蚓激酶转基因苜蓿(Medicago sativa)及丹参(Salvia miltiorrhizae)的构建及检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚯蚓纤溶酶(Earthworm Fibrinolytic Enzymes,EFE),又称蚓激酶,属于多组分的蛋白水解酶类,它们广泛分布于多种蚯蚓的消化道内腔及体液中,可能与摄取食物的吸收和利用有关。蚓激酶可以直接水解纤维蛋白,因此,它们既具有溶解现有血栓、也同时具有阻止血栓继续形成的功效;此外,有部分种类的蚓激酶还可以将纤溶酶原激活并转化为纤溶酶、或刺激人血管内皮细胞释放组织纤溶酶原激活剂(t-PA),从而能够间接溶解血栓。与其它溶栓剂所不同的是,蚓激酶的毒副作用比较小,而且还可以口服给药,因此,作为一种新型的溶栓药剂,无疑具有十分广阔的应用前景。
     目前,在临床上应用的蚓激酶均源自人工饲喂的蚯蚓,然而,依靠人工从蚯蚓中提取蚓激酶仍然存在很多问题,比如蚯蚓饲养和繁殖周期长,生产工艺复杂和生产质量不稳定等,这些不利因素都在很大程度上制约了蚓激酶的规模化生产、利用及普及。
     在转基因植物中表达蚓激酶单一组分,开辟了利用植物生物反应器生产蚓激酶的新领域,可为今后蚓激酶药物降低生产成本和在临床上的更广泛应用奠定坚实基础。本研究选用苜蓿和丹参这两种常见的植物作为表达蚓激酶单一组分的宿主植物,这是因为:1)苜蓿是世界上最重要的豆科牧草之一,具有品质优、产量高、适应性强、易于贮存以及加工等许多的优点,此外,其作为生物反应器生产的重组类蛋白药物可直接口服,而且无毒无害,便于今后的规模化生产和推广;2)丹参作为一味历史悠久的中药,其本身具有扩张冠状动脉、降低胆固醇和血脂、抑制凝血和激活纤溶系统等多种作用,在临床治疗心脑血管疾病方面应用广泛且疗效十分显著。若实现蚓激酶在丹参中的表达,可通过二者的协同作用,进一步增强丹参在防治心血管疾病方面的疗效,改善丹参的药用品质。
     在苜蓿生物反应器构建过程中,利用本课题组先前建立的比较成熟的苜蓿组织培养再生体系,通过农杆菌介导方法,成功地将蚓激酶CST1和CST2-1基因分别导入到保定苜蓿中,先后获得转CST1基因的卡那霉素抗性再生苗130株和转CST2-1基因的卡那霉素抗性再生苗92株。对这些转基因植株进行PCR和PCR Southern检测,结果证实多数卡那霉素抗性植株分别含有上述蚓激酶编码组分。从PCR检测为阳性的转CST2-1基因再生植株中,任意选取两株进行基因组DNA Southern Blot检测,结果证实目的基因CST2-1确实已整合到苜蓿基因组中。通过ELISA,对外源蛋白表达情况进行了检测与分析,结果发现多数卡那霉素抗性植株在405nm处的吸光值都大于非转基因苗(阴性对照),但与蚓激酶肠溶胶囊溶剂相比,其数值偏低,这表明蚓激酶基因在转基因苜蓿细胞中是有表达的,但表达效率非常低。外源转基因遗传稳定检测结果发现,经多3~5次无性继代培养后的转基因苜蓿叶片在含有卡那霉素的培养基上仍能正常分化出健康的愈伤组织,这表明外源的蚓激酶基因在转基因苜蓿中通过无性繁殖可以稳定遗传给后代。
     在丹参生物反应器构建过程中,首先通过对丹参的转化和培养条件进行了优化,使丹参再生幼苗的褐化和玻璃化现象大大减轻,更加完善了丹参的组织培养遗传转化再生体系。通过农杆菌介导方法,同样成功地将蚓激酶CST1和CST2-1基因分别导入到丹参中,分别获得卡那霉素抗性再生苗25株和33株。对这些再生植株进行PCR和PCR Southern检测和分析,结果证实多数卡那霉素抗性植株分别含有上述蚓激酶编码组分。从PCR检测为阳性的转CST2-1基因再生植株中,任意选取两株进行基因组DNA Southern Blot检测,结果证实目的基因CST2-1确实已整合到丹参基因组中。同样利用ELISA法对蚓激酶外源蛋白表达情况进行了检测与分析,结果发现外源蛋白表达普遍微弱,在一定程度上稍微高于转基因苜蓿的结果类似。外源转基因遗传稳定检测结果发现,经多3~5次无性继代培养后的转基因丹参叶片在含有卡那霉素的培养基上仍能正常分化出健康的愈伤组织,这表明外源的蚓激酶基因在转基因丹参中通过无性繁殖可以稳定遗传给后代。
Earthworm Fibrinolytic Enzymes (EFE), are also called lumbrokinase, are a group of proteolytic enzymes, and they are distributed throughout the lumen of alimentary tract and Body fluid in many kinds of earthworms, and are probably responsible for digesting the food. EFE degrade fibrin directly, therefore it can degrade the blood clots and prevent them from growing up; besides that, some kinds of EFE activate plasminogen and turn them into fibrinolytic enzymes, or activate human vascular endothelial cells to release the t-PA and degrade the fibrin indirectly. Other than many other kinds of thrombolytics, EFE have weak side effect and are edible. Therefore, as a noval kind of thrombolytics, EFE have a very broad prospective.
