声波扩频油井静液位测量系统的设计与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在石油开采行业中,为了解油井的产油能力,掌握生产动态,需要对油井内温度、压力和液位等参数进行日常的测量。其中油井液位测量是推算油层压力的大小、确定油井的生产能力以及选择油井最合理的生产方式的重要依据。
     目前油井液位测量主要是使用爆炸声源产生大功率的声脉冲信号打入井下,声波脉冲沿井管传播,遇到液面反射,由微音器接收回波信号。通过分析回波信号估计传播时延,进而推算出液面的深度。虽然可以通过各种滤波和相关处理方法可以提高信噪比,更好地识别接箍波和液面波,但是这种脉冲测距方法易受杂波干扰,测量精度和深度受到限制,同时安全性不高。为解决这些问题,本论文将扩频理论引入油井液位测量,利用低功率谱密度下声波扩频信号实现油井液位的精确测距。
     本文的主要研究内容包括:
     声学基本原理以及声波在管道中传播的特性;
     扩频基本原理特别是扩频测距的性能优势和m序列参数选择方法和载波的调制方式;
     声波换能器驱动电路和回波接收电路的设计。在此基础上,结合软件无线电思想,利用FPGA嵌入式数字信号处理平台实现可编程片上系统;
     建立声波扩频测距时延估计模型,研究数字信号处理优化算法,给出实验结果,分析和讨论测量精度问题。
     本文中研究的原理样机已经完成并通过测试,取得了比较理想的效果。
The measurement of parameters of oil wells such as temperature, pressure and oil liquid level is the basic task for oil industry. The liquid level is an important basis for the decision of oil pressure, the productivity of oil well and the most reasonable mode of production.
     At present, the main method of oil liquid level measurement is based on sound pulse signal which is produced by explosive sound source. The sound pulse propagates along the petroleum pipeline and reflexes when reaching the oil level. This signal is received by rheomicrophone and processed by microcontroller. The propagation delay time is calculated to estimate the depth of oil level. Although some filtering and correlation algorithms can be applied to improve signal to noise rate in order to recognize coupling wave and level wave better, pulse distance measuring is interfered by noise wave easily. At the same time the accuracy and depth of measuring is limited meanwhile the security can not be guaranteed. The theory of spread spectrum is lead in oil level measuring in this article in order to solve the problems, using low power density spread spectrum sound signals to measure the oil level accurately.
     The main content of this article includes as follows.
     The acoustics basic principle and the feature of sound wave propagating in the pipeline are introduced.
     The principle of spread spectrum especially the advantage of spread spectrum distance measuring is discussed. The parameter of m sequence and the method of modulation of sound wave carrier are analyzed.
     According to the environment in the pipeline, the driver circuit of sound wave transducer and high-precision echo receiving circuit are designed. The platform of FPGA embedded signal processing based on the idea of software radio is set up to achieve the architecture of system on programmable chip (SOPC).
     The time delay estimation model of sound wave spread spectrum system is established with the optimization of algorithm. Finally, the result of experiment is discussed and analyzed.
     The prototype introduced in this paper has been completed and tested, achieving some satisfactory results.
引文
1杨江天,雷小强,窦宏恩.新型油井液位测量系统.仪器仪表学报. 2007, 28(4):682~686
    2肖志军.油井声传播损失及基于扩频井下液位测量研究.西北工业大学硕士学位论文. 2006:2~3
    3杜功焕,朱哲民.声学基础.上海科学技术出版社. 1981:168~223
    4田日才.扩频通信.清华大学出版社. 2007, 4:67~73
    5杨小牛,楼才义,徐建良.软件无线电原理与应用.电子工业出版社. 2006, 9:22~56
    6杨俊,邢克飞,杨波,王跃科.基于FPGA的扩频测距快速捕获方法研究.电子器件. 2003, 4(26):406~409
    7程晓畅,苏绍景,王跃科,潘仲明,祝琴.伪随机码超声扩频测距系统设计与算法.测试技术学报. 2007, 1(21):79~83
    8葛万成,吴凤萍.两步相关法高抗干扰超声波距离测量技术的研究.仪器仪表学报. 2002, 23(3):253~256
    9葛万成.相关法高抗干扰超声波距离测量中的信号处理.同济大学学报. 2002, 30(1):71~76
    10程晓畅,王跃科.伪随机码超声扩频测距发射与接收电路设计.声学与电子工程. 2007, 1:42~45
    11樊秀云,袁嗣杰,张合敏.伪码数字相关在超声波测距中的应用.装备指挥技术学院学报. 2002, 13(3):77~80
    12马志敏,贾嘉.超声检测中弱信号提取方法.武汉水利电力大学学报. 1998, 31(6):76~79
    13杨建伟,王跃科,杨俊.基于软件无线电的近距离扩频测距算法.测试技术学报. 2006, 20(1):60~64
    14潘仲明,杨俊,王跃科.超声波扩频测距及其信道自适应均衡技术.国防科技大学学报. 2002, 24(6):95~98
    15曹茂永,王霞.提高钻井法凿井测井仪的超声测距可靠性.华侨大学学报(自然科学版). 2001, 22(3):298~302
    16何振亚,孟志浩,何世春.直接序列扩频通信中干扰抑制的进化规划自适应非线性滤波技术.通信学报. 1998, 19(3):1~6
    17唐朝伟,杨士中,黄振.伪随机码扩频超声多目标检测及干扰抑制.电路与系统学报. 1997, 2(2):14~17
    18 Wan Li Yao. A Pseudo Random Code Based Ultrasonic Navigation System. Proceeding of the 2004 IEEE International Conference on Robotics, Automation and Mechatronics. 2004:752~757
