晚疫病菌诱导的两个马铃薯泛素连接酶基因的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泛素-蛋白酶体通路在植物防卫反应(包括过敏性反应)中发挥重要作用,泛素连接酶(ubiquitin ligase, E3)则是参与这一过程的重要组分。本研究旨在通过克隆和分析与马铃薯晚疫病抗性相关的泛素连接酶家族中的成员,初步揭示这类基因在马铃薯晚疫病垂直抗性和水平抗性中的调控作用,或它们在马铃薯防御晚疫病菌侵染的信号传导网络中的作用,为进一步深入开展抗性机理研究奠定基础。
     本实验室从晚疫病诱导的马铃薯水平抗性材料构建的cDNA文库中筛选出两个与烟草Avr9/Cf-9 rapidly elicited protein (ACRE,具有泛素连接酶E3活性)基因有很高同源性的EST片段(10-A12和08-E12)。本研究中,我们克隆了这两个EST片段所代表的基因,StRFP和StPUB,并研究了其生物学功能。
     StRFP基因的全长cDNA为1354 bp,包含一个789 bp的开放阅读框(ORF),编码262个氨基酸,含有高度保守的RING-H2型RING指结构域、跨膜结构域和GLD结构域,是一个新的马铃薯ATL (Arabidopsis toxico para levadura)蛋白。StRFP基因位于马铃薯第3条染色体上,不含内含子。马铃薯基因组中可能有1-2个StRFP基因拷贝或与之同源性高的基因。利用洋葱表皮细胞进行的StRFP-GFP融合蛋白亚细胞定位结果显示,StRFP在细胞膜上或膜外表达。RT-PCR分析结果表明,StRFP基因表达无组织特异性,在根、茎、叶、花、茎尖、匍匐茎和块茎等各种组织器官中组成型表达,但不同部位的表达水平有差异。离体叶片的晚疫病原菌接种表明,StRFP在接种24 h后表达增强,水杨酸(SA)、茉莉酸甲酯(MeJA)、脱落酸(ABA)和机械伤害处理能诱导其表达,乙烯(ETH)不能诱导其表达。试管苗在外界环境胁迫下的表达模式表明,StRFP对所研究的各种环境因素如NaCl、20%PEG、脱水、40℃热激和4℃低温都有响应,但对盐胁迫和渗透胁迫的反应更明显。为了进一步研究其功能,我们分别构建了CaMV 35S驱动下的StRFP基因正义表达载体和RNAi抑制表达载体,采用根癌农杆菌介导法转化鄂马铃薯3号(EP3)的试管薯,分别获得超量表达株系27个和干涉株系6个。Southern杂交表明每个转基因植株有1-3个拷贝。晚疫病病原菌接种实验表明,与未转基因对照相比,超量表达的转基因株系更抗病,而抑制表达的株系更感病,说明StRFP基因为马铃薯抗晚疫病反应中的正向调控因子。
     StPUB基因全长2483 bp,包含一个2175 bp的ORF,编码724个氨基酸,GenBank登记号为EF091878。序列分析表明,StPUB蛋白具有保守的UND/U-box/ARM结构域,与烟草ACRE276的氨基酸序列有89%的同源性。从马铃薯水平抗性材料(386209.10)、垂直抗性材料(鄂马铃薯3号,EP3)和感病材料(转心乌,ZXW)中获得StPUB基因的基因组DNA信息,序列分析表明该基因不含内含子,且在三种不同抗性材料中大小一致,同源性达到97.7%。通过TAIL-PCR与生物信息学分析,推测StPUB基因包含三个启动子序列,可能位于马铃薯第2条染色体上。Southern blot杂交结果表明,马铃薯基因组中可能有2-3个StPUB拷贝或与之同源性高的基因。离体叶片的诱导表达模式研究表明,晚疫病病原菌接种24 h后,StPUB表达明显增强,而且在三种不同的马铃薯抗性材料中表达趋势一致;SA、ABA和机械伤害能激活StPUB表达,而MeJA和ETH不能诱导其表达。试管苗在外界环境胁迫下的RT-PCR结果显示,热激(40℃)、低温(4℃)、20%PEG或NaCl能诱导StPUB表达。采用RNAi技术,构建了抑制StPUB基因表达的载体,并利用农杆菌介导的遗传转化法导入马铃薯垂直抗性品种EP3中,共获得卡那霉素抗性转化植株13株。PCR检测和Southern杂交结果表明,外源基因已经整合到马铃薯基因组中,其拷贝数1-3个不等。对转基因植株中StPUB基因的表达进行RT-PCR分析表明,StPUB基因在转基因植株中的表达量比对照显著降低,RNAi能有效的抑制StPUB基因的表达。从晚疫病病原菌离体接种结果发现,沉默StPUB的转基因株系,其病斑生长速率(LGR)比非转基因对照高,表明沉默StPUB基因降低了马铃薯的抗病性。转基因株系试管苗耐盐性试验结果表明,在盐胁迫条件下,沉默StPUB的转基因植株与野生型植株相比,地上部分和根系生长相对较弱,根部腐烂的株数明显增多,表明抑制.StPUB表达降低了马铃薯转基因株系的耐盐性。上述结果表明,StPUB在激活马铃薯抗晚疫病及耐盐反应中起作用。
The ubiquitin-proteasome pathway plays a central role in plant defense responses (including hypersensitive response), the specificity of whose is controlled by E3 ubiquitin ligases which selectively recognize the appropriate protein substrate for breakdown. The aim of the studies reported in this paper was to clone and analyze the ubiquitin ligases-related genes to look into the regulating function of them associated with vertical and horizontal resistance to late blight, or the signal transmitting function of potato prevent late blight infection, and provision of fundamental bases for further study.
     Two expressed sequence tags (ESTs) (10-A12 and 08-E12) which are similar to tobacco (Nicotiana tabacum) Avr9/Cf-9 rapidly elicited (ACRE) genes were firstly identified from Phytophthora infestans-inoculated leaves of potato (Solanum tuberosum L.) clone 386209.10 which is free from R1-R11 genes. In present study, we cloned two genes standing for these two ESTs, StRFP and StPUB, and elucidated possible functions of them responding to biotic and abiotic stresses.