     At present, the EFE which are used clinically are come from the earthworm by artificial feeding, however, extracting EFE from earthworm encounters some problems, such as the breeding cycle which lasts very long, complicated processing technique, and the unstable quality of the product, which entirely constrain the large-scaled production, application and popularity of the EFE.
     Expression of a single component of EFE in transgenic plants opens up a new research area of EFE produced by plant as bioreactor, and increases possibility of the novel thrombolytics in the clinic use. In this thesis, Alfalfa and Salvia are used as the host plants of expressing a single component of EFE, the reasons are as follows: 1) Alfalfa, one of the most important pasture grasses around the world, has characteristics of high yields, good quality, strong adaptability and easy storage. As a bioreactor for production of medical proteins in the plant, its product could be for oral use and accepted easily by common popularity; 2) Salvia miltiorrhizae, being used as a traditional Chinese medicine for a long history, has many medical functions, such as decreasing cholesterin and blood lipiods, inhibiting clotting and activating plasminogen and so on. If the EFE are expressed in the Salvia, it will be possible to improve the effect of prevention on angiocardiopathy by Salvia and medical quality of Salvia through the synergy of EFE and Salvia.
     In the process of establishing alfalfa as bioreactor, we used the alfalfa regeneration system which was firmly established formerly in our laboratory in order to introduce the EFE genes, such as CST1 and CST2-1 into the plants through the transformation mediated by agrobacterium tumefaciens, and obtained 130 kanamycin-resistant regenerated plantlets of Baoding alfalfa which was introduced the CST1 and 92 which was introduced the CST2-1. The PCR and PCR Southern assay on these regenerating plants with kanamycin resistance showed that the target genes has been introduced into these plants. And the Southern Blot results showed that CST2-1 was in the genome of the two plants selected randomly from the positive results of PCR Southern. According to the result of ELISA test, most of the regenerating alfalfa plants have higher OD405 than the negatives, however, in contrast with the results of positives made by Lumbrokinase Enteric-coated Capsules, they are still very low, which indicated that EFE had been expressed in the transgenic alfalfa cells, though the expected protein was in very low amount in the plants. In the assay of the stability of the foreign genes, transgenic plants were cultivated successively by 3~5 generations, and the leaves could also differentiate healthy callus on the culture medium contained kanamycin, which showed these plants were steady and hereditary transgenic plants.
     In the process of establishing alfalfa as bioreactor, we firstly alleviated enormously the problems of browning and vitrification in the regenerating plantlets and complete the Salvia regeneration system through optimize the conditions of the conformation and culture. We also successfully introduced the EFE genes, such as CST1 and CST2-1 into the plants through the transformation mediated by agrobacterium tumefaciens, and obtained 25 kanamycin-resistant regenerated plantlets of Salvia miltiorrhizae which was introduced the CST1 and 33 which was introduced the CST2-1. According to the PCR and PCR Southern assay on these regenerating plants with kanamycin resistance, it was shown that the target genes has been introduced into these plants. And the Southern Blot results showed that CST2-1 was in the genome of the two plants selected randomly from the positive results of PCR Southern. The results of ELISA test were slightly higher than those of alfalfa and also showed EFE had been expressed in the transgenic Salvia cells, though the expected protein was in very low amount in the plants. In the assay of the stability of the foreign genes, transgenic plants were cultivated successively by 3~5 generations, and the leaves could also differentiate healthy callus on the culture medium contained kanamycin, which showed these plants were steady and hereditary transgenic plants.
