花卉植物对锰污染的耐性及其影响因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了达到植物修复重金属污染土壤的问题,本试验选择湖南省常见花卉植物,针对重金属锰展开了水培和砂培条件下的耐性植物筛选试验,并对筛选出来的耐性植物进行土培条件下的富集试验,研究了重金属锰对其生长发育、生理生化的影响,进一步研究了添加诱导物质EDTA对重金属锰污染的富集效应。主要研究结果如下:
     1.对重金属锰耐受性强的花卉植物的筛选
     筛选试验通过对湖南省常见的20种花卉植物种子萌发率的比较,筛选出了对重金属锰耐性较强的六种花卉植物,为紫茉莉、金盏菊、万寿菊、蜀葵、凤仙花、紫云英。在随后的幼苗生长试验中,观察锰胁迫下六种花卉植物的生长状况,通过对其胚根伸长的比较,发现紫茉莉、金盏菊、万寿菊三种花卉植物对锰的耐性较强。
     2.重金属锰对三种花卉植物生理生化特性的影响
     为了揭示重金属Mn污染对三种花卉植物的生理代谢活动的影响,测定了六个与植物密切相关的生理生化指标,叶绿素、丙二醛、脯氨酸、三种保护酶(SOD、POD、CAT)。试验结果表明,随着Mn处理浓度的增加,三种花卉植物的叶绿素含量呈现先升后降的趋势;丙二醛和脯氨酸的含量均呈上升的趋势,但增加的速度因种类不同而异。三种保护酶对于不同浓度处理水平重金属Mn胁迫的响应不同;在土壤环境质量标准低浓度设置范围内,三种酶有较好的协同效应并能共同抵御重金属胁迫造成的生理毒害作用,表现出较强的自我调节能力。而在高浓度处理水平时,三种酶活性呈现不同的变化趋势。
     3.重金属Mn污染对三种花卉植物生长状态的影响
     在Mn污染的土壤中,随着生长时间的增长,三种花卉植物株高呈增加的趋势,但其生长速率有所减缓,在各个时期随Mn污染浓度的上升基本呈先升后降的变化趋势。三种花卉植物地下部干物质积累及地上部干物质积累在各个时期呈现与株高相似的变化趋势,但在成熟期,其地下部干物重及地上部干物重均略低于前一生育期,而对照高于前一生育期。当Mn~(2+)污染浓度为0.6g·kg~(-1)时,开始抑制紫茉莉和金盏菊植株的生长;而0.4g·kg~(-1)Mn~(2+)污染时开始抑制万寿菊的生长,表明万寿菊对重金属Mn污染较紫茉莉和金盏菊敏感。
     4.三种花卉植物对Mn的富集特征
     研究结果表明,三种花卉植物根中Mn积累浓度随着生长期的延长逐渐降低。茎叶中Mn积累浓度随着生长期的延长呈现上升的趋势。相同梯度浓度的Mn处理,紫茉莉根和茎中Mn积累浓度较大,表明Mn在紫茉莉根系及茎叶的迁移能力比万寿菊和金盏菊强。
     Mn在三种花卉植物中的分布为根>茎叶。对Mn的积累量在成熟期前随生长期的延长而增加,但成熟期时积累量有所下降。这种变化规律是植株体内Mn积累浓度和生物量的综合体现。
     5.EDTA对紫茉莉富集重金属锰效应的影响
     当EDTA施加浓度在0.125mmol·kg~(-1)~2mmol·kg~(-1)范围内时能显著促进重金属Mn污染土壤中紫茉莉地上部生物量的提高,在1mmol·kg~(-1)时达到最大值,地上部增产趋势较地下部明显。同时表明:通过向重金属Mn污染土壤中施加EDTA可以显著提高紫茉莉对各重金属的积累能力。
     综合紫茉莉各项生长指标变化、对各重金属积累和转运情况以及从经济和环境风险方面考虑,可以将EDTA的最佳施用浓度确定为1mmol·kg~(-1),采用1mmol·kg~(-1)EDTA+紫茉莉组合模式治理重金属Mn污染土壤能够取得良好的生态效益与经济效益。
In order to achieve the purpose of successful phytoremediation of heavy metal polluted soil,the ornamental plants of Hunan province are chosen as the test materials. The tolerant species selecting test and the accumulation test are carried out under the hydroponic and sand-planting condition,and the soil-planting test is carried out to check whether the selected tolerant plant can be able to hyper accumulate heavy metal, and studied the effects of physiological resistance to Mn stress.Also,the accumulating test induced by EDTA obtains satisfying answer.The main results were as follows:
     1.The selected of tolerance ornamental plants
     In the test selecting tolerance plants from ornamental plants,By comparing the seeds burgeoning coefficient of twenty kinds of ornamental plants,it is found that the tolerance of Mirabilis jalapa L.,Calendula officinalis L.,Tagetes erecta L.,Althaea rosea Cav,Impatiens Balsamina L.,Astragalussinicus L.to Mn is the best.In the following seedling growing test,by comparing the elongation of radicels,it is found that the tolerance of Mirabilis jalapa L,Calendula officinalis L.,getes erecta L.to Mn is better.So the study of soil-planting test of the three ornamental plants is carried out in order to check it accumulating capacity to Mn.
