农杆菌介导的acdS基因转化烟草和中苜3号的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ACC脱氨酶基因可以将乙烯合成的前体物质ACC(1-氨基环丙烷-1羧酸)降解为α-丁酮酸和氨,从而降低植物体内乙烯的生成量,达到增强植株的抗逆性的目的。本研究以普通烟草品种NC89和紫花苜蓿品种“中苜3号”作为基因转化受体,利用农杆菌介导法将连接到CaMV35S-2和rolD两种启动子下游、来自于根际促生菌-假单胞杆菌UW4的acdS基因转入其外植体。在叶盘法转化苜蓿的过程中,优化了紫花苜蓿高频再生组织培养体系,得到了转基因烟草和紫花苜蓿植株。对转基因植株进行检测,以期获得耐逆性更好的烟草和苜蓿材料。经过分子生物学鉴定表明,表达元件已经整合到转基因植株的基因组中,并且能转录为mRNA,在转录水平上没有沉默。
     主要结果如下:目的基因acdS的转化及对转基因烟草的初步鉴定。对转基因植株进行PCR、RT-PCR检测和耐盐性分析,结果表明,目的基因acdS已经整合到烟草基因组中,在转录水平上得到表达,且rolD启动子调控的含有acdS基因的转基因烟草有更强的耐盐性;建立和优化了“中苜3号”体胚发生体系。选用培养5~7 d的无菌苗子叶为外植体,通过不同处理结果的比较表明,UM +KT 1.5mgL-1的培养基是胚状体分化诱导效果较好的培养基;农杆菌介导的acdS基因转化“中苜3号”遗传转化体系的建立与优化。通过对试验现象的观察和数据的统计分析表明,将培养5~7d的苜蓿无菌苗的子叶先预培养2 d,经OD600≈0.5左右的农杆菌菌液浸染10min,共培养3 d,然后转接到含500mgL-1的头孢霉素的UM培养基上培养一周左右。最后转入含有50mgL-1的卡那霉素和300mgL-1的头孢霉素的UM培养基上进行筛选培养的转化体系效果最佳;目的基因acdS的转化及对转基因苜蓿的初步鉴定。将UM+2,4-D 2mgL-1+KT 0.25mgL-1+Kan 50mgL-1+Cef 300mgL-1培养基所诱导出的抗性愈伤组织转接到UM+KT 1.5mgL-1 +Kan 50mgL-1+Cef 100mgL-1培养基上进行胚状体的诱导,然后在1/2MS培养基上使其生根成苗。最后,对转基因植株进行针对目的基因acdS的PCR检测,结果部分植株呈阳性。对PCR检测呈阳性的植株进行Southern检测、RT-PCR检测和cDNA测序鉴定,结果表明,目的基因acdS已经整合到苜蓿基因组中,且在转录水平上得到正确的表达。
ACC deaminase can catalyzes metabolism of ACC to ammonoa anα-ketobutyrate.The gene transformation acceptors selected in this experiment are tobacco NC89 and the Alfalfa cultivar Medicago sativa L.“Zhongmu NO.3. The acdS gene, which had been cloned from Pseudomonas putida UW4 and ligated to CaMV35S-2 and rolD promoter, was transformed into tobacco NC89 by Agrobacterium -mediated. In the process of transferring alfalfa by leaf disks, we optimized high -frequency regeneration system. Based on that, gene acdS, was also transformed into Medicago sativa L.“Zhongmu NO.3”by Agrobacterium-mediated. The transgenic alfalfa plants were gained and the expression elements could be integrated into the genome of alfalfa by identification.