引文
l.Arakawa T,Chong DK,Merritt JL et al.Expression of cholera toxin B subunit oligomers in transgenic potato plants.Transgenic Res,1997,6(6):403-413
    2.Arakawa T,Yu J,Chong DK et al.A plant-based cholera toxin B subunit-insulin fusion protein protects against the development of autoimmune diabetes.Nat Biotech,1998,16(10):934-938
    3.Ashraf S,Singh PK,Yadav DK et al.High level expression of surface glycoprotein of rabies virus in tobacco leaves and its immunoprotective activity in mice.J Biotechnol,2005,119(1):1-14
    4.Atanassov A,Brown D C W.Plant regenerating from suspension culture and mesophyll protoplasts of Medicago sativa L[J].Plant Cell,Tissue and Organ Culture,1984,3:149-162.
    5.Austin S,Bingham ET,Koegel RG et al.An overview of a feasibility study for the production of industrial enzymes in transgenic alfalfa.Ann N Y Acad Sci,1994,721:234-244
    6.Bagga S,Sutton D,Kemp JD et al.Constitutive expression of the P-phaseolin gene in different tissues of transgenic alfalfa does not ensure phaseolin accumulation in non-seed tissue.Plant Mol Biol,1992,19:951-958
    7.Baucher M,Bernard-Vailhe MA,Chabbert B et al.Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa(Medicago sativa L.) and the effect on lignin composition and digestibility[J].Plant Mol Biol,1999,39(3):437-447
    8.Bevan MW.Binary Agrobacterium vector for plant transformation.Nucleic Acids Res,1984,12:8711-8716
    9.Bingham E T,Hurley L V,Kaatz D M et al.Breeding alfalfa,which regenerates from callus tissue in culture[J].Crop science,1975,(15):719-721.
    10.Brown DCW,Atanassov A.Role of genetic background in somatic embryogenesis in Medicago.Plant Cell Tiss.Org.Cult,1985,4:111-122
    11.Carrillo C,Wgdorovitz A,Oliveros JC et al.Protective immune response to foot and mouth disease virus with VP1 expressed in transgenic plants.J.Virol,1998,72(2):1688~1690.
    12.Carrillo C,Wigdorovitz A,Trono K et al.Induction of a virus specific antibody response to food and mouth disease virus the structural protein in VP1 expressed in transgenic potato plants.Viral Immunol,2001,14(l):49-57.
    13.Chabaud,M;Passiatore JE,Cannon F et al.Parameters affecting the frequency of kanamycin resistant alfalfa obtained by Agrobacterium tumefaciens mediated transformation.Plant Cell Rep,1988,7:512-516
    14.Cho I H,Choi ES,Lee HH.Molecular cloning,sequencing,and expression of a fibrinolytic serine-protease gene from the earthworm Lumbricus rubellus.J Biochem Mol Biol,2004,37(5):574-581
    15.D'Halluin K,Botterman J,De Greet W.Engineering of herbicide-resistant alfalfa evaluation under field conditions.Crop Sci,1990,30:866-871
    16.Daniell H,Lee SB,Panchal T et al.Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts.J Mol Biol, 2001,311(5):1001-1009
    17.Deak M,Kiss GB,Koncz Csaba et al.Transformation of Medicago by Agrobacterium mediated gene transfer.Plant Cell Rep,1986,5:97-100
    18.Desgagnes R,Laberge S,Allard Get al.Genetic transformation of commercial breeding lines of alfalfa(Medicago sativa).Plant Cell Tiss.Org.Cult,1995,42:129-140
    19.Dong GQ,Yuan XL,Shan YJ,et al.Molecular Cloning and Characterization of cDNA Encoding Fibrinolytic Enzyme-3 from Earthworm Eisenia foetida.Acta Biochim.Biophys.Sinica,2004,36(4):303-308
    20.Dong JL,Liang BG,Jin YS et al.Oral immunization with pBsVP6-transgenic alfalfa protects mice against rotavirus infection.Virology,2005,339(2):153-163
    21.Du S,Erickson L,Bowley S.Effect of plant genotype on the transformation of cultivated alfalfa (Medicago sativa) by Agrobacterium tumefaciens.Plant Cell Rep,1994,13:330-334
    22.Dus Santos MJ,Wigdorovitz A,Trono K et al.A novel methodology to develop a foot and mouth disease virus(FMDV) peptide-based vaccine in transgenic plants[J].Vaccine,2002,20(7-8):1141-1147
    23.Dus Santos MJ,Wigdorovitz A.Transgenic plants for the production of veterinary vaccines.Immunol Cell Biol,2005,83(3):229-238
    24.Fish R,Waller EK,Grossi G et al.Isolation and characterization of the human tissue-type plasminogen activator structural gene including its 5'flanking region.J Biol Chem,1985,260:11223-11230
    25.Fu ZF,Rupprecht CE,Dietzschold Bet al.Oral vaccination of racoons(Procyon lotor) with baculovirus-expressed rabies virus glycoprotein.Vaccine,1993,11(9):925-928.
