红富士苹果离体叶片不定芽再生机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以红富士苹果继代试管苗叶片为试验材料,结合石蜡切片法对叶片离体培养下不定芽的形态发生进行了较系统的解剖观察,研究了不定芽的发生途径、分化时间及起源部位等,对叶片不定芽再生过程中一系列生理生化指标进行了测定,对比分析了光照培养和黑暗培养及培养基中细胞分裂素种类对各生理生化因子的影响,旨在探讨各因子在不定芽发生过程中的作用机制,以期为叶片再生不定芽调控提供理论依据;此外,试验还对影响叶片再生的主要因素即细胞分裂素种类及配比、暗培养时间、碳源、继代苗龄等多方面进行研究,以期建立并优化高效、稳定的红富士苹果离体叶片再生体系,从而为其遗传改良奠定基础。主要研究结果如下:
     1红富士苹果离体叶片不定芽起源及发育的研究结果表明:不定芽的发生过程是,叶片接种4d左右为细胞启动分化阶段,随后细胞加速分裂,培养7~10d时形成分生细胞团,培养到14d时形成不定芽原基,14d以后不定芽原基开始向完整的不定芽分化,培养到18~21d时不定芽形成,21d以后不定芽开始伸长生长;研究还发现红富士苹果离体叶片不定芽的起源部位主要是叶片表皮细胞和叶片维管束周围的维管束鞘细胞,属于多起源;发生途径具有多样性。
     2红富士苹果离体叶片不定芽再生过程中生理生化变化
     2.1内源激素含量及平衡的变化
     叶片细胞启动分化期需要较高含量的ZR、IAA和ABA,且暗培养下内源激素含量高于光培养的,细胞旺盛分裂期需要高含量的ZR和ABA及低含量的IAA;且暗培养下内源激素含量高于光培养的。不同外源细胞分裂素对内源激素变化的影响存在显著差异,TDZ诱导的叶片内源ZR和ABA含量显著高于BA诱导的,IAA的含量显著低于BA诱导的。内源ZR/IAA与ABA/IAA的比值均呈现先升高再降低、再升高-降低的趋势,且光下培养的比值低于暗培养的,TDZ诱导的比值高于BA诱导的。GA3的结果表明,其对叶片不定芽再生有负作用。综合分析,不定芽再生需要较高含量的ZR和ABA及一定量的IAA,同时细胞启动分化期和芽原基形成阶段高比值的ZR/IAA和ABA/IAA有利于不定芽的分化。
     2.2内源多胺含量及平衡的变化
     叶片离体培养过程中,内源多胺含量峰值均出现在培养前期,Put含量高峰出现在培养3d时,而Spm和Spd的高峰出现在培养7d时。光培养下的内源多胺含量显著低于暗培养下的,TDZ诱导的叶片内源多胺含量显著高于BA诱导的。结果表明,在叶片细胞启动分化期及不定芽原基诱导初期需要高含量的内源多胺,并且在不定芽分化时期内源多胺含量也一直维持在较高水平;同时各内源多胺之间的比值也是前期处于较高水平,但是比值之间的差异不明显。可见,不定芽再生需要较高含量的内源多胺,且内源多胺的平衡对不定芽的诱导有一定的影响。
     2.3酶活性的变化
     叶片离体培养过程中,在叶片培养初期及后期较高的SOD酶活性有利于叶片不定芽的分化及发育;在后期较高的POD酶活性有利于不定芽发育;培养前期较低水平的CAT酶活性有利于不定芽的诱导,培养后期较高的CAT酶活性有利于不定芽的形成;IOD酶活性变化比较复杂,且IOD活性与IAA含量密切相关。
     2.4 NO含量的变化
     叶片离体培养以后,叶片内NO含量明显提高。首先,叶片细胞启动分化期及细胞旺盛分裂期需要维持较高水平的NO含量,才能诱导不定芽原基的产生;其次,在培养后期也需要较高含量的NO才有利于不定芽的发育。在不定芽诱导过程中,光下培养的叶片NO含量显著低于暗培养的;TDZ诱导的叶片NO含量高于BA诱导的。
     3红富士苹果离体叶片高效再生不定芽体系的优化
     结果表明:较适宜叶片再生不定芽的生长调节剂为TDZ 6.0 mg/ L+NAA 0.1 mg/L,最适宜的暗培养时间为3周,最适宜的糖为蔗糖,最佳的继代苗龄为25d左右。在上述培养条件下红富士苹果离体叶片再生率达到100%,平均叶片再生芽数达到10.6个。另外,卡那霉素能显著抑制红富士苹果叶片不定芽再生,但因固化剂不同其抑制效果不同,在6.2 g/L琼脂做固化剂时,10 mg/L卡那霉素可完全抑制叶片再生,而在5.0 g/L Polygel的培养基上,卡那霉素50 mg/L才能完全抑制叶片再生。
This study was conducted with leaves collected from the test-tube plantlet of Red Fuji apple as the experimental materials. Through anatomical observation, morphogenesis of adventitious buds was researched by using method of paraffin wax slice. The regeneration ways, differentiation time and orign position of adventitious buds were studied. A series quota of physiology and biochemistry were also studied during in vitro culture. The effects of light, dark and different exogenous cytokinins on the content changes of different quotas were analysised, and the effect mechanism of these quotas was discussed. Above researches will providing a theoretical foundation for regulation of adventitious buds regeneration. Furthermore experiments studied impact factors of adventitious buds regeneration. Including kinds and ratio of cytokinins, dark incubation, c-source and so on. In order to optimize and establish the high efficient regeneration system, thus laying a foundation for transformation.
     1. Studies of origin and growth of adventitious buds
     The results of observe indicated: after the leaves were inoculated , started the cell differentiation after day 4, accelerated cell division for a later, formed cell mass of meristemoids after day 7~10, bud primodium produced after day 14. At last adventitious buds formed and growth. Adventitious bud often originated from the epidermal cells and some vascular cylinder sheath cells. The ways of generation have diversity.
