redii H: A new Zn hyperaccumulating plant first found in China. Chin. Sci. Bull., 2002, 47(19):1634~1637
    [193] Wei C Y, Chen T B, Huang Z C, et al. Cretan Brake (Pteris cretica L.): an Arsenic- accumulating Plant. Acta Ecologica Sinica, 2002, 22(5): 777~778
    [194] Xue S G, Chen Y X, Lin Q, et al. Phytolacca acinosa Roxb.( Phytolaccaceae):A new manganese hyperaccumulator plant from Southern China. Acta Ecologica Sinica, 2003, 23(5): 935~937
    [195] Liu W, Shu W S, Lan C Y. Viola baoshanensis, a plant that hyperaccumulates cadmium. Chin. Sci. Bull., 2004, 49(1): 29~32
    [196] Wei S H, Zhou Q X, Wang X, et al. A newly discovered Cd-hyperaccumulator Solanum nigrum L. Chin. Sci. Bull., 2005, 50(1): 33~38
    [197]孙瑞莲,周启星.高等植物金属抗性中有机酸的作用及其机理.生态学杂志, 2006, 25(10): 1275~1279
    [198] Ma J F, Zheng S J , Hiradate S , et al. Detoxifying aluminum with buckwheat. Nature, 1997, 390: 569~570
    [199] Ryan P R , DiTomaso J M , Kochian L V. Aluminum toxicity in roots : An investigation of spatial sensitivity and the role of the root cap. J. Exp. Bot., 1993, 44: 437~446
    [200] Sivaguru M, Horst W J. The distal part of the transition zone is the most aluminum sensitive apicalroot zone of maize. Plant Physiol., 1998, 116: 155~163
    [201] Zheng S J, Ma J F, Matsumoto H. Continuous secretion of organic acid is related to aluminum resistance in relatively long-term exposure to aluminum stress. Physiol. Plant., 1998, 103: 209~214
    [202] Shabalaa S, Cuina T A, Pottosinb I. Polyamines prevent NaCl induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Letters, 2007, 581: 1993~1999
    [203] Gilliham M, Sullivan W, Tester M, et al. Simultaneous flux and current measurement from single plant protoplasts reveals a strong link between K+ fluxes and current, but no link between Ca2+ fluxes and current The Plant Journal, 2006, 46: 134~144
    [204] Carden D E, Walker D J, Flowers T J, et al. Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol., 2003, 131: 676~683
    [205] Li J P, Du Y L, Fang C. Developing an Iridium Oxide Film Modified Microelectrode for Microscale Measurement of pH. Electroanalysis, 2007, 19(5): 608~611
    [206] Cox J A, Lewinski K, Flow injection amperometric determination of hydrogen peroxide by oxidation at an iridium oxide electrode. Talanta, 1993, 40: 1911~1915

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700