    26.Ge T,Sun ZJ,Fu SH.Cloning of thrombolytic enzyme(lumbrokinase) from earthworm and its expression in the yeast Pichia pastoris.Protein Expr.Purif.,2005,42(1):20-28
    27.Hamamoto H,Sugiyama Y,Nakagawa N.A new tobacco mosaic virus vector and its use for the systemic production of Angiotensin-1-converting enzyme inhibitor in transgenic tobacco and tomato[J].BioTechnology,1993,11(8):930-932
    28.Hill KK,Jarvis-Eagan N,Halk EL et al.The development of virus-resistant alfalfa,Medicago sativa L[J].Biotechnology,1991,9(4):373-377
    29.Hrzenjak TM,et al.Fibrinolytic and anticoagulative activities from the earthworm Eisenia foetida.Comp Biochem Physiol B BiochemMol Biol,1998,Apr.(1914):825-832
    30.Hu RL,Zhang SF,Liang HY et al.Codon optimization,expression,and characterization of recombinant lumbrokinase in goat milk.Protein Expr Purif,2004,37:83-88
    31.Hu Y,Meng XL,Xu JP et al.Cloning and expression of earthworm fibrinolytic enzyme PM246 in Pichia pastoris.Protein Expr Purif,2005,43:18-25
    32.Jobling SA,Gehrke L.Enhanced Translation of chimeric messenger RNAs containing a plant viral untranslated leader sequence.Nature(Lond).1987,325:622
    33.Khoudi H,Beauregard M.The de novo designed nutritive protein MB-1 Trp does not resist proteolytic degradation in alfalfa leaves.Plant Physiol Biochem,2005,43(12):1039-1043
    34.Khoudi H,Laberge S,Ferullo JM et al.Production of a diagnostic monoclonal antibody in perennial alfalfa plants[J].Biotech Bioeng,1999,64(2):135-143
    35.Lee W S,Tzen J T C,Kridl J C,et al.Maize oleosin is correctly targeted to seed oil bodies in Brassica napus transformed with the maize oleosin gene.Proc Natl Acad Sci U S A,1991,88(14):6181-5.
    36.Lu D Y,Pental D,Cocking E C et al.Plant regeneration from seedling cotyledon protoplasts[J].Z.Pflanzenphysiol,1982,(107):59-63
    37.Lu DY,Davey MR,Cocking EC et al.A comparison of the cultural behavior of protoplasts from leaves,cotyledons and roots of Medicago sativa[J].Plant Sci Lett,1983,(31):87-99
    38.Ma JK,Hiatt A,Hein M et al.Generation and assembly of secretory antibodies in plants.Science,1995,268(5211):716-719
    39.Mason HS,Lam DM,Atrntzen CJ.Expression of hepatitis B surface antigen in transgenic plants.Proc.Natl.Acad.Sci 1992,89(24):11745-11749.
    40.Matsumoto S,Ikura K,Ueda M et al.Characterization of a human glycoprotein(erythropoietin)produced in cultured tobacco cells.Plant Mol Biol,1995,27(6):1163-1172
    41.McGarvey PB,Hammond J,Dienelt MM et al.Expression of the rabies virus glycoprotein in transgenic tomatoes.Biotechnology,1995,13(13):1484-1487.
    42.Mckersie BD,Bowley SR,Harjanto E et al.Water-deficit tolerance and field performance of transgenic alfalfa overexpressing supreoxide dismutase[J].Plant physiol,1996,111(4):1177-1181
    43.Mckersie BD,Chen YR,de Beus M et al.Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa(Medicago stativa L.)[J].Plant physiol,1993,103(4):1155-1163
    44.Mihara H,Sumi H,Akazawa T,et al.Fibrinnolytic enzyme extracted from the worthworm.Thromb Haemostas,1983,50:258-263
    45.Mihara H,Sum i H,Yoneta T et al.A novel fibrinolytic enzyme extracted from the earthworm,Lumbricus rubellus.Jpn J Physiol,1991,41(3):461-472
    46.Mihara.H,et al,Thrombotic proteases from earthworm.Eur Pat Appl EP 105 092 C1C12N9647,11,Apr 1984,JP Aprl,82P173669,02 Oct.1982
    47.Mihara.H,et al.Noval thrombolytic therapy discovered from traditional oriental medicine using the earthworm.Southeast Asia J Trop Med Public Health,1992,23 Suppl.2:131-140
    48.Mizukami Y,Houmura I,Takamizo T,et al.Production of transgenic alfalfa with chintinase gene (RCC2)[A]Lorne and Hamitton,Victoria:Abstracts 2nd International Symposium Molecular Breeding of Forage Crops[C].2000.1051
    49.Mori M,Zhang GH,Kaido M et al.Efficient production of human gamma interferon in tobacco protoplasts by genetically engineered brome mosaic virus RNAs.J Gen Virol,1993,74(Pt 7):1255-1260
    50.Nakajima N,Mihara H,Sumi H.Characterization of protent fihrinolylic enzymes in earthworm,lumbricus rubellus[J].Biosci Biotech Biochem,1993,57(10):172621730.