     2. Studies of physiology and biochemistry
     2.1 Changes of endogenous hormone contents and balance
     The hormone (ZR, ABA and IAA) contents of leaves had the higher level during the early stage of inoculation, and the contents were higher incubation in dark than those in light. Effects of exogenous cytokinins on endgenous hormone difference obviously, the ZR and ABA contents of leaves in culture medium appended TDZ were higher than those culture medium appended BA. IAA contents were lower than those culture medium appended BA. The results of ZR/IAA and ABA/IAA indicated that incubation in dark was higher than those in light, and in culture medium appended TDZ was higher than those appended BA. The results of GA3 indicated that adventitious buds regeneration maybe restrained by GA3. A comprehensive analysis show that regeneration of adventitious buds need high ZR and ABA contents levels and some concentration of IAA contents. and meanwhile higher ratios of ZR/IAA and ABA/IAA were closely associated with regeneration of adventitious buds.
     2.2 Changes of endogenous polyamine contents and balance
     After inoculation, the polyamine contents of leaves obviously increased. During the initial stage of inoculation, the concents had reached peak, and the polyamine contents were higher incubation in dark than those in light, in culture medium appended TDZ than medium appended BA. At the stage of adventitious buds differentiation, the concents was also in higher level. The ratios of endogenous polyamine were increased at the early stage, and then gradually declined. Above all obvious indicated that it is needed high concents of endogenous polyamine at the stage of adventitious buds induction and growth. And meanwhile the balance of endogenous polyamine was closely associated with adventitious buds regeneration at the early stage.
     2.3 Changes of enzyme activity
     The higher activity of SOD was propitious to differentiation and growth of adventitious buds at the initial stage and later stage. The higher activity of POD was propitious to growth of adventitious buds at the later stage. The loeer activity of CAT was propitious to induction of adventitious buds at the early stage, and the higher activity of CAT was propitious to form of adventitious buds at the later stage. The changes of IOD activity of leaves were complex, and the changes of IOD activity were closely associated with endogenous IAA contents.
     2. 4 Changes of NO contents
     During the culture of leaves in vitro, NO contents were increased obviously after inoculation. At first, it need higher contents of NO to induce bud primodium at the stage of cell started differentiation and cell division bloom; secondly, higher contents of NO were propitious to growth of adventitious buds at the later stage. And then during regeneration of adventitious buds , the NO contents of leaves was higher incubation in dark than those in light, and in culture medium appended TDZ than those in culture medium appended BA.
