乳状液膜法预处理高浓度苯酚氨氮废水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高浓度苯酚氨氮废水主要来源于石油化工、焦化等工业行业,其水量大,成分复杂,是目前污染较严重的工业废水之一。苯酚是原型质毒物,氨氮导致水体富营养化,两者的高浓度对后续生化处理中微生物有抑制作用,因此该废水处理难度大,处理成本高。
     乳状液膜分离技术作为一种新型、高效、低成本、无二次污染的分离手段,近年来在环境保护得到广泛应用。
     本论文利用乳状液膜分离技术对高浓度苯酚氨氮模拟废水进行了预处理试验研究,在确定液膜体系的主要组成后,研究了表面活性剂用量、液体石蜡用量、膜内相浓度、油内比、乳水比、外水相pH值和反应时间7个单因素对乳状液膜稳定性及废水苯酚氨氮去除效率的影响,并采用正交试验确定了试验的最佳操作条件。
     去除苯酚效率最高的试验条件为:表面活性剂的含量比为3%、膜内相浓度为质量浓度2% NaOH溶液、石蜡的含量为11%、油内比为1:1、乳水比1:7、pH值5和反应时间5分钟;去除氨氮效率最高的试验条件为:表面活性剂的含量比为3%、膜内相浓度为质量浓度20% H2SO4溶液、石蜡的含量为7%、油内比为3:1、乳水比1:5、pH值12和反应时间5分钟。
     在上述最佳条件下,利用先处理氨氮后处理苯酚的操作顺序分别对模拟废水和实际垃圾渗滤液进行苯酚氨氮去除试验。实验结果较好且具重现性,其中模拟废水经处理后苯酚去除率在93%以上,氨氮去除率在96%以上,剩余苯酚浓度在70mg/L以下,剩余氨氮浓度在32mg/L以下;垃圾渗滤液经处理后氨氮去除效率最高达97.13%,苯酚去除效率最高达95.98%,剩余氨氮值最低55.19mg/L,剩余苯酚值最低3.90mg/L,达到试验设计中苯酚氨氮含量均在100mg/L以下预处理目标,有利于后续生化处理工艺的运行。
     通过对乳状液膜分离法新污染物质引入及技术经济分析,考虑回收硫酸铵的效益情况下,废水吨水处理费用约为0.65元。该技术无二次污染,具有技术经济可行性。
High strength ammonia phenol-containning wastewater is mainly produced inpetrochemical, coking and other industry, due to its large scale and complex components, it is one of the severer contamination. Phenol is a toxicant of prototype, ammonia is a contributing factor for water eutrophication, above all, their high concentrations will inhibit the microbial growth, so this waste water is difficult to deal with and its treatment cost is high.Emulsion liquid membrane is a new technology of efficiency, low-cost and no secondary pollution, in recent years was widely used in environmental protection.
     In this paper, emulsion liquid membrane pretreatment of the high concentration ammonia simulated wastewater was studied. Firstly the main components of liquid membrane system were determined, then seven main factors including the surfactant dosage, liquid paraffin dosage, membrane inward concentration, the ratio between the volume of oil phase and the sulfuric acid, emulsion-water ratio, the external phase pH value and reaction time were studied by single factors anlysis. Their effect on the stability of emulsion liquid membrane, ammonia and phenol removal efficiency were also analysed, according to orthogonal experiments results, the optimal operating conditions was determined.
     The most efficient removing phenol conditions were as follows, surfactant mass ratio was 3%, the inner membrane phase was NaOH solution with of 2%, paraffin mass ratio was 11%, the ratio between the volume of oil phase and the sulfuric acid 1:1, emulsion-water volume ratio was 1:7, pH value was 5 and the reaction time was 5 minutes;
     The most efficient removing ammonia nitrogen conditions were as follows: surfactant mass ratio was 3%, the inner membrane phase was H2SO4 solution with of 20% mass concentration, paraffin mass ratio was 7%, the ratio between the volume of oil phase and the sulfuric acid was in 1:1, emulsion-water ratio volume was 1:7, pH value was 12 and the reaction time was 5 minutes;
     on these conditions, the removing ammonia test was first carried out, the removing phenol experiment was followed, the simulated wastewater and landfill leachate was treated by emulsion liquid membrane technology respectively.The results indicated this technology was efficient and had reproducibility, simulated wastewater test results were as follows, the phenol removing rates was more than 93%, ammonia removing efficiency was also above 96%, the remaining phenol concentration was less than 70mg / L, the remaining ammonia concentration was less than 32mg / L .on the other hand, leachate treatment results were as follows, ammonia removing efficiency was also above 97.13%, the phenol removing rates was more than 95.98%, the minimum remaining phenol concentration was less than 3.9mg / L, the minimum remaining ammonia concentration was less than 55.19mg / L. these achieved the aim of experiment design(the aim were both ammonia and phenol remainning concentration would be less than 100mg/L), also this pretreatment would do good to subsequent biological treatment process.