    51.Nakajima N,Ishihara K,Sugimoto M.Chemical modification of earthworm fibrinolytic enzymes with human serum albumin fragment and characterization of the protease as a therapeutic enzyme. Biosci.Biotech.Biochem.,1996,60(2):293-300
    52.Nakajima N,Ishihara K,Sugimoto M.Chemical modification of earthworm fibrinolytic enzymes with human serum albumin fragment and characterization of the protease as a therapeutic enzyme.Biosci.Biotech.Biochem.,1996,60(2):293-300
    53.Narvaez-Vasquez J,Orozco-Cardenas ML,Ryan CA.Differential expression of a chimeric CaMV-tomato proteinase inhibitor Ⅰ gene in leaves of transformed nightshade,tobacco and alfalfa plants[J].Plant Mol Biol,1992,20(6):1149-1157
    54.Nauerby B,Billing K,Wyndaele R.Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens.Plant Science,1997,123:169-177
    55.Nordlee JA,Taylor SL,Townsend JA et al.Identification of a Brazil-nut allergen in transgenic soybeans[J].N Engl Med,1996,334(11):688-692
    56.Nykiforuk CL,Boothe JG,Murray EW et al.Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds.Plant Biotechnol J,2006,4(1):77-85.
    57.Parmenter DL,Boothe JG,van Rooijen GJ,et al.Production of biologically active hirudin in plant seeds using oleosin partitioning.Plant Mol Biol,1995,29(6):1167-80.
    58.Pen J,Molendijk L,Quax WJ et al.Production of active Bacillus licheniformis alpha-amylase in tobacco and its application in starch liquefaction.Bio/technology,1992,10(3):292-296
    59.Reisch B,Bingham E T.The genetic control of bud formation from callus cultures of diploid alfalfa [J].Plant Science Letters,1980,(20):71-77.
    60.Richter LJ,ThanavalaY,Amtzen CJ et al.Production of hepatitis B surface antigen transgenic plants for oral immunization.Nat Biotechnol,2000,18(11):1167-1171.
    61.Ryu GH,et al.Antithrombotic activity of a lubrokinase immobilized polyurethane surface.ASAZO J,1993,Jul2Sep;39(3):M 314-318
    62.Ryu GH,Han DK,Park S,et al.Surface characteristic properties of lumbrokinase immobilized polyurethane.J Biomed.Materi Res.1995,29(3):403-409
    63.Saunders J M,Bingham E T.Production of alfalfa plants from tissue culture[J].Crop Sci.,1972,(12):804-808.
    64.Shetty K,McKersie BD.Proline,thioproline and potassium mediated stimulation of somatic embryogenesis in alfalfa(Medicago sativa L.).Plant Science,1993,88:185-193
    65.Staub JM,Garcia B,Graves J et al.High-yield production of a human therapeutic protein in tobacco chloroplasts.Nat Biotechnol,2000,18(3):333-338.
    66.Strizhov N,Keller M,Mathur J et al.A synthetic cryIC gene,encoding a Bacillus thuringiensis delta-endotoxin,confers Spodoptera resistance in alfalfa and tobacco[J]Proc Natl Acad Sci USA,1996,93(26):15012-15017
    67.SugimotM,NakajimaN.Molecularcloning,sequencing and expression of cDNA excoding serineprotease with fibrinolytic activity from earthworm J].Biosci Biotechnol Biochem,2001,65(7): 1575-1580.