     The main results were as following: Transformation of acdS and identification of transgenic tobacco. By PCR, RT-PCR and salt-tolerance analysis, the results indicated that acdS gene had already inserted into the genome in the plants and transcripted to mRNA. The transgenic tobacco palnts of the gene acdS under the transcriptional control of the rolD promoter had stronger salt-tolerance than the other; Select the cotyledon as the explant, conduct the tissue culture systematic research and seek a high differentiation rate explant and the basic culture medium that suitable for this variety. It was indicated that UM +KT 1.5mgL-1 medium had a better effect on embryo induction;Establishment and optimization of genetic transformation system by Agrobacterium-mediated.The optimized genetic transformation procedure was: The edges of cotyledons from aseptic plants which had been cultured for 5~7 days were cut, pre-culture for 2 days then moved to a suspension of Agrobacterium cells. Cell density was adjusted to fall 0.5 at OD600. After 10min inoculation and co-culture 3 days, the explants were transferred to UM containing 500 mgL-1 cefotaxime for a week.Then they were transferred to UM containing 300mgL-1 cefotaxime and 50mgL-1 kanamycin for induction of Kan- resistance callus; Transformation of acdS and identification of transgenic plants.The acdS gene was transformed into Medicago sativa L.“Zhongmu NO.3”according to transformation procedure showed above. Kan-resistance callus which derived from explants were transferred to UM containing 1.5mgL-1 kinetin, 100 mgL-1 cefotaxime and 50mgL-1 Kanamycin for embryo induction and development. Embryos derived from callus were transferred to 1/2MS for the formation of roots. Finally, molecular identification of regeneration plants was carried out; the results of PCR and southern Blot identification of acdS gene showed that some alfalfa plants had inserted into the genome.In addition, the results of RT-PCR and cDNA sequencing showed that the gene of acdS had transcribed into mRNA.
引文
1.陈晨,曹致中,等.农杆菌介导的紫花苜蓿遗传转化体系的建立与优化.甘肃农业大学学报,2004,39(5):516~519.
    2.陈丽梅,潘俊松,何欢乐,蔡润.农杆菌介导的基因转化研究进展.甘肃科学学报,2005(2):61~63.
    3.陈善福,舒庆尧.植物耐干旱胁迫的生物学机理及其基因工程研究进展.植物学通报,1999,16(5):555~560.
    4.陈善福,舒庆尧.植物耐干旱胁迫的生物学机理及其基因工程研究进展.植物学通报,1999,16(5):555~560.
    5.范延辉.根际促生菌及其在防治连作障碍中的应用[J].天津职业院校联合学报2008,10(2):33~35.
    6.付顺华.植物转基因研究进展.云南林业科技,2003,1:69~74.
    7.顾垒,毕玉芬.转基因苜蓿研究的现状和前景[J].草原与草坪,2004,1:17~20.
    8.韩利芳,张玉发.烟草Mn~SOD基因在保定苜蓿中的转化.生物技术通报,2004,1:39~43.
    9.郝贵霞,朱祯等.毛白杨遗传转化系统优化的研究.植物学报,1999,41(9):936~940.
    10.郝林,Mundy J细菌卤代烷烃脱卤酶基因在拟南芥中的高效表达[J].应用生态学报.1999.10(1):83~85.
    11.郝林,曹军.CaMV35S双启动子显著提高转基因在拟南芥中表达水平的研究(简报).植物生理学通讯,2000,36(6):517~519.
    12.胡江春等.植物根际促生菌(PGPR)的研究与应用前景[J].应用生态学2004,15(10):1963~1966.
    13.胡清泉,玉永雄.转基因苜蓿研究进展[J].中国草地,2005,27(5):58~62.
    14.华卫东,夏卓盛,赵可夫,李法曾,等.中国盐生植物.植物学通报,1999,16(3):201~207.
    15.黄剑.紫花苜蓿高频再生体系的建立及农杆菌介导的甜菜碱醛脱氢酶基因转化的研究:[硕士学位论文].兰州:甘肃农业大学,2002.
    16.黄绍兴,吕德扬,等.紫花苜蓿原生质体转基因植株再生.科学通报,1991,17:1345~1347.
    17.贾士荣等.植物乙烯合成研究进展.植物生理学通讯1994,30(4):3~10.
    18.焦改丽,孟钊红等.花椰菜花叶病毒(CaMV)35S启动子在转基因棉花中的表达[J].作物学报,2004,30(11):1135~1139.
    19.金危危,覃瑞,宋运淳.植物转基因位置依赖性沉默与位置效应.生物技术通讯,2001, 3:9~13.
    20.李瑞年,李学森,朱环元,等.紫花苜蓿对准噶尔盆地西北缘土质荒漠改良效果初报[J].草食家畜,2004,(2):54~56.
    21.林栖凤,李冠一.植物耐盐研究进展.生物工程进展,2000,20:20~25
    22.刘存德.果实成熟及其基因调控.生物学通报l999(34):4~6.
    23.刘香萍,李国良,迟文峰,崔国文,杜广明.紫花苜蓿耐盐生理的初步研究[J].现代农业科技,2006,12:6~7.
