重载六自由度电动摇摆台关键件的结构设计与优化仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六自由度摇摆台是基于空间并联机构Stewart平台原理开发的,具有结构刚度大、承载能力强、无累积误差、运动精度高、系统的动态响应快等特点,它是集机械、电控、传感器,空间运动数学模型、实时信号传输处理、图形显示、测量和计算机于一体的能够模拟摇摆运动的大型物理仿真试验设备。已在诸如机器人、飞行模拟器、新型机床、大射电望远镜、航空宇航器对接等领域获得了广泛应用,是近年来国内外研究的热点之一。
     本文根据六自由度电动摇摆台的功能和技术要求对摇摆台进行总体设计。对电动摇摆台的机械本体结构进行具体设计和研究,其中主要对关键件上平台、虎克铰、球铰进行结构设计,运动学与动力学仿真,并进行结构优化改进,最后得到满足要求的结构。
     运用三维建模技术在Pro/E中建立了六自由度电动摇摆台的三维实体模型,并对模型进行质量、间隙和干涉检测,验证总体结构设计的正确性与合理性,为摇摆台的运动学和动力学仿真提供正确的虚拟样机模型。应用ADAMS进行运动学和动力学仿真,检测运动干涉,并且得到摇摆台的运动情况和驱动力情况。应用ANSYS对摇摆台的关键件上平台、虎克铰、球铰进行有限元分析,包括静力分析、动力分析及模态分析,根据分析结果对设计的关键件进行结构的优化,确保摇摆台结构部件满足刚度和强度要求。最后应用ADAMS对摇摆台进行运动学仿真,验证设计的合理性。
The six degrees of freedom swaying platform which based on the parallel mechanism, with many advantages of good rigidity, large bearing capacity, high precision, fast system dynamic response, without accumulative error, etc. It is composed of mechanical construction, electric control, sensor, space motion mathematical models, real-time signal transmission and processing, graphical display, measurement and computer. So it is widely used to in these fields, such as, robot, flight simulator, new type machine, large radio telescope, astronatics docking. It is the hotspot in the field of mechanism study in recent years.
     This paper design the collectivity of electric six degrees of freedom swaying platform, based on demand of function and technique. Design and study the mechanical construction of electric swaying platform in detail. Especially, design the key parts, such as up-platform, hooke joint, spherical joint, and simulate kinematics and dynamics, then optimize the design, finally, get the construction satisfying the demand.
     With triaxiality modeling technique establish the triaxiality physical model of electric six degrees of freedom swaying platform in Pro/E. Check the model’s mass, clearance, intervene to validate the design of overall project is accurate and reasonable. And provide a valid virtual prototype model for kinematics and dynamics simulation. Simulate the kinematics and dynamics using ADAMS, check kinematics intervene, and get the movement of the swaying platform and the driving force. Meanwhile analyse the key parts which bear great burden with finite element method using ANSYS, pivotal parts contains up-platform, hooke joint, spherical joint, analyse contains statics analysis, dynamics analysis, model analysis, optimize the construction of the pivotal parts based on results of the analysis, and insure the rigidity and strength of the swaying platform structure satisfy the demand. Finally do the kinematics simulationof the swaying platform using ADAMS to check that the design is reasonable.
引文
1赵江波,王军政,汪首坤,吕戎.四自由度摇摆台的研制.液压与气动. 2003, 10:5~7
    2郭海艳.摇摆台的刻线.机械工人(冷加工). 2001, 11:33~34
    3王旭永,骆涵秀,吴江宁,李世伦,刘宇.六自由度并联电液伺服平台的特点及应用.液压与气动. 1995, (2):16~18
    4 Shao-Chi Wang , Hiromitsu Hikita, Hiroshi Kubo, Yong-Sheng Zhao, Zhen Huang, Tohru Ifukube. Kinematics and dynamics of a 6 degree-of-freedom fully parallel manipulator with elastic joints. Mechanism and Machine Theory. 2003, (38):439~461
    5 Ralph C Merkle. A new family of six degrees of freedom positional devices. Nanotechnology 8. 1997:47~52
    6 Y.X.Su, B.Y.Duan. The mechanical design and kinematics accuracy analysis of a fine tuning stable platform for the large spherical radio telescope[J]. Nbchatronics. 2000, (10):819~934
    7 K.M.Lee and D.K.Shah. Kinematic Analysis of A Three-degrees of freedom In-parallel Actuated Manipulator. IEEE Joumal of Robotics and Automation, 1988. 4(3):354~356
    8杨世祥,杨涛,徐悦桐.大型数字式六自由度运动平台的开发.液压与气动. 2003, (8):46~47
    9杨灏泉.飞行模拟器六自由度运动系统及其液压伺服系统的研究.哈尔滨工业大学博士学位论文. 2002:8~22
    10 Jun Yang, Z. J. Geng. Closed Form Forward Kinematics Solution to a Class of Hexapod Robots. Robotics and Automation. IEEE Transactions. 1998, (6): 503~508