     The full-length cDNA of StRFP is of 1354 bp with an open reading frame (ORF) of 789 bp which encodes 262 amino acid residues. The deduced amino acid sequence contains a highly conserved RING-H2 type RING finger domain, a transmembrane region and a GLD signature, implying StPUB is a novel ATL (Arabidopsis toxico para levadura) protein of potato. The Southern blot analysis and mapping indicated that StRFP had one to two copies in potato genome without intron locating on chromosome 3. Transient expression of StRFP:GFP in onion epidermal cells revealed that StPUB localized to the plasma membrane or out of that. RT-PCR assays showed that StRFP was constitutively and differentially expressed in potato plants, including roots, stems, leaves, flowers, shoot tips, stolons and tubers, and significantly induced in potato detached leaves treated with P. infestans, a pathogen causing potato late blight, and plant defense-related signal molecules such as salicylic acid (SA), methyl jasmonate (MeJA) and abscisic acid (ABA), implying StRFP may be involved in potato response to pathogen attack. The results of treating in vitro potato plantlets with environmental stresses showed that StPUB was responsive to NaCl,20% PEG, dehydration,40℃heat and 4℃cold, especially enhanced salt and osmosis tolerance. The function of StRFP in potato resistance against late blight was further investigated by constructing of overexpression and RNA inteference (RNAi) vectors and introducing into potato cv. E-potato 3. There were 27 overexpression and 6 RNAi silencing transgenic lines with 1-3 copies of the gene insertion confirmed by the Southern blot analysis. By challenging the detached leaves with mixture races of P. infestans containing races 1,3,4, and 1.3, all of StRFP-overexpressing transgenic plants displayed a slower disease development than nontansformed control in terms of the lesion growth rate (LGR) and four out of eleven transformants were significant (p<0.05). In contrast, StRFP-silencing lines by RNAi were more susceptible to the pathogen infection and three of four lines showed significantly higher LGR than control. Present results demonstrate that StRFP plays a positive role in the resistance of potato against P. infestans.
     The full-length of StPUB is of 2483 bp with an ORF of 2175 bp encoding 724 amino acids (GenBank acc. No. EF091878). The StPUB protein contains UND/PUB/ARM repeat domain with 89% of identity to tobacco ACRE276. Furthermore, the intron-exon junction of StPUB gene established by comparison between the cDNA and the genomic sequences from potato cvs.386209.10, E-potato 3 (EP3) and Zhuanxinwu (ZXW) indicated that the sequences maintained high levels (97.7%) of conservation in terms of sequence length and nucleotide composition, and all the gDNAs from the three cultivars seemed to be composed of a single exon without intron. The TAIL-PCR and bioinformatics analysis speculated that StPUB had three promoter sequences and maybe locate on chromosome 2. The DNA gel blot analysis indicated that there are two to three copies of StPUB or closely related genes in the potato genome. The RT-PCR analysis showed a similar expression pattern of StPUB obseverd in the three potato cultivars when detached leaves were infected by P. infestans. The expression of StPUB was upregulated not only in detached leaves by signal molecules of salicylic acid and abscisic acid and wounding, but also in in vitro plantlets by high (40℃) and low (4℃) temperatures and dehydration induced by polyethylene glycol and NaCl. The function of StPUB was further clarified by silencing the gene in cv. E-potato 3 using RNAi-based post-transcriptional gene silencing (PTGS). Thirteen transgenic lines with 1-3 copies of the gene insertion were obtained, and much lower expression of StPUB was observed in transgenic lines than control monitored by RT-PCR. The LGR of StPUB-RN Ai transgenic plants were higher than the control, revealing that silencing of StPUB in potato resulted in a partial loss of plant resistance against late blight. Its function in the salt tolerance was further investigated by subjecting the in vitro plantlets to different concentrations of NaCl stress, transgenic plantlets showed much higher sensitivity to NaCl than control in terms of shoot length, plant fresh weight, rooting ratio and percentage of decayed plantlets, suggesting that StPUB is also involved in response to the salt stress. Present data indicated that StPUB is a gene harboring broad-spectrum responses to both biotic and abiotic stresses in the potato and may play crucial roles in late blight resistance and salt tolerance.
引文
1.郭望模,傅亚萍,孙宗修,郑镇一.盐胁迫下不同水稻种质形态指标与耐盐性的相关分析.植物遗传资源学报,2003,4(3):1-5
    2. 李亚军.马铃薯晚疫病水平抗性与p-氨基丁酸诱导抗性防卫系统基因表达差异研究.[博士学位论文].武汉:华中农业大学图书馆,2009
    3.刘丽华,林玲,鲁国东,王宗华.水稻一个C3HC4型锌指蛋白编码基因的克隆表达与分析.中国农学通报,2009,25(15):35-39
    4.刘强,张贵友,陈受宜.植物转录因子的结构与调控作用.科学通报,2000,45(14):1465-1474
    5.刘艳丽,许海霞,刘桂珍,金艳,陈平,崔党群.小麦耐盐性研究进展.中国农学通报,2008,24(11):202-207
    6.孟祥兵.稻瘟菌诱导性水稻OsbZIP1和OsZinc1基因的cDNA克隆和功能研究.[博士学位论文].中国农业大学图书馆(西),2005
    7.倪晓光,赵平.泛素-蛋白酶体途径的组成和功能.生理科学进展,2006,37(3):255-258