    19 R.J. Pirkl, G.D. Durgin. Optimal Sliding Correlator Channel Sounder Design. IEEE Transactions on Wireless Communications. 2008, 9(7):3488~3497
    20 K.A Rizvi, M.P. Fitton, Y.C. Chow, M. Ismail, Y.Q. Bian. Common channel interference cancellation for a spread spectrum system. 2004 59th Conference on Vehicular Technology. 2004, 3:1446~1450
    21 F. Blackmon, L. Antonelli, Remote, Aerial, Trans-Layer. Linear and Non-Linear Downlink Underwater Acoustic Communication. OCEANS. 2006, 9:1~7
    22 E. Hendrik, C. Mark, F. Philipe, S. Dirk. Improving External Memory Access for Avalon Systems on Programmable Chips. Field Programmable Logic and Application. 2006:27~29
    23 P. Gai, G. Lipari, D. Natale, M. Support for Multiprocessor Synchronization and Resourcesharing in System-on-programmabl Chips with Softcores. Proceedings on SOC Conference. 2005, 9:109~110
    24 Wu Yu Fan. New Nonlinear Algorithms for Estimating Suppressing Narrow Band Interference in DS Spread Spectrum Systems. IEEE Transactions on Communications. 1996, 44(4):1189~1190
    25 Viterbi etc. Large Capacity of a Power Controlled CDMA System. IEEE Selected Areas in Communication. 1993,111(6):892~900
    26 Y.C. Yoon, R. Kohno. A Spread Spectrum Multi-access System with a Cascade of Co-channel Interference Cancellers for Multipath Fading Channels. IEEE Second International Symposium on Spread Spectrum Techniques and Application. 1992:87~90
    27 F. Cardells Tormo, A. Valls Coquillat. Optimized FPGA-Implementation of Quadrature DDS. Circuits and Systems. 2002, 5(5): 369~372
    28 A. Kairus, J. Forsten, M. Tommiska, J. Skytta. Bridging the Gap between Future Software and Hardware Engineers: A Case Study Using the Nios Softcore Processor. ASEE/IEEE 33rd Frontiers in Education Conference. 2003, 2(11):546~548
    29 J. Garrison. IP Enabling SOPC-Technology Information. Electronic News. 2001:28~31
    30 D. Etiemble, S. Bouaziz, L. Lacassagne. Customizing 16-bit floating point instructions on a NIOS II processor for FPGA image and media processing. IEEE 3rd Workshop on Embedded Systems for Real-Time Multimedia. 2005, 9:61~66
    31 P. Moore, M. McLoone, Reconfigurable Instruction Interface Architecture forPrivate-Key Cryptography on the Altera Nios Processor. Advanced Industrial Conference on Telecommunications. 2005, 7:95~98
    32 H. Dinan, B. Jabbari. Spreading Codes for Direct Sequence CDMA and Wide Band CDMA Cellular Networks. IEEE Communications Magazine, 1998, 36(9):48~53
    33 K. Ramamritham, K. Arya, G. Fohler. System Software for Embedded Applications. VLSI Design. 2004, 12:12~14
    34 D. Jean-Philippe, G. Guy, R. Christian, B. Pierre. Software Radio and Dynamic Reconfiguration on a DSP/FPGA Platform. Frequenz. 2004, 58(6):152~159
    35 J. Austin, W.P.A. Ditmar. A Spread Spectrum Communications Channel Sounder. IEEE Transactions on Communications. 1997, 45(7):845~847
    36 H. Jarrokhi, R. Palmer. Determination of Chip Rate and Center Frequency for a Spread Spectrum Acoustic Ranging System. IEEE Electrical and Computer Engineering. 2002, 1(5):364~368
    37 T. Takeuchi, M. Tamura. A Ultra-wide Band Channel Sounder for Mobile Communication Systems. IEEE 12th International Symposium on Personal, Indoor and Mobile Radio Communications. 2001, 2(9):111~115
    38 R. Palmer. A Spread Spectrum Acoustic Ranging System. IEEE Electrical and Computer Engineering. 2002, 3(5):1242~1245
    39 J. Wilbur, J. Bono. Wigner/cycle Spectrum Analysis of Spread Spectrum and Diversity Transmissions. IEEE Journal on Oceanic Engineering. 1991, 16(1):98~106
    40 L. Freitag, M. Stojanovic. Basin-scale Acoustic Communication: a Feasibility Study Using Tomography m-sequences. OCEANS. 2001, 4(10):2256~2261
    41 K. Audenaert, H. Peremans, Y. Kawahara, ct. Accurate Ranging of Multiple Object Using Ultrasonic Sensor. Proceeding of the 1992 IEEE International Conference on Robotics and Automation. 1992, 2(5):1733~1738

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700