月球软着陆三维视景仿真系统的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在月球探测方案设计中,利用视景仿真技术对月球软着陆的过程进行可视化仿真演示,在建立起一个具备展示功能的信息表现平台的同时,加快并加深研究人员对仿真对象变化过程的认识,提高月球探测方案的设计水平和自动化水平。本文在对视景仿真技术进行研究的基础上,将其应用于探测器月球软着陆过程的可视化演示,在分布式环境下开发出月球软着陆三维视景仿真系统。
     首先,根据仿真的实时性和交互性要求,确定了系统的设计目标和功能,分析了系统开发的技术路线,提出了仿真演示系统的总体框架,并确定了基于MultiGen Creator和Vega Prime的开发环境。
     其次,对仿真系统中的三维实体模型进行分析,给出设计方案,并结合三维建模的相关技术,利用MultiGen Creator建立三维实体模型,包括:探测器,月球,月球车等。
     然后,研究了三维地形可视化建模的相关技术理论,结合仿真演示应用的需要,建立月表地形三维模型。根据Delaunay三角网生成算法,利用月表灰度图像提取的月表地形高程数据,建立了月表地形的三维模型。
     最后,基于MFC/Vega Prime对视景仿真驱动程序进行设计和实现。给出了仿真系统的三通道设计方案,并对仿真驱动程序的具体细节加以实现。最终,在HLA分布式环境下,实现了月球软着陆过程的仿真演示。
In the project of lunar exploration, visual simulation demonstrates the process of lunar softlanding with scene simulation technique. That can not only found an integrated information exhibition platform, but also accelerate and intensify understanding of changes of objects in simulation, and improve design level and automatization level of lunar exploration project. Based on research of the scene simulation technique, this paper applies scene simulation to demonstrate the process of lunar softlanding, and develops a 3D scene simulation system for lunar softlanding under distributed environment.
     Firstly, based on the characteristics of high real-time and interaction, this paper designs system target and function, analyzes technology course, advances holistic system frame, and confirms the development environment with MultiGen Creator/Vega Prime.
     Secondly, this paper analyzes 3D model in system and induces the blue print, based on the principle of 3D modeling, establishes 3D model of system with MultiGen Creator. The 3D model included: explorer, moon, lunar rover.
     Thirdly, considered the demands of system, this paper studies the theory of 3D terrain modeling, designs lunar terrain model. Based on Delaunay triangle net generating arithmetic, this paper establishes lunar terrain 3D model with lunar digital elevation data, which generated by lunar gray image.
     Finally, based on MFC/Vega Prime, this paper designs and implements the simulation program, develops a three-channel system project, and describes the details of implementation of simulation program. At last, in the distribute environment HLA, scene simulation system demonstrates the process of lunar softlanding.
引文
1栾恩杰.中国的探月工程_中国航天第三个里程碑.中国航天. 2007, 2: 3~7
    2桑玉民,张跃,余军涛,熊斌.用虚拟现实技术研究月球探测中的开拓性问题.系统工程与电子技术. 2002, 24(3): 95~98
    3吴家铸,党岗,刘华锋.视景仿真技术及应用.西安电子科技大学出版社, 2001: 2~25
    4韦有双,杨湘龙.虚拟现实与系统仿真.国防工业出版社, 2004: 164~170
    5周前祥,姜世忠,姜国华.虚拟现实技术的研究现状与进展.计算机仿真. 2003, 20(7): 1~4
    6胡峰,孙国基.航天仿真技术的现状及展望.系统仿真学报. 1999, 11(2): 83~88
    7胡社教,陈宗海.虚拟现实与卫星仿真技术.计算机仿真. 2001, 18(2): 15~17
    8 R. Bown, P. J. Kenney. Training the Hubble Space Telescope Flight Team. IEEE Computer Graphics and Application. 1995: 31~37
    9 M. R. Stytz, A. Kunz. A Distributed Virtual Environment for Satellite Orbital Modeling and Near Earth Space Environment Simulation and Proytral. Simulation. 1996, 6: 7~72
    10 C. Ocampo, G.. W. Rosborough. Transfer Trajectories for Distant Retrograde Orbiters of the Earth. The AAS/NASA International Symposium on Advances in the Astronautical Sciences. 1993: 1177~1200
    11 J. Encarnacao, M. Gobel, L. Rosemblurnl. European Activities in Virtual Reality. IEEE Transactions on Computer Graphics and Application. 1994, 14(1): 66~74
    12 C. Stoker, T. Blackmon. Marsmap-an Interactive Virtual Reality Model of the Pathfinder Landing Site. Proceedings of the 29th Lunar and Planetary Science Conference, Houston. 1998: 16~20
    13 L. Edwards, L. Fluckiger, L. Nguyen, R. Washington. VIPER: Virtual Intelligent Planetary Exploration Rover. Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics and Automation in Space, Canada. 2001: 18~21