     3. High efficient system optimize of regeneration from leaves in vitro of Red Fuji apple
     The results showed that the optimum combination of growth regulators were TDZ 6.0 mg/L+NAA 0.1 mg/L, the optimum c-source was sucrose, the optimum dark incubation time was 3 weeks, the optimum shoot age was about 25d. With above culture conditions, the leaf regeneration frequency of Red Fuji reached 100% and the number of buds per leaf reached 10.6. In addition adventitious buds were restrained evidently by varying concentration Kanamycin. But agar and polygel was different. Adventitious shoots could be restrained completely by only 10mg/L Kanamycin on 6.2 g/L agar, while restrained completely by 50 mg/L Kanamycin on 5.0 g/L Polyge.
引文
[1]束怀瑞.苹果学[M].中国农业出版社,1999, 6.
    [2]邓秀新,刘继红.果树遗传转化及基因组转移研究进展[J].武汉植物学研究, 1996, 14(4): 357~369.
    [3]过国南,阎振立,张顺妮.我国建国以来苹果品种选育研究的回顾及今后育种的发展方向[J].果树学报, 2003, 20(2): 127~134.
    [4]葛会波.生物技术在园艺植物品种改良中的应用[J].生物技术, 1997, (02): 43~4636.
    [5]Liljegren S J, Gustafson Brown C, Pinyopoch A, et al. Interactions among APEATALA1, LEAFY and TERMINAL F, LOWERI specify meristemfate[J]. Plant Cell, 1999, 11: 1007~1018.
    [6]Pena L, Martin-Trillo M, Juarez J, et al. Constitutive expressing of Arabidopsis LEAFY or APETALA genes in citrus reduces their generation time [J]. Nature Biotechnol, 2001, 19: 263~267.
    [7]刘建国,曹尚银等.根癌农杆菌介导LFY基因转化苹果的研究[J].江西农业学报, 2008, 20 (6): 34~35.
    [8]刘庆忠,赵红军, Freddi H.提高苹果基因转化效率的研究[J].果树科学, 2000, 17(3): 159~163.
    [9]程家胜,田颖川,孟秀美,等.转Bt抗虫基因苹果植株的再生[J].中国果树, 1994, 4: 14~15.
    [10]臧运祥,郑伟尉,孙仲序,等.苹果叶片组培再生系统研究进展[J].生物技术通报, 2004, (02): 15~18.
    [11]Rosati P, Predieri S, Meaetti B, et al. In vitro selection of apple rootstock somaclones with phyophthora cactorum culture tiluate[J]. Acts Horticulturae, 1990, 280: 409~416.
    [12]刘莹.苹果矮化砧木P59和SH40离体叶片再生的研究[D].河北保定:河北农业大学硕士论文, 2006.
    [13]During K. A plant transformation vector with a minimal T-DNA[J]. Transgenic Research. 1994, 3(2): 138~140.
    [14]James D J, Passey A J, Barbara D J, etal. Genetic transformation of apple(Males pumila Mill.)using adisarmed Ti-binary vector[J]. Plant Cell Rep, 1989, 7: 658~661.
    [15]时保华,付润民.苹果叶片离体培养研究[J].西北植物学报,1995,15(1)l:67~72.
    [16]张军科,沈向,曹庆芹,等.平邑甜茶叶盘组培再生研究初报[J].西北农业大学学报, 2000, 28(4): 94~97.
    [17]孙清荣,孙洪雁.影响苹果叶片不定芽再生的几个因素[J].落叶果树, 1995, (4): 3~4.
    [18]张玉萍.圆叶海棠叶片愈伤组织的诱导及其植株再生[J].植物生理学通讯, 1992, (6): 435.
    [19]潘增光,邓秀新.苹果组织培养研究进展[J].果树科学, 1998 ,(3): 261~266.
    [20]Ishisara A. Plant regeneration via leaf culture in apple rootstock Malusprumifolia Borkh[C]. Abstr Japan Soc Hort Sci Autumn Meet, 1981, 42~43.
    [21]Relazi M, Paul H, Sargwan R S. Direct organogenesis from internodalsegments of in vitro grown shots of apple cv.Golden Delicious[J]. PlantCell Reports, 1991, 4: 471~474.
    [22]何道一,李雅志,王其会.不同基因型苹果的离体再生特性及其对NaNO3的反应[J].核农学报, 1997, 11(2): 84~88.