    24.刘小琳,王继峰,胡小燕等.根癌农杆菌介导的紫花苜蓿遗传转化体系的建立与优化[J].中国草地学报,2007,29(02):102~106.
    25.刘艳芝,韦正乙,邢少辰等.HAL1基因转化苜蓿再生植株及其耐盐性[J].吉林农业科学,2008,33(6):21~24.
    26.柳武革,薛庆中.蛋白酶抑制剂及其在抗虫基因工程中的应用.生物技术通报,2000,1:20~25.
    27.吕德阳,曹学远,等.紫花苜蓿外源基因共转化植株再生.中国科学,2000,30(4):342~348.
    28.马晖玲.紫花苜蓿抗旱耐盐碱转基因植株选育的研究[D].兰州:甘肃农业大学,2004.
    29.明小天等,通过基因枪提高根癌农杆菌转化水稻的效率(英).植物学报,2001,43 (1) :72~76.
    30.沈世华等.玉米基因转化的离体子房注射及转基因植株的鉴定.植物学报,2001 ,43 (10) :1055~1057.
    31.宋俊岐,赵春晖等.控制果实成熟的植物基因工程研究进展[J].生物技术通报, 1997(5):8~ 11.
    32.宋扬吴,存祥等.对引进的美国大豆品种进行转基因成分的检测[J].大豆科学,2005,24(5):116~120.
    33.苏加楷,张文淑.耐盐碱苜蓿-中苜1号.全国牧业通讯,1998,7~25.
    34.王爱勤,王自章,杨丽涛,韦宇拓,李杨瑞.乙烯生物合成途径中的两个关键酶基因的研究进展[J].广西农业生物科学, 2004,23(2):164~169.
    35.王春荣.杨树叶片高频再生体系的建立及根癌农杆菌介导的转基因耐盐杨树的获得:[硕士学位论文].泰安:山东农业大学,1998.
    36.王海海,吴慎杰等.35启动子甲基化引起棉花转基因沉默[J].棉花学报, 2008,20(4):274~280.
    37.王建设.葡萄细胞悬浮系的建立及BADH基因转化的研究:[硕士学位论文].泰安:山东农业大学,2001.
    38.王晓侠,姚小宝,嵇宪生,朱宏亮.腺病毒携带EB病毒LMP1反义基因抑制人鼻咽癌细胞的生长[J].广东医学,2008,29(2):568~569.
    39.王新海,毕玉芬等.耐酸性紫花苜蓿的研究进展[J].云南农业大学学报,2005,20(5):705~709.
    40.汪开治. Arcadia公司推出转基因耐盐育种技术[J].生物技术通报,2005,6:50.
    41.吴关庭,郎春秀,胡张华等.转CBF1基因增强水稻的耐逆性[J].核农学报2006,20 (3) :169~173.
    42.席琳乔,李德锋等.棉花根际促生菌固氮和分泌生长激素能力的测定[J].干旱区研究2008,25(5):690~694.
    43.夏铁骑.植物根际促生菌及其应用研究[J].济源职业技术学院学院2008,7(3):7~11.
    44.熊恒硕,康俊梅,杨青川,孙彦,唐克轩.双价抗虫植物表达载体p3300-bt-pta转化苜蓿的初步研究[J].中国草地学报,2008,30(1):21~26.
    45.徐春晖,夏光敏,贺晨霞.农杆菌转化系统研究进展[J ].生命科学, 2002, 14 (4) : 223~225.
    46.晏石娟,马晖玲,曹志忠.紫花苜蓿抗旱耐盐碱转基因抗性苗耐盐性研究[J].2006,41(5):91~94.
    47.杨甲定,钟诲文. ACC脱氨酶基因转化白兰瓜的初步研究[J].西北植物学报2002, 22 (5) : 1044~1049.
    48.杨青川,康俊梅,孙彦等.紫花苜蓿耐盐新种质一般配合力分析与轮回选择[J].草地学报,2006,14(1):4~8.
    49.杨青川,苏加楷,耿华珠.“中苜1号”紫花苜蓿耐盐遗传特性初步研究.草地学报,1998,6(3):162~170.
    50.姚泉洪,黄晓敏等.植物乙烯生物合成与抗衰老工程.上海农业学报[J] .1994,10( 2 ):89~96.