    14 G. Pisanich, L. Plice, C. Neukom, L. Fluckiger, M. Wagner. Mission Simulation Facility: Simulation Support for Autonomy Development. 42nd AIAA AerospaceSciences Meeting and Exhibit, Reno Nevada. 2004: 947~951
    15 B. Hine, P. Hontalas, T. Fong, L. Piguet, E. Nygren, A. Kline. VEVI: A Virtual Environment Teleoperations Interface for Planetary Exploration. SAE 25th International Conference on Environmental Systems, Tucson, Arizona. 1995: 279~293
    16 K. Lialey. Virtual Reality and Tele-presence Applications in Space Robotics. Virtual Reality Systems. 1993, 11(2): 50~56
    17吴迪,黄文骞.虚拟现实技术的发展过程及研究现状.海洋测绘. 2002, 22(6): 15~17
    18 T. Iwata, K. Okuda, Y. Kaneko. Lunar Orbiting and Landing Missions. Proceedings of the AAS/NASA International Symposium on Orbital Mechanics and Mission Design. USA, Advances in the Astronautical Sciences. 1989, 69: 513~523
    19 B. Beebe. High Level Architecture Engineering Protofederation Experiment. NACON. 1997: 517~524
    20周彦,戴剑伟. HLA仿真程序设计.电子工业出版社, 2002: 5~40
    21王乘,周均清,李利军. Creator可视化仿真建模技术.华中科技大学出版社, 2005: 104~320
    22陈文彤,刘朝军,彭剑.基于OpenGL的卫星星下点轨迹可视化仿真.计算机仿真. 2006, 23(3): 24~26
    23王乘,周均清,李利军,陈大炜. Vega实时三维视景仿真技术.华中科技大学出版社, 2005: 1~14
    24张德锋,王华兵,薛原.基于Vega Prime的视景仿真技术研究与应用.计算机仿真. 2006, 23(7): 191~195
    25李瑞,刘鹏远. Vega程序设计在MFC中的应用.计算机工程与设计, 2002, 23(8): 55~57
    26 E. Gobbetti, J. F. Balaguer. An Integrated Environment to Visually Construct 3D Animations. Proceedings of SIGGRAPH, Los Angeles, California, USA. 1995: 395~398
    27 R. Guha, M. Bassiouni. Simulation Methods and Applications. Simulation Practice and Theory. 2002, 9(3):91~93
    28 N. Greene, M. Kass, G. Miller. Hierarchical Z-Buffer Visibility. In Proceedings of SIGGRAPH’93, CA. 1993: 231~238
    29 G. N. Pitts, D. Cornell. Using Object Peripherally-Based Level of Detail Switching for Real-Time 3D Graphics Simulations. Department of Computer Science Trinity University. 1997: 269~356
    30 P. Astheimer, M. L. Poche. Level-of-detail Generation and its Application in Virtual Reality. In Proceedings of the VRST’94 Conference, Singapore. 1994: 299~309
    31 E. A. Bier, K. R. Sloan. Two-Part Texture Mappings. IEEE Computer Graphics Applications, 1986, 6(9): 40~53
    32贾瑞生,姜岩,孙红梅,葛平俱.三维地形建模与可视化研究.系统仿真学报. 2006, 18(1):330~332
    33 P. Clignoni, E. Puppo, R. Scopingno. Representation and Visualization of Terrain surface at Variable Resolution. The Visual Computer, 1997, 13(5): 199~217
    34 J. Lee. Comparison of Existing Methods for Building Triangular Irregular Networks of Terrain From Grid Digital Elevation Models. International Journal of Geographical Information Systems. 1991: 267~285
    35齐敏,郝重阳,佟明安.三维地形生成及实时显示技术研究进展.中国图像图形学报. 2000, 15(4): 269~275
    36李志林,朱庆.数字高程模型.武汉测绘科技大学出版社, 2000: 10~45
    37武晓波. Delaunay三角网的生成算法研究.测绘学报. 1999, 28(1): 28~35
    38周培德.计算几何-算法分析与设计.清华大学出版社, 2000: 3~50
    39周秋生.建立数字地面模型算法研究.测绘工程. 2001, (1): 15~18
    40龚卓荣. LynX图形界面.国防工业出版社, 2002: 1~11
    41 R. R. Stunce, F. H. Mather. An Object-oriented Dynamoic Simulation Architecture for Rapid Spacecraft Prototyping. Aerospace Conference Proceedings. 2000, 1: 529~537
    42 M. J. Corbin, G. F. Butler. An Object-based Distributed Framework for Mission Simulation. Simulation Practice and Theory. 1996, 3: 383~399
    43吕品,张金芳.分布式仿真系统的多通道视景生成.系统仿真学报. 2007, 19(6): 1291~1295
    44杨平利,王建国,高有行,宣春.卫星运行视景仿真中的姿态控制研究.系统仿真学报. 2006, 18(1): 217~220
    45宋志明,康凤举.视景仿真的关键技术.计算机应用. 2004, 24(5): 67~68
    46宋志明,康凤举. Vega环境中一种自由视点方式的开发.计算机仿真. 2004,21(2): 109~111
    47 W. T. Reeves. Particle Systems-A Technique for Modeling a Class of Fuzzy Objects. ACM Computer Graphics. 1983, 17(3): 359~376
    48张芹,吴慧中,谢隽毅,张正军.基于粒子系统的火焰模型及其生成方法研究.计算机辅助设计与图形学学报. 2001, 13(1): 78~82
    49顾明,杨新.碰撞检测技术在空间飞行器视景仿真中的应用.计算机仿真. 2006, 23(5): 30~32
    50王江云,彭晓源,王行仁.基于HLA的卫星分布仿真系统设计与实现.计算机工程与设计. 2004, 25(5): 700~702
    51代丽红,李世其,尹文生.卫星在轨运行实时视景仿真系统的研究与实现.计算机仿真. 2006, 23(1): 36~43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700