    [23]达克东,张松,李雅致.苹果叶柄体细胞胚胎发生[J].核农学报, 1996, 10(2): 75~78.
    [24]Tsukahara K, Kozaki I, Oomura M. Adventitious bud formation on apple and quince leaves [J]. Japan J Breed, 1985, 35 (Supp.2): 2~3.
    [25]Dufour M. Improving yield of adventitious shoots in apple[J]. Acta Hort, 1990, 280: 51~58.
    [26]韩碧文,李颖章.植物组织培养中器官建成的生理生化基础[J].植物学通讯, 1993, 10(2): 1~6.
    [27]朱丽华,张彩琴.大白菜下胚轴不定芽再生过程中内源激素和多胺含量的变化[J].福建农业学报, 2006, 21(2): 143~146.
    [28]Nishinarin Ksyono. Changes in endogenouscytokinin levels in partially Synchronise culture tobacco cells[J]. PlantPhysiol. 1980 65: 437~441.
    [29]Abou-Mandour, A A Whartung. The effect of abscisic acid and increased osmotic potential of the media on growth and root regeneration of zeamays callus[J]. PlantPhysiol, 1986, 22: 139~145.
    [30]Hirishi kamada, Hiroshi Harada. Changes in the endogenous levels and effects of abscisic acid during somatic embryogenesis of daucus carota[J]. Plant and cell physiol, 1981, 22(8): 1423~1429.
    [31]唐玉林,陈婉芳,周燮.烟草叶块分化根和芽过程中内源激素水平的变化[J].南京农业大学学报, 1996, 19(2): 12~16.
    [32]郑均宝,梁海永,王进茂,等.杨和苹果离体茎尖培养和愈伤组织分化与内源IAA和ABA的关系,植物生理学报, 1999, 25(1): 80~86.
    [33]邵继平.声波刺激对菊花愈伤组织内源激素IAA和ABA动态变化的实验研究[D].重庆大学硕士学位论文, 2003.
    [34]张猛.干燥及硝酸银对水稻愈伤组织分化及生理生化特性的影响[D].广西大学硕士学位论文, 2007.
    [35]盛艳萍,杨建平.大葱成熟胚离体再生过程中内源激素的变化[D].山东泰安:山东农业大学硕士学位论文, 2004.
    [36]李代丽.白刺愈伤组织培养中外源激素对内源激素影响的研究[D].北京:北京林业大学硕士学位论文, 2007.
    [37]杨金富.桑(Morus)离体再生体系的建立及生理生化研究[D].重庆:西南农业大学硕士学位论文, 2002.
    [38]张爱民,盛玮.地黄叶片器官形态建成中几种内源激素的变化[J].中国中药杂志, 2005, 30 (4): 298~299.
    [39]Flores H E, Galston A W. Osmotic stress-induced polyamine accumulation in cereal leaves[J]. Plant physiol, 1984, 75: 102~109.
    [40]Galston A W, Kaur-Sawhney R.Polyamine and its metabolism. In: Wareing P F (eds). Plant growth substance, 1982, 451~461.
    [41]王富民,薛应龙.百合小鳞茎离体发生过程中内源多胺水平和多胺氧化酶活性的变化[J].植物生理学报, 1988, 14(4): 350~354.
    [42]王隆华,曹宗巽.花粉内多胺和外源多胺对花粉萌发和花粉管生长的影响.植物生理学报, 1985, 11(2): 196~203.
    [43]Sen K, Choudhuri M M, Ghosh B. Changes in Polyamine contents during development and ger-mination of rice seed. Phytochemistry, 1981, 20: 631~633.
    [44]Kaur-Sawhney R, Liu-Mei S, Galston A W. Rela-tion of polyamine biosynthesis to the initiation ofsprouting in potato tubers. Plant physiol, 1982,69: 411~415.
    [45]Fienbery A A, Choi J H, Lubich W P. Develop-mental regulation of polyamine metabolism in growth and differentiation of carrol. culture. Planta, 1984, 162: 532~539.
    [46]Kaur-Sawhnr, Tiburcio A F, Galston A W. Sper-midine and flower-bud differentiation in thin-layer explants of tobacco. Planta, 1988,173: 282~284.