    51.余叔文,汤章城.1999植物生理与分子生物学,第二版,科学出版.493~495.
    52.臧莹安,王喜军,陈春花.转基因产品的潜在风险及预防对策[J].家畜生态,2002 ,23 (2) :5~6.
    53.张智俊,罗淑萍,廖康,赵长生.哈密瓜转ACC脱氨酶基因再生植株的获得[J].上海农业学报,2002 ,18 (2) :10~14.
    54.郑红梅.转基因苜蓿的研究进展.四川草原,2005,4:12~14.
    55.朱德斌,邢达等.高灵敏度电化学发光PCR方法检测花椰菜花叶病毒35S启动子[J].激光生物学报,2007,16(4):485~489.
    56. Admans Do Yang Yallg SF Ethylene the gaseous plant hormone: mechernism and regulation of biosynthesis . Nature Biotechonl 1981,14:862~866.
    57. Ashraf M, McNeilly T, Bradshaw A D. Selection and Heritability of Tolerance to Sodium Chloride in Four Forage Species. Crop Sci., 1987, 26: 232~234.
    58. Austin S, Bingham E T, et al. Production and Field Performance of Transgenic Alfalfa (Medicago stativa L.)Expressing Alpha~amylase and Manganese~dependent Lignin Peroxidase. Euphytica, 1995, 85: 381~393.
    59. Austin S, Bingham E T, et al. Production and Field Performance of Transgenic Alfalfa (Medicago stativa L.)Expressing Alpha-amylase and Manganese dependent Lignin Peroxidase. Euphytica, 1995, 85: 381~393.
    60. Avraham T, Badani H, et al. Enhanced Levels of Methionine and Cysteine in Transgenic Alfalfa(Medicago stativaL.)PlantsOverexpressing the Arabidopsis Cystathionineγ-synthase Gene. Plant Biotechnology Journal, 2005, 3: 71~79.
    61. Bagga S, Armendaris A, et al. Genetic Engineering Ruminal Stable High Methionine Protein in the Foliage of Alfalfa. Plant Science, 2004, 166: 273~283.
    62. BAUCHER M, MARIE AB,BRIGITTEC.Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa and the effect on lignin compositon and digestibility[J].Plant Molecular Biology,1999,39:437~477.
    63. Benfey PN.,Ren L Chus NH. Tissue-sepcific expression from CaMV35S enhancer sub-domains in early stages of plant development.EMBO J ,1990,9(6):1677~1684.
    64. Bernard R. Glick Zhenyu Cheng Jennifer Czarny Jin Duan. Promotion of plant growth by ACC deaminase~producing soil bacteria[J]. Eur J Plant Pathol ,2007,119:329~339.
    65. Brouwer D J, et al. Mapping Factors Associate with Winter Hardiness Fall Growth and Freezing Injury in Autotetraploid Alfalfa. Crop Sci, 2000, 40: 1387~1396.
    66. Campbell B G 1996,ACC deaminase gene from pseudomonas strains~gene cloning for use in ethylene biosynthesis inhibition for fruit crop improvement. F.Ems Microbiol.lett,138 (23) 207~210.
    67. Dixon R A, Guo D G, et al. Improvement of in rumen Digestibility of Alfalfa Forage by GeneticManipulation of Lignin O-Methyltransferases. Transgenic Research, 2001, 10: 457~464.
    68. DONCOMIS.New Alfalfa Maybe Ideal for Poor Soil [EB/OL]. http://www.ars.usda.gov/is/pr/2002020125.htm,2002-01-04.
    69. Elena Sergeeva, Saleh Shah and Bernard R. Glick. Growth of transgenic canola (Brassica napus cv.Westar) expressing a bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene on high concentrations of salt[J].World Journal of Microbiology & Biotechnology ,2006,22:277~282.
    70. Elena Sergeeva, Saleh Shah and Bernard R. Glick. Growth of transgenic canola (Brassica napus cv. Westar) expressing a bacterial 1-aminocyclopropane-1-carb6oxylate (ACC) deaminase gene on high concentrations of salt[J].World Journal of Microbiology & Biotechnology ,2006 22:277~282.
    71. Elias A S, Albert S, et al. Transformation of Cultivated Alfalfa Using Disarmed Agrobacterium tumefaciens. Crop Science, 1986, 26: 1235~1239.