    68.Sugimoto M,Nakajima N.Molecular cloning,sequencing and expression of cDNA encoding serine protease with fibrinolytic activity from earthworm.Biosci.Biotechnol.Biochem.,2001,65(7):1575-1580
    69.Supena EDJ,Muswita W,Suharsono S,Custers JBM.Evaluation of crucial factors for implementing shed-microspore culture of Indonesian hot pepper(Capsicum annuum L.) cultivars.Scientia Horticulturae,2006,107:226-232
    70.Thomas J C,Wasmanm C C,Echt C et al.Introduction and expression of insect proteinase inhibitor in alfalfa(M edicago sativa L.)[J].Plant Cell Reports,1994,14:312-361
    71.Tregoning JS,Nixon P,Kuroda Het al.Expression of tetanus toxin fragment C in tobacco chloroplasts.Nucleic Acids Res,2003,31(4):1174-1179
    72.Tuholy T,Yu W,Bailey A et al.Immunogenicity of porcine transmissible gastroenteritis virus spike protein expressed in plants[J].Vaccine,2000,18(19-20):2023-2028
    73.Turpen TH,Reinl SJ,Charoenvit Y et al.Malarial epitopes expressed on the surface of recombinant tobacco mosaic virus.Biotechnology,1995,13(1):53-57
    74.Vandekerckhove J,Damme JV,Lijsebettens MV et al.Enkephalins produced in transgenic plants using modified 2S seed storage proteins.Biotechnology,1989,7(9):929-934
    75.Verwoerd TC,Paridon PA,Ooyen AJJ et al.Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves.Plant Physiol,1995,109(4):1199-1205
    76.Wang F,Wang C,Li M,et al.Purification,characterization and crystallization of a group of earthworm fibrinolytic enzymes from Eisenia fetida.Biotechnology Lett.,2003,25(13):1105-1109
    77.Wang HM,To KY.Agrobacterium-mediated transformation in the high-value medicinal plant Echinacea purpurea.Plant Science,2004,166:1087-1096
    78.Wigdorovitz A,Carrillo C,Dus Santos MJ etal.Virology,1999,255(2):347-353.
    79.Winicov I I,Bastola DR.Transgenic overexpression of the transcription factor alfinlenhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants[J].Plant Physiol,1999,120(2):473-480
    80.Witcher DR,Hood EE,Peterson D et al.Commercial production of α-glucuronidase(GUS):a model system for the production of proteins in plants.Molecular Breeding,1998,4:301-312
    81.YangJS,RuBG.Purification and characterization of an SDS-activated fibrinolytic enzyme from Eiseniafitida.Comp BiochemPhysiol,1997,118B(3)B623-631
    82.Zambryski P.Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells.Annu Rev Genet,1998,22:1-30
    83.Zeitlin L,Olmsted SS,Moench TR et al.A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes.Nat Biotechnol,1998,16(13):1361-1364
    84.Zhang Cheng,Wang Zhezhi.Isolation of a Calmodulin cDNA from Salvia miltiorrhiza Bunge and Construction of its Antisense Expression Vector[J].Molecular Plant Breeding,2006,4(31):339-344.
    85.Zheng Z,Kawagoe Y,Xiao S et al.5'distal and proximal cis-acting regulator elements are required for developmental control of a rice seed storage protein glutelin gene.Plant J,1993,4(2):357-366
    86.蔡朝晖,高山林,徐德然.丹参组织培养快速繁殖技术的研究[J].中国药科大学学报,1991,22(2):65-68
    87.陈向荣,吉前华,孔祥文.基因工程植物的安全性问题.生态科学,2003,22(1):82-85
    崔光红等.丹参功能基因组学研究Ⅲ——丹参金属硫蛋白MT-2基因的分析[J].中国中药杂志,2007,32(14):1393-1395.
    88.邓百万,张兆清,刘世贵等.几种豆科牧草植物组织培养体细胞胚诱导研究[J].汉中师范学院学报(自然科学),2000,18(1):72-78
    89.段平,胡淑丽,曾耀辉.蚯蚓溶栓酶对大鼠凝血及纤溶指标的影响.时珍国药研究.1997,8(1):14-16
    90.段艳冰.丹参中迷迭香酸生物合成途径的苯丙氨酸支路基因的克隆及研究[D].上海:第二军医大学,2006.
    91.高书颖,郭蔼光,金伟波等.利用转基因植物生产药用蛋白研究进展.西北植物学报,2003,23(6):1044-1048
    92.郭怀芳,何执中,张莉.蚓激酶的临床研究进展[J].药物生物技术,2001,9(1):57-60.
    93.郝苏丽,张林可,以TAME为底物测定蚓激酶效价[J].药物分析杂志,1995,15(3):39-41
    94.韩立敏.丹参APX和GPX基因克隆及表达分析[D].陕西师范大学硕士论文,陕西师范大学图书馆,2007.