     2.The impact of Physiological biochemistry characteristic in three kinds of ornamental plants to Mn stress
     In order to explanat the impact of physiological biochemistry characteristic in three kinds of ornamental plants to Mn stress,determination of six closes related targets: chlorophyll,MDA,proline,three kinds of Protection enzyme(SOD,POD,CAT).The test result indicated that the chlorophyll content increased first and decreased afterwards with the increasing of the concentration of Mn.The content of MDA and proline increased,but the increases speed is different by the type.The response of three defensive enzymes of was different according to the concentration of heavy metal.It presented that three defensive enzymes have strong automatic regulation ability to protect cell membrane from destroy within lower concentration scale of Environmental Quality Standard for Soil.But in higher concentration scale,the three kind of enzymes presented different verity trend.
     3.The impact of growth condition of three kinds of ornamental plants to Mn stress
     The height of three kinds of ornamental plants is roused with the growth,but the speed is slow down.The change of the D.W.in the shoot and root is similar with the hight,but in the mturity,the D.W.of shoot and root is bellower the previous growth period,the CK is bigger.The Mn~(2+) is started inhibited the growth of irabilis jalapa L and Calendula officinalis L in the 0.6g·kg~(-1),and Tagetes erecta L.is 0.4g·kg~(-1)Mn~(2+).This proofed that the Tagetes erecta L is sensived.
     4.The characteristics of three kinds of ornamental plants Mn enrichment
     The study shows that root Mn concentrate on dropped and shoot Mn concentration roused with the extension of the growth period of three kinds of ornamental plants. Root and shoot Mn concentration was higher in the Mirabilis jalapa L than the other plants of the same level,which revealed that the moving ability of Mirahilis jalapa L was greater than Tagetes erecta L and Calendula officinalis L..
     The sequence of the amount of Mn distribution in the three kinds of ornamental plants was that the root preceded the shoot.The amount of the plants Mn enrichment gradually rose with the extension of the growth period of the plants before maturity and,however,it dropped at maturity because of the gradual drop of the plants Mn concentration and biomass.This change is a wise choice due to its high ecological and economic efficiency.
     5.The characteristics of Mirabilis jalapa L.Mn enrichments in the addition of EDTA
     The addition of 0.125mmol·kg~(-1)~2mmol·kg~(-1) EDTA to Mn mine tailings contaminated soil can increase the biomass above ground of Mirabilis jalapa L. greatly.The effect is most obvious in the EDTA treatment of 1mmol·kg~(-1) respectly.The obvious ground is bigger than the upside.EDTA addition can greatly enhance the ability of heavy metal accumulation of Mirabilis jalapa L..
     Synthesis the change of each growth targets of Mirabilis jalapa L,consideration of the heavy metal accumulation and economical and ecological benefit,the best increased density is 1mmol·kg~(-1).A good economical and ecological benefit can be obtained in the removal of heavy metal from Mn mine tailings contaminated soil by using the combined technological mode of 1 mmol·kg~(-1) EDTA+Mirabilis jalapa L.
引文
[1]王向健,郑玉峰,赫冬青.重金属污染土壤修复技术现状和展望.环境保护科学[J].2004,48-49
    [2]陈同斌.我国土壤环境问题.[M].北京:中国科学技术出版社 2001,87-88
    [3]薛生国.超积累植物商陆地锰富集机理及其对污染水体的修复潜力.2005,博士论文.