    [47]田长恩.多胺在离体培养的植物形态建成中的作用(综述) [J].植物生理学通讯, 1992, 28(3): 230~232.
    [48]Malfatti H, Vallee J C, Perdrizet E,et al. Acidesamines et amines libres explants foliaires de Nicotiana tabaccumcultives in vitros under mi-lieux induisant larhizogénnèse oula caulogénèse. Physiol. Plant, 1983, 57: 492~498.
    [49]张明方,蒋有条.番茄不同分化潜力组织中内源多胺比较及外源多胺对分化的影响[J].浙江农业大学学报, 1997, 23(6): 677~681.
    [50]黄维玉,王亚来,袁林江.多胺对小麦离体叶片衰老的调节[J].植物学报, 1990, 32: 125~132.
    [51]Palavan N, Galston A W. Polyamine biosynthesis and titer during various developmental stages of Phase-olus vulgaris[J]. Physiol.Plant, 1982, 55: 38~444.
    [52]Mukhopadhyay A, Choudhuri M, Sen K et al. Changes in polyamines and related enzymes with loss of viability in rice seeds[J]. Phytochem., 1983, 22: 1547~1551.
    [53]Lin P C. Polyamine metabolism and its relation to response of the aleurone layers of barley seeds to gibberllicacid[J]. Plant Physiol, 1984, 74: 975~983.
    [54]潘瑞炽.多胺是植物生长发育的调节物[J].植物生理学通讯, 1985, 21(6): 63~68.
    [55]王忠主编.植物生理学[M].北京:中国农业出版社,2003,299~301.
    [56]田长恩,叶蕙.多胺、可溶性蛋白及过氧化物酶与甜瓜子叶不定芽发生的关系[J].园艺学报, 1997, 24(2): 199~200.
    [57]赵洁,程井辰,熊进,等.石刁柏愈伤组织根和芽分化过程中的POD和SOD酶活性变化[J].武汉植物学研究, 1997, 15(1): 49~53.
    [58]屈妹存,刘选明,周朴华,等.百合鳞片细胞形态发生中生理生化特性研究[J].生命科学研究, 1998, 24: 288~294.
    [59]冯莉.石刁柏雄株离体再生体系的建立及生理生化研究[D].浙江杭州:浙江大学硕士学位论文, 2003.
    [60]Frank V, Eva V, James F D, Dirk I. The role of active oxygen species in plant signal trans duction [J]. Plant Sci, 2001, 161: 405~414.
    [61]Beligni M V, Lamattina L. Nitric oxide: a non-traditional regulator of plant growth[J]. Trends in Plant Science, 1999, 6: 508~509.
    [62]Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L. Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato[J]. Journal of Experimental Botany, 2006, 57: 581~588.
    [63]Gouvêa CM C P, Souza J F, Magalh esA C N, Martins I S. NO·-releasing substances that induce growth elongation inmaize root segments[J]. PlantGrowth ReguⅠ, 1997,21: 183~187.
    [64]Lamattina L, BeligniM V, Garcìa-Mata C, LaxaltAM. Method of enhancing themetabolic function and the growing conditions of plantsand seeds[J]. US Patent, 2001.
    [65]PagnussatG C, SimontacchiM, Puntarulo S, LamattinaL.Nitric oxide is required for root organo- genesis [J]. PlantPhysio, 2002,29: 954~956.
    [66]夏英武,吴殿星,舒庆尧.农杆菌T-DNA介导的植物转基因的分子机制[J].生物学杂志, 1994, 5: 7~12.
    [67]Doughty S, Power J B. Callus formation from leaf mesophyⅡprotoplasts of Malusⅹd omestica Borkh.cv.Green-sleeves[J]. Plant Cell Rep, 1988, 7: 200~201.
    [68]Fasolo F,predievi S. Cultivar dependent responses to regeneration from leaves in apple[J].Acta Horticulture,1990,280:61~68.
    [69]James D J, Passey A J, Malhotra S B. Organogenesis in callus derived from stem and leaf tissues of apple and cherry root stocks[J]. Plant Cell Tiss Org Cult, 1984, 3: 333~341.
    [70]KorbnaS, O connor P A, Elobeidy A, et al. Eeffect of thidazuron,naphthaleneacetic acid, dark incubation and genoype on shoot organogenesis from Maluslevaes[J]. HortSci, 1992, 67 (3): 341~349.