    95.韩利芳,张玉发.烟草MnSOD基因在保定苜蓿中的转化.生物技术通报,2004,1:39-46
    96.何水林,郑金贵,王晓峰,等.植物次生代谢:功能、调控及其基因工程[J].应用于环境生物学报,2002,8(5):558-563.
    97.何执中,郭怀芳,唐宁,方成.蚯蚓纤溶酶的分离纯化及抗栓活性研究.中国生化药物杂志,2001,22(6):284-286.
    98.黄绍兴,吕德扬,邵嘉红等.紫花苜蓿原生体转基因植株再生[J].科学通报,1991,17:1345-1347
    99.姜东胜,刘复强,赵相印,等.用亲和色谱柱纯化蚯蚓纤溶酶[J].中国医药工业杂志,1996,27(4):147-149
    100.井鑫,张兴国.植物生物反应器研究进展[J].西南农业大学学报,2004,2(4):109-112.
    101.匡红梅.我省钟祥市首次发现检疫对象——丹参紫纹羽病[J],湖北植保,2001,1(1).
    102.黎万奎,陈幼竹,周宇等.肝片吸虫抗原基因转基因苜蓿再生的研究.四川大学学报(自然科学版),2003,40(1):144-147
    103.黎茵,黄霞,黄学林.根癌农杆菌介导的苜蓿体胚转化.植物生理与分子生物学学报,2003,29(2):109-113
    104.李聪,熊德邵,耿华珠.苜蓿愈伤组织再生植株的研究[J].中国草地,1989,6(6):51-56.
    105.李家实.中药鉴定学[M].上海:上海科学技术出版社,1996:170-172.
    106.李菁华.蚓激酶研究与应用进展.锦州医学院学报,2004,25(5):58-60
    107.李兴发,贾飞飞,刘建蓉,等.蚓激酶研究和应用进展.中国新药杂志,2005,14(8),964-968
    108.林少琴,余萍,兰瑞芳.蚯蚓纤溶酶的亲和层析纯化及部分性质.药物生物技 术,2000,7(4):229-233
    109.刘俊峰,王新泉,徐磊,等.编码蚯蚓纤溶酶组分A基因的cDNA克隆及表达.科学通报,2002,47(22):1718-1721
    110.刘世海等.丹参DHN2基因的克隆与序列分析[J].分子育种,2005,3(1):66-70.
    111.刘玉乐 人乙肝病毒表面抗原基因在转基因烟草中的表达中国科学(B辑),1993,23:252-255.
    112.刘昱辉,贾士荣.植物油体表达体系的研究进展.农业生物技术学报,2003,11(5):531-537.
    113.路英华,金汝城.蚯蚓纤溶酶的提取、性质鉴定和溶解血栓的研究.兰州大学学报,1986,22(1):95-100
    114.吕德扬,范云六,俞梅敏等.苜蓿高含硫氨基酸蛋白转基因植株再生[J].遗传学报,
    115.马晖玲,卢欣石,曹致中等.紫花苜蓿不同栽培品种植株再生的研究.草业科学,2004,13(6):99-105
    116.毛孙忠,严哲,陈石根.蚯蚓纤溶酶的分离纯化及其动力学性质研究.温州医学院学报,2002,30(4):277-278
    毛莹等.铜锌离子影响丹参金属硫蛋白MT2基因表达[J].分子植物育种,2007,5(3),389-292.
    117.牛勃,程牛亮,张祖珣等.双胸蚓纤溶酶Ⅲ的分离纯化及其性质研究[J].山西医学院学报,1996,27(2):81-83.
    118.彭先凤,杨继虞,陶建宁,等.赤子爱胜蚓五种纤溶酶组分的分离纯化及对纤维蛋白原酶解的初步研究.华西药学杂志,1999,14(1):16-18
    119.彭先凤,杨继虞,陶建宁,彭余田等.赤子爱胜蚓五种纤溶酶组分的分离纯化及对纤维蛋白原酶解的初步研究.华西药学杂志,1999,14(1):16-18
    120.饶育雄等.广州蚯蚓体腔液酸纤维蛋白作用的初步观察,广州医学院学报,1986,Vol.14,No.3,15-18
    121.舒文华,耿华珠,孙勇如等.紫花苜蓿原生质体培养与植株再生[J].草地学报,1994,2(1):40-44.
    122.宋婕,丹参苯丙氨酸解氨酶基因(smPAL1)的克隆及其功能初探[D].陕西师范大学硕士学位论文,陕西师范大学图书馆,2007.