    [4]Baker AIM,McGrath SP,Sioli CM,etal.The possibility of in situ heavy metal ecie on the mination of pollute soil susing crops of metal-accumulatingp lants.R esources,Cons ervationan Recycling,1994,11:41-49
    [5]朱长才,张本延,叶方立等.锰对接触男工性激素的影响.中国公共卫生,1999,15(1):63-64
    [6]宋静,朱荫媚,土壤重金属污染修复技术.农业环境保护,1998.17(6):271~271
    [7]万云兵,仇荣亮,陈志良等.重金属污染土壤中提高植物提取修复功效的探讨.环境污染治理技术与设备.2002,3(4):56-59
    [8]魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨[J].生态学杂志,2004,23(1):65-72
    [9]Minguzzi C,etal.11 concentration inichel elie cenerii Alyssum bertolonii esv.Memorie Societa To scana is cienze Naturali SerieA.1948,55:49-74
    [10]Chancy R L.Plant uptake of inorganic waste constituents[A].In:Parr J.Fels.Lantreatment of Hazarous wastes[C].Noyes ata Corporation,Park Rige,New Jersey,USA 1983:50-76
    [11]Mc Grath S P,etal.In:Intergrates Soil an seiment Research:A Basis for Proper,Protection,Eijsachers H J P an Hamers T(es),Kluwer Acaemic Publicaters,orrecht,1993:673-676
    [12]Ghosh M &Singh SP.2005.A comparative stuy of camium phytoextraction by accumulator an wee species.Environmental Pollution,133:365-371
    [13]杨肖娥,龙新宪,等.东南景天(Seum alfreii):一种新的锌超积累植物.科学通报,2002:47(13):103-106
    [14]陈同斌,韦朝阳.砷超富集植物蜈蚣草及其对砷富集的特征..科学通报.2002,47(3):207-208
    [15]薛生国,陈英旭等.中国首次发现锰的超富集植物:商陆.生态学报,2003,23(5): 935-937
    [16]魏树和,周启星,王新,等.农田杂草的重金属超积累特性研究.中国环境科学,2004,24(1):105-109
    [17]魏树和,周启星,王新,等.一种新的镉超积累植物龙葵(Solanum nigrum L.).科学通报,2004,49(24):2568-2573
    [18]Baker A JM,etal.Terrestrialhi gherp lant swhichh yperaccumulatem etallice lements review of the iristrib ution,ecology an phytochemistry.Biorecovery,1989,1:81-126
    [19]Jafre Etue Ecologiqueu Peuplement Vegetales Sols erivese Roches Ultrabasiquesen Nouvelle Caleonie,Paris,Travauxet ocumentsel Orstom,1980,124-125
    [20]Baker AJM,Brooks P R,Pease A J,etal.Stuies on copper an cobalt tolerance in three closey relate taxa withinth egenus Silence L.(Caryophyllaceae)from Zaire.Plantan Soil,1983,73:377-385
    [21]Menezese SequeiraE.Toxicity an movement of heavym etalsin serpentiniti crocks or the Eastern Portugal.Agronomialu sitana,1969,30:115-154
    [22]ReevesR,etal.Europeans peciesof ThlaspiL.(Cruciferae)a sin icators of nickel an z inc.Jou rnal of Geochemical Exploration,1983,18:275-283
    [23]Gerber GB,Leonar A,Hantson P.Careinogenicity,mutagenicityan teratogenicity of manganese compouns.Critical Reviews in Oncology/Hematology,2002,42;25-34
    [24]Seregin I V,IvanovVB.Physiological aspectsof camiuman lea toxic effects on higher plants [J].Russian Journal of Plant Physiology,2001,48:523-544
    [25]Abein MJ,MehargAA.Relative toxicity of arsenite an arsenate on germination an early seeling growth of rice(Oryza sativaL.)[J].Plant an Soil,2002,243:57-66
    [26]徐素琴,王润屹,程旺大.去枝油菜对浙双72产量性状的影响[J].浙江农业科学,2004,(2):74-76
    [27]Anrei A B,Vera I S,Viktor E T,et al.Genetic variability in tolerance to camium an accumulation of heavy metals in pea(Pisum sativumL.)[J].Euphytica,2003,131:25-35