    72. Elmayan T ,Vattehemt H. Expression of singe copies of a strongly expressed 35S transgene can be silenced post-transcriptionally.Plant J,1996,9:787~797.
    73. Gandhi Pragash,M.,K.Badri Narayanan etal.Characterization of Chryseobacterium aquaticum Strain PUPC1 Producing a Novel Antifungal Protease from Rice Rhizosphere Soil.[J] Microbiol.Biotechnol,2009,19(1):99~107.
    74. Glick BR. The enhancement of plant growth by free~living bacteria. Can J Microbiol 1995,41:109~117.
    75. Hilda Rodriguez, Susanne Vessely, Saleh Shah and Bernard R. Glick. Effect of a Nickel-Tolerant ACC Deaminase Producing Pseudomonas Strain on Growth of Nontrans formed and Transgenic Canola Plants[J]. Curr Microbiol ,2008,57:170~174.
    76. Hipskind J D, Pavia N L. Constitutive Accumulation of Resveratrol Glucoside in Transgenic Alfalfa Increases Resistance to Phoma Medicaginis. Mol Plant Microbe Interact, 2000, 13: 551~562.
    77. Jiping Li, Daniel H. Ovakim, Trevor C. Charles, Bernard R. Glick. An ACC Deaminase Minus Mutant of Enterobacter cloacae UW4 No Longer Promotes Root Elongation[J].Current Microbiology, 2000, 41: 101~105.
    78. Joersbo M, Okkels F. A novel principle for selection of transgenic plant cells :positive selection[J ] . Plant Cell Reports,1996 , 16 :219 ~ 221.
    79. Joseph Sambrook,Daid W.Rusell.Molecular Cloning: A Laboratory Manual, 3rd .Beingjing:Science Press, 2002.
    80. JOSHBOOKIN.Possible Solutions to Remedy the Detri-mental Effects of Soil Acid it on Tropical Agriculture [J].Geology of Soils,1996,11:36~38.
    81. Karvouni, Zi,I.Johm Isolation and characterization of a melone cDNA clone encoding Phytoene synthase. Plant Mol.Biol.1995,27:1153~1162.
    82. Klee H.J,Hayford M, Kretzmer k,et al. 1991,Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plant. Plant cell, (3):1187~1193.
    83. Klee,H.J. Ripening physiology of fruit from transgenic tomato (Lycopersicon esculentum) plantswith reduced ethylene synthesis. Plant Physiol. 1993(102): 911~916.
    84. Matzke MA,Matzke AJM.How and why do plants inactivate homologous(Trans)genes?Plants Physiology,1995,107:679~685.
    85. Maurizio Trovato, Bruno Maras, Francisco Linhares, Paolo Costantino.The plant oncogene rolD encodes a functional ornithine cyclodeamiase. Plant Biology,2001.8(23):13449~13453.
    86. McKersie B D, Chen Y R, et al. Superoxide Dismutase Enhances Tolerance of Freezing Stress in Transgenic Alfalfa (Medicago stativa L.). Plant Physiol, 1993, 103: 1155~1163.
    87. Mesfint,Stephenjt,Deborahla.Over expression of MalateDehydrogenase in Transgenic Alfalfa Enhances Organic Acid Synthesis and Confers Tolerance to Aluminum [J].Plant Physiology,2001,127:1836~1844.
    88. Mizukami Y, Houmura I, etal. Production of Transgenic Alfalfa with Chintinase Gene(RCC2).Lorne and Hamitton,Victoria:Abstracts 2nd International Symposium Molecular Breeding of Forage Crops, 2000, 105.
    89. Narasimhulu S B , Kirti P B , Mohapatra T , et al . Shoot regeneration in stem explants and its amenablility to Agrobacterium tumefaciens mediated gene transfer in Brassica carinata[J ] . Plant Cell Reports,1992 , 11 :359 ~ 362.
    90. Nyman M, Wallin A.Transicent gene expression strawberry(Fragaria×ananassa Dach) protoplast and the recovery of transgenic plants [J ] . Plant Cell Rep ,1992 ,11 : 105~108.
    91. Oeller P. W .L,MinWong L.P et al Reversible inhibition of tomato fruit senescence by antisens RNA, Science 1991,254: 437~43.