    123.孙兆军,梁国栋,陈飞,等.蚓激酶的克隆及其对BHK细胞的作用.中国生物化学与分子生物学报,2002,18(6):776-779.
    124.陶璐璐,袁静明.丹参愈伤组织细胞固定化及其转化产物的特征[J].生物工程学报,1990,6(3):218-223.
    125.王丽娟.Talea-3基因植物表达载体构建及其对丹参遗传转化的研究[D].陕西师范大学硕士学位论文,陕西师范大学图书馆.2005.
    126.王凌健,倪迪安,陈永宁等.植物学报,2001,43(2):132-137.
    127.王铭楷等.丹参DHN1基因的克隆与序列分析[J].西北植物学报,2004,24(11):199-1995.
    128.王凭青,周兴龙,杨青川等.紫花苜蓿高频再生组织培养体系建立.重庆大学学报,2005,28(2):132-136
    129.王学勇.丹参毛状根基因诱导表达分析及其有效成分生物合成基因的克隆研究[D].北京:中国中医科学院,2007.
    130.吴骋等.一种快速有效的血栓溶解剂2e2TPA,生物物理学报,1986,Vol.2,No.1,84
    131.吴志明等.黄瓜花叶病毒丹参株系外壳蛋白基因的克隆和序列分析[J].河北农业科学,2004,8(2),21-27.
    132.肖卫平等.丹参叶斑病的发生规律及防治措施研究[J].耕作与栽培,2004,2:41-42.
    133.熊焱,杨四成,刘小瑛,等.蚯蚓纤溶酶的分离纯化及部分序列测定[J].生物化学杂志,1997,13(3):2922294.
    134.徐建民,张国桢,陈松鹤,等.赤子爱胜蚓纤维蛋白溶解酶的亲和层析纯化和生化特性[J].上海医科大学学报,1991,18(4):252-256
    135.曹晓燕等.丹参中病程相关蛋白基因SmSTH-2的生物信息学分析[J].植物生理学通讯,2007,43(6):1025-1030.
    136.崔光红等.丹参乙烯应答因子结合蛋白基因的克隆分析[J].湖南中医药大学学报,2007,27(1):297-299.
    137.徐义辉,梁国栋,孙兆军,等.蚯蚓纤溶酶新基因PV242的克隆与表达.生物化学与生物物理进展,2002,29(4):610-614
    138.闫峻,汤立达.蚓激酶的研究与临床应用,中草药,2006,37(2):295-298
    139.扬起简,周禾,孙彦等.紫花苜蓿的愈伤组织诱导及组织培养.北京农学院学报,2004,19(2):28-30
    140.杨嘉树,李令媛,茹炳根.蚯蚓体内一种纤溶酶原激活剂(e-PA)的部分性质研究.中国生物化学与分子生物学报,1998a,14(2):164-169
    141.杨嘉树,李令媛,茹炳根.蚯蚓体内一种纤溶酶原激活剂(e-PA)的分离纯化.中国生物化学与分子生物学报,1998b,14(2):156-163
    142.杨燮荣,邰根福,周荣仁等.苜蓿组织培养及植株的再生[J].植物生理学通报,1981,(5):33-34.
    143.阴健,郭力弓.中药现代研究与临床应用[M].北京:学苑出版社,1993,171-185.
    144.余世春,琚小龙,段广勋.丹参的化学成分和药理活性研究概况[J].安徽卫生职业技术学院学报,2002,1(2):43-47.
    145.张更林,周鹏,郭安平,等.转基因番木瓜作为抗结核植物口服疫苗的初步研究.云南植物研究,2003,25(2):223-229
    146.张守峰,扈荣良,范志强,等.蚓激酶基因的人工合成及山羊乳腺表达.中国生物工程杂志,2004,24(9):49-52
    147.张万军,王涛.紫花苜蓿愈伤成苗高频再生体系的建立及其影响因子的研究.中国农业科学,2002,35(12):1579-1583
    148.赵淑娟,丹参4-香豆酸:辅酶A连接酶家族基因克隆及功能研究[D].上海中医药大学博士论文,上海中医药大学图书馆,2003.
    149.赵晓瑜,静天玉,王彦芳,等.蚯蚓纤溶酶在大肠杆菌中的克隆与表达.河北大学学报,2002,22(4):392-395
    150.赵晓瑜,张冬,李亚东.蚯蚓纤溶酶7#组分基因在甲醇酵母中的克隆与表达.河北大学学报(自然科学版),2005,25(6):633-638
    151.周元聪,朱洪,陈远聪.赤子爱胜纤溶酶的分离纯化.生物化学与生物物理学报,1988,20(1):35-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700