    8.曲元刚,赵可夫.NaCl和Na2CO3对玉米生长和生理胁迫效应的比较研究.作物学报,2004,30(4):334-341
    9.萨姆布鲁克,弗里奇EF,曼尼阿蒂斯T.分子克隆实验指南.2版.北京:科学出版社,1989,34-74
    10.史庆华,朱祝军,Al-aghabary K,钱琼秋.等渗Ca(NO3)2和NaCl胁迫对番茄光合作用的影响.植物营养与肥料学报,2004,10(2):188-191
    11.宋伯符,谢开云.CIP的全球晚疫病防治倡议与我国的参与.马铃薯杂志,1997,11:51-55
    12.田振东,柳俊,谢从华.利用抑制差减杂交技术分离马铃薯晚疫病抗性相关基因.遗传学报,2003,30:597-605
    13.田振东.马铃薯晚疫病水平抗性相关基因片段筛选及基因克隆.[博士学位论文].武汉:华中农业大学图书馆,2002
    14.王冰林.马铃薯晚疫病水平抗性相关基因诱导表达谱及水平抗性机制初探.[博 士学位论文].武汉:华中农业大学图书馆,2005
    15.王景艳,刘兆普,刘玲,刘冲.NaCl胁迫对长春花幼苗离子分布和光合作用的影响.生态学杂志,2008,27(10):1680-1684
    16.王志春,梁正伟.植物耐盐研究概况与展望.生态环境,2003,12(1):106-109
    17.杨佳,蓝兴国,李玉花.植物U-box/ARM蛋白.植物生理学通讯,2008,6:1216-1222
    18.杨秀玲,郁继华,李雅佳,李建建,张韵.NaCl胁迫对黄瓜种子萌发及幼苗生长的影响.甘肃农业大学学报,2004,39(1):6-9
    19.于晓敏,蓝兴国,李玉花.泛素/26S蛋白酶体途径与显花植物自交不亲和反应.植物学通报,2006,23(2):197-206
    20.於丙军,罗庆云,曹爱忠,刘友良.栽培大豆和野生大豆耐盐性及离子效应的比较.植物资源与环境学报,2001,10(1):25-29
    21.曾晓珊.水稻Spl11互作基因的克隆与功能鉴定.[博士学位论文].湖南农业大学,2007
    22.张俊莲,陈勇胜,武季玲,王蒂,权冬玲,张国斌.向日葵对盐逆境伤害的生理反应及耐盐性研究.中国油料作物学报,2003,25(1):45-49
    23.中共中央马克思、恩格斯、列宁、斯大林著作编译局.马克思恩格斯选集(4).北京:人民出版社,1972,159
    24.中国农业年鉴编辑委员会.中国农业年鉴.北京:中国农业出版社,2003
    25.朱杰华,杨志辉,桂秀梅,马利松,刘颖超.马铃薯晚疫病菌卵孢子萌发的初步研究.菌物学报,2005,24.297-303
    26. Albert T K, Hanzawa H, Legtenberg Y I, Ruwe M J. Identification of a ubiquitin-protein ligase subunit within the CCR4-NOT transcription repressor complex. EMBO J,2002,21:355-364
    27. Amador V, Monte E, Garcfa-Martfnez J L, Prat S. Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo. Cell,2001,106:343-354
    28. Andersen P, Kragelund B B, Olsen A N, Larsen F H, Chua N H, Poulsen F M, Skriver K. Structure and biochemical function of a prototypical Arabidopsis U-box domain. J Biol Chem,2004,279:40053-40061
    29. Andrivon D. The origin of Phytophthora infestans populations present in Europe in the 1840s:a critical review of historical and scientific evidence. Plant Pathol,1996, 45:1027-1035
    30. Ang L H, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, Deng X W. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell,1998,1:213-222
    31. Aravind L, Koonin E V. The U-box is a modified RING finger-a common domain in ubiquitination. Curr Biol,2000,10:132-134
    32. Arumugam T U, Davies E, Morita E H, Abe S. Sequence, expression and tissue localization of a gene encoding a makorin RING zinc-finger protein in germinating rice (Oryza sativa L. ssp. Japonica) seeds. Plant Physiol Bioch,2007,45:767-780
    33. Austin M J, Muskett P, Kahn K, Feys B J, Jones J D G, Parker J E. Regulatory role of SGT1 in early R gene-mediated plant defenses. Science,2002,295:2077-2080
    34. Azevedo C, Santos-Rosa M J, Shirasu K. The U-box protein family in plants. Trends Plant Sci,2001,6:354-358
    35. Bachmair A, Novatchkova M, Potuschak T, Eisenhaber F. Ubiquitylation in plants:a post-genomic look at a post-translational modification. Trends Plant Sci,2001,6: 463-470
    36. Ballinger C A, Connell P, Wu Y X, Hu Z Y, Thompson L J, Yin L Y, Patterson C. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol,1999,19(6):4535-4545
    37. Bates P W, Vierstra R D. UPL1 and 2, two 405 kDa ubiquitin-protein ligases from Arabidopsis thaliana related to the HECT-domain protein family. Plant J,1999,20(2): 183-195
    38. Beyer K, Binder A, Boller T, Collinge M. Identification of potato genes induced during colonization by Phytophthora infestans. Mol Plant Pathol,2001,2:125-134
    39. Black W, Mastenbroek C, Mills W R, Petersen L C. A proposal for an international nomenclature of races of Phytophthora infestans and of genes controlling immunity in Solanum demissum derivatives. Euphytica,1953,2:173-179
    40. Blatch G L, Lassle M. The tetratricopeptide repeat:a structural motif mediating protein-protein interaction. BioEssays,1999,21(11):932-939
    41. Bloom J, Amador V, Bartolini F, DeMartino G, Pagano M. Proteasome-mediated degradation of p21 via N-terminal ubiquitination. Cell,2003,115:71-82
    42. Bonierbale M W, Plaisted R L, Pineda O, Tanksley S D. QTL analysis of trichome-mediated insect resistance in potato. Theor Appl Genet,1994,87:973-987
    43. Callis J, Carpenter T, Sun C W, Vierstra R D. Structure and evolution of genes encoding polyubiquitin and ubiquitin-like proteins in Arabidopsis thaliana ecotype Columbia. Genetics,1995,139:921-939
    44. Century K S, Holub E B, Staskawicz B J. NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc Natl Acad Sci USA,1995,92:6597-6601
    45. Chau V, Tobias J W, Bachmair A, Marriott D, Ecker D J, Gonda D K, Varshavsky A. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science,1989,243:1576-1583
    46. Chen H Y, Guo Z G, Tan Y, Ma W F, Cai S X, Du J, Cai S H. Expression and subcellular localization of recombinant SDF-1 and its mutant intrakine in transfected COS-7 cells. Chinese Journal of Biomedical Engineering (English Edition),2006, 15(2):69-77
    47. Cheung M Y, Zeng N Y, Tong S W, Li F W, Zhao K J, Zhang Q, Sun S, Lam H M. Expression of a RING-HC protein from rice improves resistance to Pseudomonas syringae pv. tomato DC3000 in transgenic Arabidopsis thaliana. J Exp Bot,2007,58: 4147-4159
    48. Chinnusamy V, Ohta M, Kanrar S, Lee B, Hong X H, Agarwal M, Zhu J K. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes and Development,2009,17:1043-1054