    [71]邵建柱,马宝焜.转基因苹果研究进展[J].果树学报, 2003, 20 (1): 49~53.
    [72]孙清荣,孙洪雁,刘庆忠,等.不同倍性苹果叶片不定芽植株再生研究[J].落叶果树, 2000, (2): 9~11.
    [73]师校欣,杜国强,高仪,等.苹果离体叶片高效再生不定芽技术研究[J].果树科学, 1999, 16(4): 255~258.
    [74]赵政阳,傅润民.苹果试管苗叶片再生植株研究[J].陕西农业科学, 1992, (6): 18~19.
    [75]贺红,韩美丽,何亚文,等.红江橙不同外植体离体培养的研究[J].热带亚热带植物学报,1997,5(2):85~88.
    [76]吴国栗,陈国秀.苹果及其砧木茎尖培养研究进展[J].北方园艺,1992,5:23~28.
    [77]Ferradini N, Fam iani F, P roietti P, etal. Influence of growth regulators and light on vitro shoot regeneration in M26 apple rootstock[J]. Hoticultural Science, 1996, 71(6): 859~865.
    [78]Hurwitz C D, Agrios G N. Isolation and culture of protoplasts from apple callus and cell suspension culture[J]. AmerHortSci, 1984, 109: 348~350.
    [79]Kiss E, Kiss J, Gyulai G, etal. A novel method for rapid micropropagation of pine apple [J]. HortScience, 1995, 30: 127~129.
    [80]Kolova L G, Stoyanov N A, Schmidt-H, etal. In vitro induction of adventitious shoot and embryo and stem segment[J]. Kluwer Academic Publishers; Netherlands, 1994, 191~197.
    [81]Mohamed M F, Read P E, Coyne D P. Dark preconditioning, CPPU and thidiazuron promot shootorganogenesis on seedling node explants of common and fababeans[J]. Amer Soc Hortic Sci, 1992, 117: 668~672.
    [82]Saito-A, Suzuki-M. Plant regeneration from meristem-derived callus protoplasts of apple (Malusⅹdomestica cn.“Fuji”)[J]. Plant Cell Rep, 1999, 18(7-8): 549~553.
    [83]孙爱君,章镇,姚泉洪,等.苹果与八棱海棠的试管苗外植体植株再生[J].上海农业学报, 2000, l6(2): 23~30.
    [84]Chritel T H, Robert T H. Influence of TDZ and BA on adventitious shoot regeneration from apple leaves[J]. Acta Hort, 1990, 280: 195~199.
    [85]达克东.苹果叶片培养植株再生及茎段辐射效应的研究[D].泰安:山东农业大学园艺系硕士学位论文, 1994.
    [84]王艳,孙仲序,赵春芝.影响苹果离体叶片再生的因素分析[J].落叶果树, 2002, (6): 19~22.
    [85]Ferradini N, Famiani F, Proietti P, et al. Influence of growth regulators and light on in vitro shoot regeneration in M26 apple rootstock[J]. Hort Sci, 1996, 71: 859~865.
    [86]秦玲,李明,王永熙,等.根瘤农杆菌介导苹果遗传转化研究进展[J].西北农林科技大学学报(自然科学版)2002, 30(4): 135~140.
    [87]刘彦泓,方宏筠.樱桃砧木Colt离体叶片再生[J]. Developmental&Reproductiv Biology, 2002, 11 (2): 112~117.
    [88]裴东,田颖川,刘群禄.苹果叶片再生的改进及转抗虫基因植株的获得[J].河北农业大学学报, 1996, 19(4): 23~27.
    [89]李艳红,马宝焜.苹果砧木M26离体叶片愈伤组织发生及分类研究[J].果树科学, 1999, 16(4): 259~262.
    [90]刘庆吕,吴国良.植物细胞组织培养[M].北京:中国农业大学出版社, 2003, 1: 290.
    [91]李梦玲,李嘉瑞,陶正平,等.杏叶片离体繁殖研究[J].中国农学通报, 2001, 17(2): 8~10.
    [92]Swartz H J, Bors R, Mohamed F, et al. The effect of in vitro pre treatment on subsequent shoot orgnaogenesis from excised Rubus and Malus leaf[M]. Netherlands:Kluwer Academ ic Publishers, 1990, 179~184.