    92. Picton S. Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene~forming enzyme transgene.Plant.J. 1993:469~481.
    93. Reed A.J.et al. Safety Assessment of ACC deamiase Protein Expressing in Delayed Ripening tomatoes. J.Agric. Food chem,1996(44):388~394.
    94. Samac D A, Smigocki A C. Expression of Oryzacystatin I and II in Alfalfa Increases Resistance to the Root Lesion Nematode. Phytopathology, 2003, 93: 799~804.
    95. Sanford JC ,et al. Transgenic Res. 1993 ,2 :252.
    96. Schard C, Byrd AD,Benzon GB et al . Design and construction of a veratule system from the expression of forein genes in plants[J].Gene,1987,61:1~11.
    97. Schroeder H E, KhanM R, et al. Expressing of Chicken Ovalbumin Gene in Three Lucerne Cultifvars. Plant Physiol, 1991, 18: 495~505.
    98. Smith JJ,Ververidis P,John P. Characterization of the ethylene-forming enzyme partially purified from melon. Phytochem 1992,31: 14~85.
    99. Sneh B, Koncz C, Zilberstein A. A Synthetic Cry I Gene, Encoding a Bacillus Thuringiensis Delta endotoxin, Confers Spodoptera Resistance in Alfalfa and Tobacco. Proc. Natl. Acad. Sci, USA: 1996, 93: 15012~15022.
    100.Solanasm, Eduard E.J. BiochemBiophysMs thods,1997,35:153~159.
    101.STOUTDG.Growth Of Alfalfa on Acid Soils When Established WithPreInoculated CoatedSeed[M].Agriculture and Agri-Food Canada,1994,87~110.
    102.Tabe L M, Wardley Richardson T M, et al. Genetic Engineering of Grain and Pasture Legumes for Improved Nutritive Value. Genetica, 1993, 90: 181~200
    103.Thomas Butterbrodt, Corinna Thurow ,Christiane Gatz. Chromatin immunoprecipitation analysis of the tobaccoPR-1a- and the truncated CaMV 35S promoter reveals differences in salicylic acid-dependent TGA factor binding and histone acetylation[J]. Plant Mol Biol,2006,61:665~674.
    104.Thomas J C, Wasmanm C C, et al. Introduction and Expression of Inst Proteinase Inhibitor in Alfalfa(Medicago stativa L.). Plant Cell Reports, 1994, 14: 31~36.
    105.Trulson,AJ. And E.A.Shahin . Invitro Plant regeneration in the genus Cucumis .Plant Sci.1986,47:35~43.
    106.Venkadasamy Govindasamy,Murugesan Senthilkumar, Kishore Gaikwad,Kannepalli Annapurna. Isolation and Characterization of ACC Deaminase Gene from Two Plant Growth-Promoting Rhizobacteria[J]. Curr Microbiol ,2008, 57:312~317.
    107.Wandelt CL, Khan MRI, et al. Vicilin with Carboryterminal KDEL is Retained in the Endoplasmic Reticulum and Accumulates to High Levels in the Leaves of Transgenic Plants. Plant J., 1992, 2: 181~192.
    108.Wenbo Ma,Trevor C.Charles, and Bernard R. Glick. Expression of an Exogenous 1-Aminocyclopropane-1-Carboxylate Deaminase Gene in Sinorhizobium meliloti Increases Its Ability To Nodulate Alfalfa[J]. Applied and environmental Microbiology, 2004,70(10): 5891~5897.
    109.Winicov I, Bastola DR. Transgenic Overexpression of the Transcription Factor Alfin1 Enhances Expression of the Endogenous MsPRP2 Gene in Alfalfa and Improves Salinity Tolerance of the Plants. Plant Physiology, 1999, 120: 473~480.
    110.Xin Good. Jill A.Reduced ethylene synthesis by transgenic tomatoes espressing S-adenosylmethionine hydrolase. Plant Molecular. Biology, 1994,26:781~790.
    111.Yang SF, Hoffman NE 1984 Ethylene biosythesis and regulation in higher plants. Annu Rev Plant Physiol ,35:155~189.
    112.Zhang J Y, Broeckling C D, et al. Overexpression of WXP1, a Putative Medicago truncatula AP2 Domain~containing Transcription Factor Gene, Increases Cuticular Wax Accumulation and Enhances Drought Tolerance in Transgenic Alfalfa(Medicago stativa L.). The PlantJournal,2005,42: 689~707.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700