    [28]Peralta J R,Garea-Torresey J L,Tiemann K J,et al.Uptake an effectsof five heavymetalson see germination an plantgrowth in alfalfa(Meicago sativaL.)[J].Environmental Contaminationan Toxicology,2001,66:727-734
    [29]毕辛华.种子检验[M].北京:农业出版社,1986
    [30]陶嘉龄,郑光华.种子活力[M].北京:科学出版社,1986
    [31]Woxny A,Krzestowka M.1993.Plant cell response to Pb.Acta Societatis Botanicorum Poioniae,62,101-105
    [32]Weckx JEJ,Clijsters MM.1997.Zn phytotoxicity inuces oxiative stress in primary leaves of Phaseolus vulgaris.Plant Physiology an Biochemistry,35(5):405-410
    [33]Mazhoui S,Chaoui A,Ghorbal MH,Ferjani EE.1997.Response of antioxiant enzymes to excess copper in tomato(Lycopersicon esculentum,Mill.) Plant Scienc,127:129-137
    [34]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    [35]张志良.植物生理学实验指导(第二版)[M].北京:高等教育出版社,1990
    [36]汤章诚.现代植物生理学实验指南[M].北京:科学出版社,1999
    [37]肖浪涛,王若仲,胡家金.植物生理学实验指导[M],湖南农业大学植物生理学教研室.2005:43-44
    [38]郝再彬..植物生理实验[M].北京:高等教育出版社.1998:275-276
    [39]环境污染分析方法[M].科研协作组.北京:科学出版社,1987
    [40]严重玲,付舜珍,方重华等.Hg,Cd及其共同作用对烟草叶绿素含量及抗氧化酶系统的影响,植物生态学报.1997,21(5)468-473
    [41]Stobart A K,Griffiths W T,Ameen-Bukhari 1,et crl.The effect of C2 on the biosynthesis Of chlorophyll inleaves of barley[JJ.Plant Physiol,1985,63:293-298
    [42]Shi G-X,u K-H,Xie K-B,et al.Ultra-structural stuy of leaf cell anu}ge from Hg2+ an C2+pollution inHyrilla verticillata.Acta Bot Sin,2000,42:373-378
    [43]Wu J T.In tracellular proline accumulation in some algce expose to copper an camium[J].Bot Bull Ace Sin 1995.36(1):89
    [44]周瑞莲,赵哈林.2002.高寒山区草本植物的保护酶系统及其在低温生长中的作用.西北植物学报,22(3):566-573
    [45]李合生.现代植物生理学[M].北京:高等教育出版社.2002.56-57
    [46]Cakmak I,Horst W J.Effect of alumium on lipi peroxiation,super oxie ismutase,catalase an peroxiase activities in root tip of soybean[J].Physiol Plantarum,1991,83:463-468
    [47]严重玲,洪业汤,付舜珍.Cd,Pb胁迫对烟草叶片中活性氧清除系统的影响[[J].生态学报,1997,17(5):488-491
    [48]Kellogg E W Friovich I.Superoxie.Hyrogen peroxie an single oxygen in lipi peroxiation by a xanthine oxiase system[J].J.Biol.Chem.1975,250:8812-8817
    [49]Scanalios J G.Oxygen stress an superoxie ismutase[JJ.Plant physiol,1993.101:7-12
    [50]任安芝,高玉葆,刘爽.青菜幼苗休内几种保护酶的活性对Pb.Cd.Cr胁迫的反应研究[J].应用生态学报,2002,13(4):510-512
    [51]Mazhoui S,Chaoui 人 Ghorbal M H,et al.Response of antioxiant enzymes toexcess copperintomato(Lycopersicon esculentum,Mill)(J).Plant Science.1997,127,129-137
    [52]Cakmak I an Horst W J.Effect of alumimum on lipi peroxiation superoxieismutase,cacalase an peroxiase activities in root tips soybean[J).PhysiolPlantarum.1991,83:463-468
    [53]曾晓敏,施国新,徐勤松,等.Hg~(2+),Cu~(2+)胁迫下保护酶系统的防御作用[J],应用与环境生物学报,2002,8(3):250-254
    [54]杨居荣,贺建群,张国样,等.不同耐性作物中几种酶活性对Cd胁迫的反应[J].中国环境科学,1996,16
    [55]潘瑞炽,董愚得.1995.植物生理学(第3版).北京:高等教育出版社,35
    [56]Nagalakshmi N,Prasa M N V.1998.Copper-inuce oxiative stress in Sceneesm us bijugatus:Protective role of free raical scavengers.Bull Environ Contam Toxical,61(5):623-628
    [57]Ouzouniou G.1992.Ecophysiological an ultrastructual effects of copper in Thlaspiochro lcuoum(Crueiferae).Can J Bo tany,70:947-957