    49. Cho S K, Chung H S, Ryu M Y, Park M J, Lee M M, Bahk Y Y, Kim J, Pai H S, Kim W T. Heterologous expression and molecular and cellular characterization of CaPUB1 encoding a hot pepper U-Box E3 ubiquitin ligase homolog. Plant Physiol, 2006,142:1664-1682
    50. Cho S K, Ryu M Y, Song C, Kwak J M, Kim W T. Arabidopsis PUB22 and PUB23 are homologous U-box E3 ubiquitin ligases that play combinatory roles in response to drought stress. Plant Cell,2008,20:1899-1914
    51. Ciechanover A. The ubiquitin-proteasome pathway:on protein death and cell life. EMBO J,1998,17 (24):7151-7160
    52. Ciechanover A, Orian A, Schwartz A L. Ubiquitin-mediated proteolysis:biological regulation via destruction. BioEssays,2000,22(5):442-451
    53. Coates J C. Anmadillo repeat proteins:beyond the animal kingdom. Trends Cell Biol, 2003,13:463-471
    54. Conti E, Uy M, Leighton L, Blobel G, Kuriyan I. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin a. Cell,1998,94:193-204
    55. Cyr D M, Hohfeld J, Patterson C. Protein quality control:U-box containing E3 ubiquitin ligases join the fold. Trends Biochem Sci,2002,27(7):368-375
    56. Dellagi A, Heilbronn J, Avrova A O, Montesano M, Palva E T, Stewart H E, Toth I K, Cooke D E L, Lyon G D, Birch P R J. A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwinia carotovora subsp. atroseptica and Phytophthora infestans and is coregulated with class I endochitinase expression. Mol Plant Microbe In,2000,13:1092-1101
    57. Dellaporta S L, Wood J, Hicks J B. A plant DNA minipreparation:Version II. Plant Mol Biol Rep,1983,1(4):19-21
    58. Deng X W, Caspar T, Quail P H. Cop1:a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Gene Dev,1991,5: 1172-1182
    59. Deshaies R J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol,1999,15:435-467
    60. Dick M W. Binomials in the Peronosporales, Sclerosporales and Pythiales. Advances in Downy Mildew Research,2002,225-265
    61. Dong C H, Agarwal M, Zhang Y, Xie Q, Zhu J K. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA,2006,103:8281-8286
    62. Downes B P, Stupar R M, Gingerich D J, Vierstra R D. The HECT ubiquitin-protein ligase (UPL) family in Arabidopsis:UPL3 has a specific role in trichome development. Plant J,2003,3(6):729-742
    63. Duncan J M. Phytophthora-An abiding threat to our crops. Microbiology Today, 1999,26:114-116
    64. Durrant W E, Rowland O, Piedras P, Hammond-Kosack K E, Jones J D. cDNA-AFLP reveals a striking overlap in racespecific resistance and wound response gene expression profiles. Plant Cell,2000,12:963-977
    65. Dwyer K G, Kandasamy M K, Mahosky D I, Acciai J, Kudish B I, Miller J E, Nasrallah M E, Nasrallah J B. A superfamily of S locus-related sequences in Arabidopsis:diverse structures andexpression patterns. Plant Cell,1994,6: 1829-1843
    66. Ewing E E, Simko I, Smart C D, Bonierbale M W, Izubuti E S G, May G, Fry W E. Genetic mapping from field tests of qualitative and quantitative resistance to Phytophthora infestans in a population derived from Solanum tuberosum and Solanum berthaultii. Mol Breed,2000,6:25-36
    67. Feys B J, Parker J E. Interplay of signaling pathways in plant disease resistance. Trends Genet,2000,16(10):449-455
    68. Fry W E, Goodwin S B. Resurgence of the Irish potato famine fungus. Bioscience, 1997,47:363-371
    69. Fu H, Reis N, Lee Y, Glickman M H, Vierstra R D. Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J,2001, 20:7096-7107
    70. Glazebrook J. Genes controlling expression of defense responses in Arabidopsis-2001 status. Curr Opin Plant Biol,2001,4:301-308
    71. Glickman M H, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev,2002,82:373-428
    72. Glickman M H. Getting in and out of the proteasome. Semin Cell Dev Biol,2000,11: 149-158
    73. Goldstein G, Scheid M, Hammerlin U, Schlesinger D H, Niall H D, Boyse E A. Isolation of a polypeptide that has lymphocyte-differentiation properties and is probably represented universally in living cells. Proc Natl Acad Sci,1975,72:11-15
    74. Gonzalez-Lamothe R, Tsitsigiannis D I, Ludwig A A, Panicot M, Shirasu K, Jones J D. The U-Box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato. Plant Cell, 2006,18:1067-1083
    75. Goodwin S B, Sujkowski L S, Fry W E. Rapid evolution of pathogenicity within clonal lineages of the potato late blight disease fungus. Phytopathology,1995,85: 669-676
    76. Greve K, La Cour T, Jensen M K, Poulsen F M, Skriver K. Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins:RING-H2 molecular specificity and cellular localization. Biochem J,2003,371:97-108
    77. Groves C T, Ristaino J B. Commercial fungicide formulations induce in vitro oospore formation and phenotypic change in mating type in Phytophthora infestans. Phytopathology,2000,90:1201-1208
    78. Gu T, Mazzurco M, Sulaman W, Matias D D, Goring D R. Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase. Proc Natl Acad Sci USA, 1998,95:382-387
    79. Haas A L, Siepmann T J. Pathways of ubiquitin conjugation. FASEB J,1997,11: 1257-1268