    11 Dietmaier P. The Stewart-Gough platform of general geometry can have 40 real postures. In ARK. 1998, 29(4):7~16
    12陈学生,陈在礼,谢涛.基于神经网络的6-SPS并联机器人运动学精确正解.哈尔滨工业大学学报. 2002, (1):24~28
    13邹豪,王启义,赵明扬,李群有,张波.基于运动耦合结构的并联机器人运动学正逆解.中国机械工程. 1997, (6):30~32
    14 Didrit O, Petitot M, and Walter E. Guaranteed solution of direct kinematic problems for general configurations of parallel manipulator. IEEE Trans. Robotics and Automation. 1998, 14(2):25~26
    15刘安心,杨廷力,空间并联机构位置分析的连续.机械科学与技术. 1994, 51:19~25
    16 Baron L. and Angeles J. The on-line direct kinematics of parallel manipulators using joint-sensor redundancy. In ARK. 1998, 29(4):127~136
    17吕重耀,熊有伦. 6-6并联机构运动学位姿正解与单解.华中理工大学报. 1999, (7):36~38
    18 Dasgupta B, Mruthyunjaya T. Closed-from Dynamic Equations of the General Stewart Platform through the Newton-Euler Approach. Mech. Mach. Theory. 1998, 33(7):993~1012
    19汪劲松,李铁民,段广洪.并联构型装备的研究进展及若干关键技术.中国工程科学. 2002, (6):63~70
    20 C.Reboulet and R.Pigeyre. Hybrid Control of A 6-DOF In-Parallel Actuated Micro manipulator Mounted on a Scam Robot. Int.J. of Robotics and Automation. 1992. 7(1):25~37
    21 K.Cleary and T.Brooks. Kinematics Analysis of A Novel 6-DOF Parallel Manipulator. IEEE Conference on Robotics and Automation. 1993:708~713
    22王成.液压教学台的建模与仿真研究.哈尔滨工业大学硕士学位论文. 2003. 7:1~2
    23 Choi, S.H., Chan, A.M.M. A virtual prototyping system for rapid product development Computer-Aided Design. Mech. Mach. Theory. 2004, 36(5): 401~412
    24 H.Martikka, A.Mikkola. Dynamics Simulation and Design of a Hydraulic Driven Boom Using ADAMS. 1995 International ADAMS User Conference. Radisson on the Lake Resort & Conference Center Ypsilanti, Michigan, USA. 1995
    25郝云堂,金烨,季辉.虚拟样机技术及其在ADAMS中的实践.机械设计与制造. 2007, 7
    26 Mechanical Dynamics Inc. Road Map to ADAMS/Solver Documentation, 2000
    27 Ferretti, Gianni, Magnani, GianAntonio, Rocco, Paolo. Virtual prototyping of mechatronic systems. Annual Reviews in Control. 2004, 28(2): 193~206
    28王国强.实用工程数值模拟技术及其在ANSYS上的实践.西北工业大学出版社. 2000
    29 Bhaskar Dasgupta, T.S. Mruthyunjaya. The Stewart platform manipulator a review. Mechanism and Machine Theory. 2000:15~40
    30续彦芳,崔俊杰,苏铁雄.虚拟样机技术及其在ADAMS中的应用.机械管理开发. 2005, (1):70~73
    31游世明,陈思忠,梁贺明,基于ADAMS的并联机器人运动学和动力学仿真.计算机仿真. 2005, 22(8)
    32郭海鹰.大型通用有限元分析软件ANSYS简介及应用体会.无线电通信技术. 1996, 22(5):51~55
    33 Fabrizio A. Stefani. ANSYS User’s Manual for Revision 5.0.SASI. Dec, 1992
    34康富军,吴凤林,任家骏,张明.应用Pro/E和ANSYS的零件结构合理设计.机械管理开发. 2006, 8(4)
    35 Hong J Y, Sang B L. Design Optimization of the Pillar Joint Structures Using Equivalent Beam Modeling Technique. 2001:97
    36 R.V.Lust and J.A.Bennett. Structural Optimization in the Design Environment.
    4th International Conference on Vehicle Structural Mechanics. 1981:99
    37 Johannes Gerstmayr. ANSYS Element Reference. Ninth Edition. SAS, IP Inc, 1997
    38王宏雁,徐少英.有限元法在客车车身结构模态分析中的应用.北京汽车. 2002
    39杨为,邱清盈,胡建军.机械结构的理论模态分析方法.重庆大学学报. 2004, (6)
    40黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社. 1997
    41 HuntKH. Kinematics Geometry of Mechanisms. Oxford: Clarendon Press, 1990
    42赵建文,杜志江,孙立宁.虎克铰干涉判定准则及其优化设计方法研究.机械设计. 2004.11
    43于晖,孙立宁,张秀峰,蔡鹤皋.虎克铰工作空间研究及其在6-HTRT并联机器人中的应用.中国机械工程. 2002, 13(21)
    44孙立宁,于凌涛,杜志江,蔡鹤皋.并联机器人虎克铰工作空间的研究与应用.机械工程学报. 2006, 42(8)
    45张暑, U. Heisel.并联运动机床.北京:机械工业出版社. 2003:115~117
    46 S. H. Chan, I. S. Tuba. A Finite Element Method for Contact Problems of SolidBodies. International Journal of Mechanical Sciences. 1971:615~639
    47姚智慧,郭宏伟.三自由度重型摇摆试验台的设计与研究.哈尔滨工业大学硕士学位论文. 2005, 6:34~40
    48吴家龙.弹性力学(第一版).同济大学出版社. 1996
    49赵海燕,曾桂香,刘占臣,王伟.三维接触元理论及其在水利工程中的应用.黄河水利职业技术学院学报. 2000, (2)
    50许小强.过盈配合应力的接触非线性有限元分析.机械设计与研究. 2000, (1):33~35
    51 Stadter JT, Weiss RO. Anslysis of Contact through Finite Element Gaps. Computer and Structure. 1979. 10:867~873

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700