    [58]Ouzouniou G.1994.Copper-inuce changes on growth metal content an phyotosynthetic function of Alyssum m on tanum Plant.Environ Experi Bo tan,34(2):165-172
    [59]Brlat L R,Lebrun M.1999.Plant responses to metal toxicity.Plant biology an pathology,322:43-54
    [60]evos H R,Schat H,ewaal M A M.et al.1991.Increase resistance to copper-inuce amage of the root cell plasmo lemma in copper tolerant Silene cucubalus.Physiol Plant,82:523
    [61]李美如,刘鸿先,王以柔.1996.细胞氧化应激机制与植物抗冷性机理的研究.生命科学,4:1-6
    [62]黄玉山,邱国华.1998.紫茅抗铜和敏感品种在发育早期对铜离子反应的生理差异.应用与环境生物学报,4(2):126-131
    [63]王狄,李锋民,熊治延,郑振华.2000.铜的植物毒性与植物蓄积的关系.土壤与环境,9(2):146-148
    [64]Bowler S R,Mckersie B.1990.Relationships among freezing,low temperature flooing,an ice encasement tolerance in alfalfa.Can.J.Plant Sci.,70:227-235
    [65]roillar M J,Paulin A,Massot J C.1987.Free raical prouction,catalase an superoxie ismutase activities an membrane integrity uring senescence of cut carnations(ianthus caryophyllus).Physiol Plant,71:197-202
    [66]罗立新,孙铁布,靳月华.1998,锅胁迫下小麦叶中超氧阴离子自由基的积累.环境科学学报.18(5):495-499
    [67]Baker A.J.M.,McGrath S.P.,Sioli C.M..an Reeves R..1994.The possibility of in situ heavy metal econtaimination of pollute soils using crops of metal-accumulating plants.Resour.Conserv.Recycl.11:4Ⅰ-49
    [68]Cunningham S.Shann J.R.,Crowley.E.,Anerson T.A.1997.Phytoremeiation of contaminate water an soil.J.Environ.Qual.28,760-766
    [69]Chancy R.L.,Malik M.,Li Y.M.,Brown S.L.,Brewer E.P.,Angle J.S.an Baker A.J.1997.Phytoremeiation of soil metals.Curr.Opin.Biotechnol.8:279-284
    [70]Raskin L,Smith R..,Salt.E.1997.Phytoremeiation of metals:using plants pollutants from the environment.Curr.Opin.Biotechnol.8:221-226
    [71]吴燕玉,陈怀满等.重金属复合污染对土壤一植物系统的生态效应Ⅱ.对作物、苜蓿、树木吸收元素的影响[J].应用生态学报,1997,8(5):545-552
    [72]冯绍元,邵洪波,黄冠华.重金属在小麦作物体中残留特征的田间试验研究[J].农业工程学报,2002,18(4):113-115
    [73]Salt E,Blaylock M,Kurnar N P B A,ushenkov V,Ensley B,Chet I an Raskin I,Phytoremeiation:A novel strategy for the removal of toxic metals from the environment using plants[J].Biotechnology,1995,13:468-474
    [74]Stomp A M,Han K H,Wilber S,Goron M P an Cunningham S.Genetic strategies for enhancing phytoremeiation[J].Ann.N Y Aca Sci.1994,721:481-492
    [75]Karl F G,Giger Speciation an fate of ethyleneiametetaacetate(ETA)in municipal wastewater treatment[J].Water Research,1996,30(1):Ⅰ22-134
    [76]Davis A Singh LWashing of zinc(Ⅱ)from contaminate soil column[J].Journal of Environment Engineering,1995,121:174-185
    [77]J Allen H E,Chert P H.Remeiation of metal contaminate soil by EDTA incorporating electrochemical recovery of metal an EDTA[J].Environmental Progress,1993,12:284- 293
    [78]Hong P K A,Li C,Banerji S K,et al.Extraction,recovery,an biostability of EDTA for remeiation of trace mEDTAl-contaminate soil[J].Journal of Soil Contamination.1999,8:81-103
    [79]曾清如,廖柏寒,杨仁斌等.EDTA溶液萃取污染土壤中的重金属及回收技术[J].中国环境科学,2003,23(6):597-601
    [80]陈亚华,沈振国,宗良纲.EDTA对2种芥菜型油菜幼苗富集Pb的效应[J].环境科学研究,2005,18(1):67-70

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700