    80. Han D J, Cao L, Chen Y F, Li Z Q. Molecular basic of interaction between disease resistance gene and avirulence gene. Acta Genetica Sinica,2005,32(12):1319-1326
    81. Hardtke C S, Okamoto H, Stoop-Myer C, Deng X W. Biochemical evidence for ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8). Plant J, 2002,30(4):385-394
    82. Harris T J, Peifer M. Decisions, decisions:β-catenin chooses between adhesion and transcription. Trends Cell Biol,2005,15:234-237
    83. Hartmann-Petersen R, Gordon C. Integral UBL domain proteins:a family of proteasome interacting proteins. Semin Cell Dev Biol,2004,15(2):247-259
    84. Hartmann-Petersen R, Seeger M, Gordon C. Transferring substrates to the 26S proteasome. Trends Biochem Sci,2003,28:26-31
    85. Hatakeyama S, Matsumoto M, Yada M, Nakayama K I. Interaction of U-box-type ubiquitin-protein ligases (E3s) with molecular chaperones. Genes Cells,2004,9: 533-548
    86. Hatakeyama S, Nakayama K I. U-box proteins as a new family of ubiquitin ligases. Biochem Bioph Res Co,2003,302:635-645
    87. Hatfield P M, Gosink M M, Carpenter T B, Vierstra R D. The ubiquitin activating enzyme (E1) gene family in Arabidopsis thaliana. Plant J,1997,11:213-226
    88. Hawes C, Boevink P, Moore I. Green fluorescent protein in plants. In:Allan V J. eds., Protein localization by fluorescence microscopy, a practical approach. New York: Oxford University Press,2000
    89. Heise A, Lippok B, Kirsch C, Hahlbrock K. Two immediate early pathogen-responsive members of the AtCMPG gene family in Arabidopsis thaliana and the W-box-containing elicitor-response element of AtCMPG1. Proceedings of the National Academy of Sciences USA,2002,99:9049-9054
    90. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Genet,1998,67: 425-479
    91. Hicke L. Getting down with ubiquitin:turning off cell-surface receptors, transporters and channels. Trends Cell Biol,1999,9:107-112
    92. Hochstrasser M. New structural clues to substrate specificity in the "ubiquitin system". Mol Cell,2002,9(3):453-454
    93. Holm M, Hardtke C S, Gaudet R, Deng X W. Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1. EMBO J,2001,20:118-127
    94. Hondo D, Hase S, Kanayama Y, Yoshikawa N, Takenaka S, Takahashi H. The LeATL6-associated ubiquitin/proteasome system may contribute to fungal elicitor-activated defense response via the jasmonic acid-dependent signaling pathway in tomato. Mol Plant Microbe In,2007,20:72-81
    95. Huang L, Kinnucan E, Wang G, Beaudenon S, Howley P M, Huibregtse J M, Pavletich N P. Structure of an E6AP-UbcH7 complex:insights into ubiquitination by the E2-E3 enzyme cascade. Science,1999,286(5443):1321-1326
    96. Huber A H, Nelson W J, Weis W I. Three-dimensional structure of the armadillo repeat region of β-catenin. Cell,1997,90:871-882
    97. Joazeiro C A, Weissman A M. RING finger proteins:mediators of ubiquitin ligase activity. Cell,2000,102(5):549-552
    98. Judelson H S. The genetics and biology of Phytophthora infestans:modern approaches to a historical challenge. Fungal Genet Biol,1997,22:65-76
    99. Kachroo A, Schopfer C R, Nasrallah M E, Nasrallah J B. Allele-specific receptor- ligand interactions in Brassica self-incompatibility. Science,2001,293:1824-1826
    100.Kajava A V. Structural diversity of leucine-rich repeat proteins. J Mol Biol,1998, 277(3):519-527
    101.Kam J, Gresshoff P, Shorter R, Xue G P. Expression analysis of RING zinc finger genes from Triticum aestivum and identification of TaRZF70 that contains four RING-H2 domains and differentially responds to water deficit between leaf and root. Plant Sci,2007,173:650-659
    102.Kamoun S, Lindqvist H, Govers F. A novel class of elicitin-like genes from Phytophthora infestans. Mol Plant Microbe In,1997,10:1028-1030
    103.Kamoun S, Huitema E, Vleeshouwers V G A A. Resistance to oomycetes:a general role for the hypersensitive response? Trends Plant Sci,1999,4:196-200
    104.Karlowski W M, Hirsch A M. The over-expression of an alfalfa RING-H2 gene induces pleiotropic effects on plant growth and development. Plant Mol Biol,2003, 52:121-133
    105.Kate D, Judy C. Ubiquitin, Hormones and Biotic Stress in Plants. Annals of Botany, 2007,1-35
    106.Katoh S, Hong C, Tsunoda Y, Murata K, Takai R, Minami E, Yamazaki T, Katoh E. High precision NMR structure and function of the RING-H2 finger domain of EL5, a rice protein whose expression is increased upon exposure to pathogen-derived oligosaccharides. J Biol Chem,2003,278:15341-15348
    107.Kawasaki T, Nam J, Boyes D C, Holt B F 3rd, Hubert D A, Wiig A, Dangl J L. A duplicated pair of Arabidopsis RING-finger E3 ligases contribute to the RPM1-and RPS2-mediated hypersensitive response. Plant J,2005,44:258-270
    108.Kee Y, Huibregtse J M. Regulation of catalytic activities of HECT ubiquitin ligases. Biochem Biophys Res Commun,2007,354 (2):329-333
    109.Kim M, Cho H S, Kim D M, Lee J H, Pai H S. CHRK1, a chitinase-related receptor-like kinase, interacts with NtPUB4, an armadillo repeat protein, in tobacco. Biochim Biophys Acta,2003,1651:50-59