    [93]吴雅琴.我国生物技术在落叶果树育种中的应用现状[J].河北果树, 2002 (4), 1~2.
    [94]Knittel N, Escandon A S, et al. Plant regeneration at high frequency from mature sunflower cotyledons. Plant Sci, 1991, 73: 219~226.
    [95]Maheswaran G, David C, et al. Agrobacterium rhizogenes mediated transforamation of gapevine (vitis vinifera L.). Plant Cell, Tiss Org Cult, 1990, 20: 211~215.
    [96]王灶安.植物显微技术[M].北京:农业出版社, 1992.
    [97]杨浚,贺平清.植物多胺的薄层——荧光测定法[J].植物生理学通讯, 1988(6): 63~66.
    [98]张志良.植物生理学实验指导(第二版)[M].高等教育出版社1990, 210~212.
    [99]高华君,杨洪强,张伟.一氧化氮在吲哚丁酸诱导平邑甜茶幼苗侧根形成中的作用[J].园艺学报, 2008, 35(2): 157~162.
    [100]韩红岩.内蒙古地区苹果主栽品种组培再生体系的建立[D].内蒙古农业大学硕士学位论文, 2006.
    [101]邵建柱.苹果离体叶片高频再生及其细胞组织学观察[D].河北保定:河北农业大学硕士论文, 1995.
    [102]王凯基.油橄榄组织培养的细胞组织学研究Ⅰ愈伤组织的建成[J].植物学报, 1979, 2(12): 127~132.
    [103]刘莉莉,蔡斌华,刘丹,等.新红星苹果离体高效再生体系的建立[J].果树学报, 2007, 24(5): 679~681.
    [104]梁海永,姚伟明,杜鸿云等.苹果叶片再生体系建立研究.河北林果研究, 2005, 20(3): 247~249.
    [105]邓永玲,张鲁刚.大白菜带柄子叶离体不定芽再生过程中的组织学观察[J].西北农业学报, 2008, 17(4): 238~243.
    [106]Pawliki N, Welander M. Adventitious shoot regeneration from leaf segments of in vitro cultured shoots of the apple rootstock Jork9[J]. Hort Sci. 1994, 69(4): 687~696.
    [107]Welander M. Plant regeneration from leaf and stem segment of shoots raised in virol from mature apple tree[J]. Plant Physiol, 1988, 132: 738~744.
    [108]韩碧文,李颖章.植物组织培养器官建成的生理生化基础[M]. 1993, 10 (2): l~6.
    [109]黄学林,李菊.高等植物组织离体培养的形态建成及其调控[M].科学出版社, 1995: 23~25.
    [110]肖关丽,杨清辉.植物组织培养过程中内源激素研究进展[J].云南农业大学学报, 2001, 16(2): 136~138.
    [111]宋莉英.苦瓜(Momordica charantia L.)离体植株再生体系的建立[D].西南师范大学硕士学位论文, 2001.
    [112]Wemicke W, Milkovits L. Physiol Plant[M]. 1987,69:23~28.
    [113]ChristineH, Vendrig J C, Onekelen H V. Physiol Plant, 1991, 83: 578~584.
    [114]武维华.植物生理[M].科学出版社,北京: 2003, 265~311.
    [115]丰先红.大百合鳞片组织培养细胞分化及生理生化研究[D].四川:四川农业大学硕士学位论文, 2007.
    [116]刘清,朱允华,吴顺,等.遗传转化过程中水稻愈伤组织的内源植物激素变化动态研究[J].中国农业科学, 2007, 40(10): 2361~2367.
    [117]黄健秋,卫志明.针叶树体细胞胚发生的研究进展[J].植物生理学通讯, 1995, 31(2): 85~90.
    [118]郭子彪.内源激素IAA, ABA对大豆萌发子叶胚性愈伤组织诱导及其分化的调控[J].大豆科学. 1997, 16(3): 194~198.
    [119]余茂德,杨金富,徐立,等.桑离体再生过程中内源激素变化的研究[J].蚕业科学, 2003, 29(1): 28~31.
    [120]陈伟,施季森,龙伟,等.光皮桦离体培养形态建成过程中内源激素含量的变化[J].南京林业大学学报, 2006, 30(3): 67~70.