     At last, by emulsion liquid membrane separation of material to introduce new pollution research and technical economic analysis, taking into account the benefits of recovery of ammonium sulfate, the waste tons of water treatment cost is about 0.65 yuan. The technology is no secondary pollution, with economic feasibility.
引文
[1]李世杰我国主要湖泊八成受到污染[J].中国经济报2008.
    [2]吴高明焦化废水(液)物化处理技术研究[M].华中科技大学博士论文.2001.
    [3]任源焦化废水水质组成及其环境学与生物学特性分析[J]环境科学学报2007(27) (7):1094-1100.
    [4]张彩英用膜法处理焦化废水的探讨[J].冶金动力2008(4): 69.
    [5]师晓春焦化废水生物脱氮技术研究趋势[M]中国环境科学学会学术年会优秀论文集2008.
    [6]吴勇民含酚废水处理新技术及其发展前景[J].环境科学与管理2007(32): 3.
    [7] Ruey-ShinJuang, Jia-YunShian. Adsorption of Phenol from water onto macrovore ticularresins[J] Journal of hazardous materials 1999: B70.
    [8]姜军清,陆晓华活性碳纤维处理含酚废水的研究[J].江苏环境科技2001(14) (1):1-3.
    [9] C.MorenoCastilia J.RiveraUlrilia. Adsorption of some substituted phenols on aetivated carbons from a bitulninious coal[J]. Carbon 1995(33): 6.
    [10] Beersingh,S.Madhusadhanam, VimtaDubey, Rabidner.Active carbon for removal of toxic chemicals from contaminated water [J]. Carbon 1996(34): 3.
    [11]万印华,王向德液膜法处理高浓含酚废水的研究[J]华南理工大学学报1998(26) (6):37-42.
    [12]徐伟辉,严叶卫含酚废水处理工艺综述[J]上海船舶运输科学研究所学报2005(28):l.
    [13]王旭,杜启云活性污泥法处理高浓度苯酚废水的研究[J]天津工业大学学报2007(26) (6):32-35.
    [14]刘帅,张培玉包埋法固定化微生物技术中的载体选择及在污水生物处理中的应用[J]河南科学2009(5).
    [15]汪大翚,徐新华,宋爽工业废水中专项污染物处理手册[M].化学工业出版社2000.
    [16]王文斌,董有,刘士庭吹脱法去除垃圾渗滤液中的氨氮研究[J]环境污染治理技术与设备2004(5) (6):51.
    [17]王有乐,翟钧,谢刚超声波吹脱技术处理高浓度氨氮废水试验研究[J]环境污染治理技术与设备2004(2)(2);59.
    [18] Izzet O,Mahmut A,Ismail K,et al.Advanced physico-chemical treatment experiences on young municipal landfill leachates[J]Waste Management 2003(23):441~446.
    [19]蒋建国,陈嫣,邓舟,等.沸石吸附法去除垃圾渗滤液中氨氮的研究[J]给水排水2003(129)(13):6.
    [20] Milan Z,sanchez E,Pozas C,et al.Ammonia removal from anaerobically treated piggery manure by ion exchange in xolumns packed with homoionic zeolite.Chemical[J]Engineering Journal 1997(66):65~71.
    [21]杨晓奕,蒋展鹏,潘咸峰.膜法处理高浓度氨氮废水的研究[J].水处理技术2003(9)(2):85.
    [22]孙锦宜.含氮废水处理技术与应用[M].北京:化学工业出版社2003.
    [23]穆大刚,孟范平,赵莹,等.化学沉淀法净化高浓度氨氮废水初步研究[J].青岛大学学报(工程技术版) 2004(19)(2):1.
    [24] Kumashiro K,Ishiwatari H,Nawamura Y.A pilot plant study on using seawater as a magnesium source for struvite precipitation. Paper presented at Second International Conference on the Recovery of Phosphorus from Sewage and Animal Wastes ,Noordwijkerhout [J]The Netherlands 2001.
    [25] Lee S I,Weon S Y,Lee C W,et al.Removal of nitrogen and phosphate from wastewater by addition of bittern[J]Chemosphere 2003(51):265-271.
    [26] Yang M,Kazuya U,Haruki M.Ammonia removal in bubble column by ozonation in the presence of bromide[J]Wat.Res. 1999(33)(8):1911-1917.
    [27]卢平,曾丽璇,张秋云,等.高浓度氨氮垃圾渗滤液处理方法研究[J]中国给水排水,2003,(19)(5):44.