    110.Kim Y S, Lee J H, Yoon G M, Cho H S, Park S W, Suh M C, Choi D, Ha H J, Liu J R, Pai H S. CHRKI, a chitinase-related receptor-like kinase in tobacco. Plant Physiol, 2000,123:905-915
    111.Kirsch C, Logemann E, Lippok B, Schmelzer E, Hahlbrock K. A highly specific pathogen-responsive promoter element from the immediate-early activated CMPG1 gene in Petroselinum crispum. Plant J,2001,26:217-227
    112.Kitazawa K, Tomiyama K. Microscopic observations of infection of potato cells by compatible and incompatible races of Phytophthora infestans. Phytopathology,1969, 66:317-324
    113.Ko J H, Yang S H, Han K H. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J,2006,47:343-355
    114.Koegl M, Hoppe T, Schlenker S, Ulrich H D, Mayer T U, Jentsch S. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell,1999,96: 635-644
    115.Koepp D M, Harper J W, Elledge S J. How the cyclin became a cyclin:regulated proteolysis in the cell cycle. Cell,1999,97:431-434
    116.Koiwai H, Tagiri A, Katoh S, Katoh E, Ichikawa H, Minami E, Nishizawa Y. RING-H2 type ubiquitin ligase EL5 is involved in root development through the maintenance of cell viability in rice. Plant J,2007,51(1):92-104
    117.Lander E S, Green P, Abrahamson J, Barlow A, Daleyk M J, Lincoln S E, Newburg L. MAPMARKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1987,1:174-181
    118.Lee I, Schindelin H. Structural insights into El-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell,2008,134:268-278
    119.Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu J K. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Gene Dev,2001,15(7): 912-924
    120.Lee J H, Takei K, Sakakibara H, Cho H S, Kim D M, Kim Y S, Min S R, Kim W T, Sohn D Y, Lim Y P, Pai H S. CHRK1, a chitinase-related receptor like kinase, plays a role in plant development and cytokinin homeostasis in tobacco. Plant Mol Biol, 2003,53:877-890
    121.Liu H, Zhang H, Yang Y, Li G, Yang Y, Wang X, Basnayake B M, Li D, Song F. Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRFl on regulation of growth and defense responses against abiotic and biotic stresses. Plant Mol Biol,2008,68(1-2):17-30
    122.Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F, Chong k. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta,2007,226(4):1007-1016
    123.Liu P, Sherman-Broyles S, Nasrallah M E, Nasrallah J B. A cryptic modifier causing transient self-incompatibility in Arabidopsis thaliana. Curr Biol,2007,17:734-740
    124.Lorick K L, Jensen J P, Fang S, Ong A M, Hatakeyama S, Weissman A M. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA,1999,96:11364-11369
    125.Loscher M, Fortschegger K, Ritter G, Wostry M, Voglauer R, Schmid J A, Watters S, Rivett A J, Ajuh P, Lamond A I, Katinger H, Grillari J. Interaction of U-box E3 ligase SNEV with PSMB4, the β7 subunit of the 20S proteasome. Biochem J,2005, 388:593-603
    126.Lu Y Q, Guan N, Li C. Advance in the study on U-box proteins of Arabidopsis thaliana. Molecular Plant Breeding,2008,6:941-948
    127.Lupas A, Van Dyke M, Stock J. Predicting coled coils from protein sequences. Science,1991,252:1162-1164
    128.Malcolmson J F, Black W. New R-genes in Solanum demissum Lindl, and their complementary races of Phytophthora infestans (Mont.) de Bary. Euphytica,1966,15: 199-203
    129.Mayer R, Raventos D, Chua N H. Detl, copl, and cop8 mutations cause inappropriate expression of several gene sets. Plant Cell,1996,8(11):1951-1959
    130.Mazzucotelli E, Belloni S, Marone D, De Leonardis A M, Guerra D, Di Fonzo N, Cattivelli L, Mastrangelo A M. The E3 Ubiquitin Ligase Gene Family in Plants: Regulation by Degradation. Curr Genomics,2006,7:509-522
    131.Meng X B, Zhao W S, Lin R M, Wang M, Peng Y L. Molecular cloning and characterization of a rice blast-inducible RING-H2 type zinc finger gene. DNA Seq, 2006,41-48
    132.Moon J, Parry G, Estelle M. The ubiquitin-proteasome pathway and plant development. Plant Cell,2004,16:3181-3195
    133.Mudgil Y, Shiu S H, Stone S L, Salt J N, Goring D R. A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-box E3 ubiquitin ligase family. Plant Physiol,2004,134:59-66
    134.Mukhopadhyay A, Vij S, Tyagi A K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA,2004,101(16):6309-6314
    135.Mullins E, Milbourne D, Petti C, Doyle-Prestwich B M, Meade C. Potato in the age of biotechnology. Trends Plant Sci,2006,11:254-260
    136.Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res,1980,8:4321-4325
    137.Naess S K, Bradeen J M, Wielgus S M, Haberlach G T, McGrath J M, Helgeson J P. Resistance to late blight in Solanum bulbocastanum is mapped to chromosome 8. Theor Appl Genet,2000,101:697-704
    138.Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boller T, Jones J D. The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol,2004, 135:1113-1128
    139.Neer E J, Schmidt C J, Nambudripad R, Smith T. The ancient regulatory protein family of WD-repeat proteins. Nature,1994,371:297-300
    140.Niiederhauser J S. Phytophthora infestans:the Mexican connection. In:Lucas J A, Shattock R C, Shaw D S, Cooke L R. eds., Phytophthora. Cambridge University Press, Cambridge U K.1991,25-45