    [121]龚一富,高峰.甘薯离体器官发生过程中内源激素含量的变化[J].华南师范大学学报(自然科学版), 2008, (1): 103~107.
    [122]陶静,詹亚光,由香玲,等.白桦组培再生系统的研究(Ⅲ)—组培过程中内源激素的变化[J].东北林业大学学报, 1998. 26(6): 6~9.
    [123]罗琼,胡延玉,周开达.内源激素对水稻成熟胚培养力的影响[J].中国水稻科学, 1998, 12 (4): 238~140.
    [124]卢庆南,水稻组织培养再生过程中的生理生化特性研究[D].广西大学硕士学位论文, 2006.
    [125]中国科学院上海植物生理研究所细胞室.植物组织和细胞培养[M].上海:科学技术出版社, 1978: 90~98.
    [126]马晖玲,张崇浩,肖尊安,等.植物内源激素对原生质体培养的影响[J].北京师范大学学报, 1997, 33(3): 414~417.
    [127]裴东,郑均宝,凌艳荣,等.红富士苹果试管苗培养中器官分化及其部分生理指标的研究[J].园艺学报, 1997, 24(3): 229~234.
    [128]冯质雷.玉米未成熟胚胚性愈伤组织诱导率与内源激素的关系[D].四川农业大学硕士学位论文, 2004.
    [129]Shivendra Bajaj et al. Involvement of polyamines with adventitious root development in stem cutting of mung beam.Plant Cell Physiol, 1983, 24: 677~683.
    [130]陈春玲赖,钟雄.龙眼体细胞胚胎发生过程中内源多胺的变化[J].福建农林大学学报(自然科学版, 2006, (35): 381~383.
    [131]田长恩,李人圭,管和.多胺与离体培养下甜瓜子叶形态发生的关系[J].植物学报, 1994, 36: 219~222.
    [132]段辉国,黄作喜,林宏辉.多胺在高等植物个体发育中的作用[J].西北农业学报, 2006, 15(2): 190~194.
    [133]李太盛.多胺与植物激素(综述)[J].亚热带植物通讯, 1999, 28(2): 66~69.
    [134]孙文全.多胺代谢与园艺植物开花的关系(文献述评)[J].园艺学报, 1989, 16 (3): 178~l84.
    [135]王荣福,崔继林等.水稻品种超氧化物歧化酶(SOD)活性与氧抑光合的关系[J].植物生理学报, 1987, 13(3): 145~152.
    [136]赵云鹏,郭味明.花烛离体快繁关键技术及再分化有关机理探讨[D].南京卫岗:南京农业大学硕士学位论文, 2002.
    [137]黄晋玲,安泽伟,樊冬丽.棉花晋A细胞质雄性不育系及其保持系的同工酶分析[J].山西农业科学, 2000, 29(3):29~32.
    [138]胡美华,陈竹君,汪柄良.榨菜胞质雄性不育系和保持系若干生化特性的比较[J].浙江农业大学学报, 1998, 24(l): 57~58.
    [139]NeillS J, Desikan R, Hancock JT. Nitric oxide signaling in plants[J]. New Phytologist, 2003, 159 (1): 11~35.
    [140]韩小娇,杨洪强.平邑甜茶叶片不定芽再生及NO的效应[J].园艺学报, 2008, 35(3): 419~422.
    [141]Tun N N, Livaja M, Kieber J J, Scherer G F. Zeatin-induced nitric oxide (NO) biosynthesis in Arabidopsis thaliana mutants of NO biosynthesis and of two-component signaling genes. New Phytologist, 2008, 178: 515~531.
    [142]Tun N N, HolkA, SchererG F. Rapid increase of NO release in plant cell cultures induced by cytokinin. FEBS Letters, 2001, 509 (2): 174~176.
    [143]Desikan R, Reynolds A, Hancock J T, et al. Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defense gene expression in Arabiodopsis suspension cultures.Biochem J, 1998, 330: 115~120.
    [144]Corpas F J, Barroso J B, Carreras A, et al. Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta, 2006, 6: 1~9.
    [145]Tun N N, Santa-Catarina C, Begum T S et al.Polyamines Induce Rapid Biosynthesis of Nitric Oxide(NO)in Arabidopsis thaliana Seedlings.Plant Cell Physiol, 2006, 47(3): 346~354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700