    [28] Horan N J, Gohar H, Hill B.Application of a granular activated carbon-biolofical fluidised bed for the treatment of landfill leachates containing high concentrations of ammonia. [J]Wat.Sci.Tech. 1997(36)(2~3):369-375.
    [29] Fikret K,Yunus M P.Adsorbent supplemented biological treatment of pretreated landfill leachate by fed-batch operation[J]Bioresource Technology 2004(94):285-291.
    [30]李红岩,高盂春,杨敏组合式膜生物反应器处理高浓度氨氮废水[J].环境科学2002(23)(5):62.
    [31] Li N N. US 3410794.1968.
    [32]严忠孙文东乳状液膜分离原理及应用[M]化学工业出版社:2003.
    [33]杨旭、黄文民等液膜萃取法处理炼油厂含酚废水[J]西南石油学院学报1996(03).
    [34]秦非,张志军,蒋挺大等混合型表面活性剂液膜法处理含酚废水研究[J]膜科学与技术1997 (17).
    [35]康信煌,熊贞晟液膜法处理石化厂碱渣.含酚废水的研究[J]南昌航空工业学院学报1997(2).
    [36]梁舒萍,陆冠棋乳浊液膜处理含酚废水的研究[J]环境科学与技术1998.
    [37]石中亮,侯纯明,庞常健等乳状液液膜法处理含酚废水的研究[J]沈阳化工学院学报2002.
    [38]王彦斌,苏琼乳状液型液膜法处理含酚废水的影响因素[J].西北民族大学学报(自然科学版) 2003.
    [39]戚秀云,李霞液膜法处理高浓度含酚废水的模拟实验[J].黑龙江石油化工1999.
    [40]陈强,赵连彪炼油厂氨氮废水的乳状液膜法处理研究[J]甘肃农业大学学报2002(4).
    [41]李可彬,金士道.液膜法去除废水中的氨氮污染[J].膜科学与技术1996(16)(3):40-45.
    [42]尚晋.液膜法处理含氨氮废水[J].科技信息2007(24):25.
    [43]许国强,曾光明.液膜法去除萃余液中氨氮的试验研究[J]湖南有色金属2002(18)(4):33-35.
    [44]戴猷元王远东膜萃取技术基础[M]化学工业出版社2008(23).
    [45]张瑞华.液膜分离技术[M]江西人民出版社1984.
    [46] Li N N,et al.U.S Patent,1981,4259198.
    [47] Li N N,et al.U.S Patent,1982,4360448.
    [48]张秀娟等.新型表面活性剂LMS-2在液膜法处理含酚废水中的应用[J].环境化学.1982(4):320-326.
    [49]姚秉华,卞文娟.二烷基膦酸载体液膜中Zn(II)的传输研究[J].西安理工大学学报. 2001(17)(4):342-345.
    [50]尹卫平,赵永欣等.利用乳化液膜分离丙氨酸的研究.生物工程学报[J].1996(12)(4):410-415.
    [51]刘兴荣,刘爱花乳状液膜法分离二元氨基酸的研究[J].水处理技术.2003(23)(6):131-133.
    [52]刘国光,吕文英乳状液膜法分离提取醋酸的模拟试验[J].环境化学.2002(21)(4):385-388.
    [53]刘新芳,何鼎胜三正辛胺-仲辛醇-煤油组合液膜分离镉锌的研究[J]无机化学学报2003(12):1295-1300.
    [54]许玉东聂永丰.填埋场渗滤液的化学组成和物理组成[J].中国水网2005(12):1-2.
    [55] Li X.Z., Zhao Q.L. Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer[J]. Eco. Eng. 2003 20 (2):171-181.
    [56] Kjeldsen P, Barlaz M.A., Rooker A.P., et al. Present and long-term composition of MSW landfill leachate: A review[J]. Critical Reviews in Environ. Sci. Tech. 2002 (32 )(4): 297-336.
    [57] Peters T.A. Purification of landfill leachate with membrane filtration[J]. Filtration & Separation, 35(1):33-36.
    [58]王松林,廖利,王岩松,等.超声去除垃圾渗滤液中的氨氮[J].环境污染治理技术与设备, 2006 (7)( 6) : 110-125.
    [59]赵庆良,李湘中.垃圾渗滤液中氨氮对微生物活性的抑制作用[J].环境污染与防治, 1998, (20)(6):1-4.
    [60] Jimenez L., Alzaga R., Bayona J.M. Determination of organic contaminants in landfillleachates: A review[J]. Intern. J. Environ. Anal. Chem. 2002(82) (7):415-430.
    [61] Paxeus N.Organic compounds in municipal landfill leachates[J]. Water Sci. and Tech.,2002,42(7-8):323-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700