    141.Nodzon L A, Xu W H, Wang Y, Pi LY, Chakrabarty P K, Song W Y. The ubiquitin ligase XBAT32 regulates lateral root development in Arabidopsis. Plant J,2004, 40(6):996-1006
    142.Ohi M D, Vander Kooi C W, Rosenberg J A, Chazin W J, Gould K L. Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat Struct Biol,2003,10:250-255
    143.Ohi M D, Vander Kooi C W, Rosenberg J A, Ren L, Hirsch J P, Chazin W J, Walz T, Gould K L. Structural and functional analysis of essential pre-mRNA splicing factor Prp19p. Mol Cell Biol,2005,451-460
    144.Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S. Comprehensive Analysis of NAC Family Genes in Oryza sativa and Arabidopsis thaliana. DNA Res,2003,10(6):239-247
    145.Passmore L A, Barford D. Getting into position:the catalytic mechanisms of protein ubiquitylation. Biochem J,2004,379:513-525
    146.Patel S, Latterich M. The AAA team:related ATPases with diverse functions, Trends Cell Biol,1998,8(2):65-71
    147.Patterson G H, Knobel S M, Sharif W D, Kain S R, Piston D W. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J,1997,773:2782-2790
    148.Petroski M D, Deshaies R J. Function and regulation of culling-RING ubiquitin ligases. Nat Rev Mol Cell Biol,2005,6 (1):9-20
    149.Pickart C M. Mechanisms underlying ubiquitination. Annu Rev Biochem,2001,70: 503-533
    150.Pontier D, Balague C, Roby D. The hypersensitive response:a programmed cell death associated with plant resistance. Molecular biology and genetics,1998,321: 721-734
    151.Qian S B, McDonough H, Boellmann F, Cyr D M, Patterson C. CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature,2006,440: 551-555
    152.Ramonell K, Berrocal-Lobo M, Koh S, Wan J, Edwards H, Stacey G, Somerville S. Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum. Plant Physiol,2005,138: 1027-1036
    153.Riechmann J.L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda 0, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes. Science,2000,290(5499):2105-2110
    154.Riggleman B, Wieschaus E, Schedl P. Molecular analysis of the armadillo locus: uniformly distributed transcripts and a protein with novel internal repeats are associated with a Drosophila segment polarity gene. Gene Dev,1989,3:96-113
    155.Ristaino J B. Tracking historic migrations of the Irish potato famine pathogen, Phytophthora infestans. Microbes Infect,2002,4:1369-1377
    156.Ros B, Thummler F, Wenzel G. Analysis of differentially expressed genes in a susceptible and moderately resistant potato cultivar upon Phytophthora infestans infection. Mol Plant Pathol,2004,5:191-201
    157.Rowland O, Ludwig A A, Merrick C J, Baillieul F, Tracy F E, Durrant W E, Fritz-Laylin L, Nekrasov V, Sjolander K, Yoshioka H, Jones J D. Functional analysis of Avr9/Cf-9 rapidly elicited genes identifies a protein kinase, ACIK1, that is essential for full Cf-9-dependent disease resistance in tomato. Plant Cell,2005,17: 295-310
    158.Sahin-Cevik M, Moore G A. Isolation and characterization of a novel RING-H2 finger gene induced in response to cold and drought in the interfertile Citrus relative Poncirus trifoliate. Physiol Plantaurm,2007,126:153-161
    159.Salinas-Mondragon R E, Garciduenas-Pina C, Guzman P. Early elicitor induction in members of a novel multigene family coding for highly related RING-H2 proteins in Arabidopsis thaliana. Plant Mol Biol,1999,40:579-590
    160.Samuel M A, Salt I N, Shiu S H, Goring D R. Multifunctional arm repeat domains in plants. Int Rev Cytol,2006,253:1-26
    161.Samuel M A, Mudgil Y, Salt I N, Delmas F, Ramachandran S, Chilelli A, Goring D R. Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis. Plant Physiol, 2008,147:2084-2095
    162.Saurin A J, Borden K L B, Boddy M N, Freemont P S. Does this have a familiar RING? Trends Biochem Sci,1996,21:208-214
    163.Schlesinger M J, Bond U. Ubiquitin genes. Oxf Surv Eukaryotic Genes,1987,4: 77-89
    164.Scheffner M J, Nuber U, Huibregtse J M. Protein ubiquitination involving an E1-E2-E3 enzyme thioester cascade. Nature,1995,373:81-83
    165.Schnell J D, Hicke L. Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J Biol Chem,2003,278:35857-35860
    166.Schultz J, Milpetz F, Bork P, Ponting C P. SMART, a simple modular architecture research tool:Identification of signaling domains. Proc Natl Acad Sci USA,1998, 95(11):5857-5864
    167.Schwede T, Kopp J, Guex N, Peitsch M C. SWISS-MODEL:an automated protein homology-modeling server. Nucleic Acids Res,2003,31:3381-3385
    168.Seo H S, Yang J Y, Ishikawa M, Bolle C, Ballesteros M L, Chua N H. LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature,2003,424:995-999
    169.Serrano M, Guzman P. Isolation and gene expression analysis of Arabidopsis thaliana mutants with constitutive expression of ATL2, an early elicitor-response RING-H2 zinc-finger gene. Genetics,2004,167:919-929
    170.Serrano M, Parra S, Alcaraz L D, Guzman P. The ATL gene family from Arabidopsis thaliana and Oryza sativa comprises a large number of putative ubiquitin ligases of the RING-H2 type. J Mol Evol,2006,62:434-445
    171.Shiu S H, Bleecker A B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol,2003,132:530-543.
    172.Si H J, Xie C H, Liu J. An efficient protocol for Agrobacterium-mediated transformation with microtuber and the introduction of an antisense class I patatin gene into potato. Acta Agron Sin,2003,29:801-805
    173.Smalle J, Kurepa J, Yang P Z, Babiychuk E, Kushnir S, Durski A, Vierstra R D. Cytokinin growth responses in Arabidopsis involve the 26S proteasome subunit RPN12. Plant Cell,2002,14:17-32
    174.Smalle J, Vierstra R D. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol,2004,55:555-590
    175.Spence J, Gali R R, Dittmar G, Sherman F, Karin M, Finley D. Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell,2000,102: 67-76
    176. Stone S L, Arnoldo M, Goring D R. A breakdown of Brassica self-incompatibility in ARC1 antisense transgenic plants. Science,1999,286:1729-1731
    177.Stone S L, Anderson E M, Mullen R T, Goring D R. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell,2003,15:885-898
    178.Stone S L, Hauksdottir H, Troy A, Herschleb J, Kraft E, Callis J. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol,2005,137: 13-30
    179.Szczepanowski R H, Filipek R, Bochtler M. Crystal structure of a fragment of mouse ubiquitin-activating enzyme. J Biol Chem,2005,280:22006-22011
    180.Takai R, Hasegawa K, Kaku H, Shibuya N, Minami E. Isolation and analysis of expression mechanisms of a rice gene, EL5, which shows structural similarity to ATL family from Arabidopsis, in response to N-acetylchitooligosaccharide elicitor. Plant Sci,2001,160:577-583
    181.Takai R, Matsuda N, Nakano A, Hasegawa K, Akimoto C, Shibuya N, Minami E. EL5, a rice N-acetylchitooligosaccharide elicitor-responsive RING-H2 finger protein, is a ubiquitin ligase which functions in vitro in cooperation with an elicitor-responsive ubiquitinconjugating enzyme, OsUBC5b. Plant J,2002,30:447-455
    182.Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, Hinata K. The S receptor kinase determines self-incompatibility in Brassica stigma. Nature,2000,403: 913-916
    183.Takayama S, Shiba H, Iwano M, Shimosato H, Che F S, Kai N, Watanabe M, Suzuki G, Hinata K, Isogai A. The pollen determinant of self-incompatibility in Brassica campestris. PNAS,2000,97:1920-1925
    184.Tor M, Yemm A, Holub E. The role of proteolysis in R gene mediated defence in plants. Mol Plant Pathol,2003,4:287-296
    185.Toufighi K, Brady S M, Austin R, Ly E, Provart N J. The botany array resource: e-Northerns, expression angling, and promoter analyses. Plant J,2005,43:153-163
    186.Tsien R Y. The green fluorescent protein. Annu Rev Biochem,1998,67:509-544
    187.Van N S, Vierstra R D. Multiubiquitin chains linked through lysine 48 are abundant in vivo and are competent intermediates in the ubiquitin proteolytic pathway. J Biol Chem,1993,268:24766-24773
    188.Verma R, Aravind L, Oania R, McDonald W H, Yates J R 3rd, Koonin E V, Deshaies R J. Role of Rpnll metalloprotease in deubiquitination and degradation by the 26S proteasome. Science,2002,298:611-615
    189.Vierstra R D. Proteolysis in plants:mechanisms and functions. Plant Mol Biol,1996, 32(2):275-302
    190.Vierstra R D, Callis J. Polypeptide tags, ubiquitous modifiers for plant protein regulation. Plant Mol Biol,1999,41:435-442
    191.Vierstra R D. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci,2003,8(3):135-142
    192.Vleeshouwers V G A A, Dooijeweert W V, Keizer L C P, Sijpkes L, Govers F, Colon L T. A laboratory assay for Phytophthora infestans resistance in various Solanum species reflects the field situation. Eur J Plant Pathol,1999,105:241-250
    193.Vleeshouwers V G A A, Dooijeweert W V, Govers F, Kamoun S, Colon L T. The hypersensitive response is associated with host and nonhost resistance to Phytophthora infestans. Planta,2000,210:853-864
    194. Von Arnim A G, Deng X W. Ring finger motif of Arabidopsis thaliana COP1 defines a new class of zinc-binding domain. J Biol Chem,1993,268(26):19626-19631
    195.Wastie R L. Breeding for resistance. In:Ingram D S, Williams P H. eds., Advances in plant pathology. London U K:London Academic Press,1991,193-224
    196.Weissman A M. Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol, 2001,2:169-178
    197.Welchman R L, Cordon C, Mayer R J. Ubiquitin and ubiquitin-like proterins as multifunctional signals. Nat Rev Mol Cell Biol,2005,6:599-609
    198.Wiborg J, O'Shea C, Skriver K. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitinprotein ligases. Biochem J,2008,413: 447-457
    199.Wilkinson K D. Ubiquitination and deubiquitination:targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol,2000,11(3):141-148
    200.Wu D, Chen P J, Chen S, Hu Y, Nunez G, Ellis R E. Celegans MAC-1, an essential member of the AAA family of ATPases, can bind CED-4 and prevent cell death. Development,1999,126(9):2021-2031
    201.Xie Q, Guo H S, Dallman G, Fang S, Weissman A M, Chua N H. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature,2002, 419(6903):167-170
    202.Xu R, Li Q Q. A RING-H2 zinc-finger protein gene RIE1 is essential for seed development in Arabidopsis. Plant Mol Biol,2003,53(1-2):37-50
    203.Yamamoto Y Y, Deng X W, Matsui M. CIP4, a new COP1 target, is a nuclear-localized positive regulator of-Arabidopsis photomorphogenesis. Plant Cell,2001,13: 399-411
    204.Yang C W, Gonzalez-Lamothe R, Ewan R A, Rowland O, Yoshioka H, Shenton M, Ye H, O'Donnell E, Jones I D, Sadanandom A. The E3 ubiquitin ligase activity of Arabidopsis PLANT U-Box 17 and its functional tobacco homolog ACRE276 are required for cell death and defense. Plant Cell,2006,18:1084-1098
    205.Yin Z, Chen J, Zeng L, Goh M, Leung H, Khush G S, Wang G L. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant Microbe In,2000,13:869-876
    206.Zeng L R, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm B H, Leung H, Wang G L. Spotted leafl1, a negative regulator of Plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell,2004,16:2795-2808
    207.Zeng L R, Park C H, Venu R C, Gough J, Wang G L. Classification, expression pattern, and E3 ligase activity assay of rice U-box-containing proteins. Molecular Plant,2008,1:800-815
    208.Zhang X, Garreton V, Chua N H. The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev,2005,19: 1532-1543
    209.Zhang Z M, Wang R G. Progress and suggestion on potato late blight research in china. Journal of Agricultural University of Hebei,2001,24:4-10
    210.Zheng N, Wang P, Jeffrey P D, Pavletich N P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell,2000,102:533-539
    211.Zheng N, Schulman B A, Song L, Miller J J, Jeffrey P D,Wang P, Chu C, Koepp D M, Elledge S Y, Pagano M, Conaway R C, Conaway J W, Harper J W, Pavletich N P. Structure of the Cull-Rbxl-Skpl-F boxSkp2 SCF ubiquitin ligase complex. Nature, 2002,416:703-709
    212.Zheng N. A closer look of the HECTic ubiquitin ligases. Structure,2003,11(1):5-6
    213.Zimmermann P, Hennig L, Gruissem W. Gene-expression analysis and network discovery using Genevestigator. Trends Plant Sci,2005,10:,407-409
    214.Zipfel C, Robatzek S, Navarro L, Oakeley E J, Jones J D, Felix G, Boller T. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature,2004,428: 764-767

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700