RBM5蛋白在mRNA选择性剪接中作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真核生物细胞中基因的表达受到mRNA剪接的调控,而mRNA选择性剪接保证了细胞中功能蛋白的多样性。在真核细胞中,mRNA剪接调控的精确性和有效性至关重要,而mRNA剪接缺陷往往和许多人类疾病相关。RBM5蛋白最初作为肿瘤抑制因子而被发现,RBM5蛋白过表达能够通过促进细胞凋亡和抑制细胞周期进程影响细胞的分裂增殖。近年来,有研究发现RBM5蛋白参与Fas、Caspase-2等细胞凋亡相关基因mRNA的选择性剪接调控,但是具体调控机制仍然不清楚。因此,本研究的主要目的在于探究RBM5参与mRNA选择性剪接调控的可能机制,为更好地理解RBM5的生物学功能提供线索。
     1.RBM5蛋白对hAID mRNA选择性剪接的调控AID (Activation Induced Deaminase,活化诱导胞嘧啶核苷脱氨酶)是B细胞中类别转换(classs switch recombination)和体细胞高频突变(somatic hypermutation)两个过程所必需的,然而AID的不正常表达和B细胞淋巴瘤、肺癌、直肠癌等肿瘤的发生有密切关系。近年来,有研究发现AID mRNA选择性剪接是其生物学功能的重要调控环节。为了研究AID选择性剪接的调控机制,首先构建了含人AID第3、4、5外显子对应基因组DNA片段的真核表达载体。研究发现RBM5能够调控上述AID迷你基因的选择性剪接,促进外显子4的跳跃。我们进一步发现,RBM5蛋白的调控功能依赖于内含子3的3'剪接位点的强度。体外迁移率变动分析(gel mobility shift assay)实验结果表明,RBM5重组蛋白在体外能够结合AID mRNA,很可能是通过结合在内含子3的3’剪接位点上游发挥作用,提示RBM5蛋白可能通过结合在受调控外显子相关上游3’剪接位点附近,阻止剪接复合体对该3'剪接位点的识别,从而抑制相应内含子的剪切,促进外显子跳跃。
     2.关于RBM5蛋白相互作用的研究mRNA剪接调控一般是通过RNA-RNA、RNA蛋白、蛋白-蛋白相互作用实现的。为了探寻与RBM5剪接调控相关的蛋白,本研究首先通过亲和纯化的方法从HeLa细胞核抽提物中分离了RBM5蛋白复合物,质谱分析鉴定出两个新的RBM5结合蛋白:DHX15和PRP19。免疫共沉淀和体外GST pulldown实验结果证实了RBM5蛋白能够结合DHX15和PRP19。已有研究表明,人DHX15的酵母同源蛋白Prp43p主要参与剪接体的解聚及核糖体rRNA的成熟,但DHX15在哺乳动物细胞中的作用目前尚不清楚。鉴于此,我们对RBM5与DHX15相互作用及其生物学意义进行更为深入的探索。首先,酵母双杂交和免疫共沉淀实验结果发现,RBM5 C端结构域是RBM5与DHX15间相互作用所必需的。进一步的点突变实验结果表明,RBM5 C端的Gpatch结构域对于RBM5与DHX15间的相互作用起到重要作用。最后,通过体外实验首次证实DHX15在体外具有解旋酶活性,而RBM5通过其G patch结构域促进DHX15的解旋酶活性。本研究为揭示RBM5蛋白调控mRNA选择性剪接的作用机制提供了新的线索。
In metazoan, most transcripts synthesized by RNA polymerase II carry non-coding intronic sequences that must be precisely removed by splicing to generate translatable messenger RNAs (mRNAs). Alternative splicing, a process to remove introns in different combinations, produces diverse mature mRNAs encoding distinct protein isoforms from a single gene. Therefore, accuracy, efficiency and regulation of splicing play critical roles in the modulation of gene expression in higher eukaryotes. RBM5 was originally characterized as candidate tumor suppressor gene in lung cancer. Elevated RBM5 expression inhibits cell proliferation by inducing apoptosis and cell cycle arrest in G1 phase. While RBM5 has the capacity to regulate alternative splicing of apoptosis-related genes, including Fas receptor, c-FLIP and caspase-2, underlying mechanisms remain largely elusive. In order to gain more insights in the biological function of RBM5 in alternative splicing, we performed following studies.
     1. Regulation of hAID mRNA alternative splicing by RBM5
     Activation Induced Deaminase (AID) was originally identified as a factor specifically expressed in active B cells. However, abnormal AID expression was also reported in several malignant tumors, such as B cell lymphomas, lung cancers and colorectal cancers. Interestingly, mRNA alternative splicing has recently been suggested to function in the regulation of AID expression. To investigate the mechanism of AID splicing regulation, we constructed a minigene in which a genomic DNA fragment containing exon 3/4/5 was inserted downstream to a CMV promoter. We found that RBM5 overexpression promotes AID exon 4 skipping in the minigene. Furthermore, our data showed that RBM5-mediated exon skipping requires a weak 3'splice site of intron 3. Gel mobility shift assays showed that recombinant RBM5 can bind immediately upstream of the 3'splice site of intron 3 in AID transcripts. The data present here suggest that RBM5 promotes human AID pre-mRNA exon 4 skipping and that this is most likely due to the interference of RBM5 on the recognition of 3'splice site by spliceosome.
     2. Purification and identification of RBM5-associated protein complex
     Splicing regulation is generally achieved through RNA-RNA, RNA-protein, or protein-protein interaction. To shed new light on the function of RBM5 in splicing regulation, affinity purification strategy was employed to purify RBM5-containing protein complexes from HeLa nuclear extract. DHX15 and PRP19, two versatile splicing factors, were identified as new RBM5-associated partners. Interaction between RBM5 and PRP19 were further confirmed by co-immunoprecipitation and in vitro GST pull-down assays. While yeast ortholog of DHX15 have been suggested to function in spliceosome disassembly and rRNA biogenesis, the biological function of DHX15 in mammalian cells remains largely unclear. We thus focused on characterization of the interaction between RBM5 and DHX15 in this study.
     Yeast two-hybrid and co-immunoprecipitation assays showed that the carboxyl-terminal of RBM5 is required for the interaction with DHX15. Point mutation analysis indicated that G patch domain in the carboxyl terminus of RBM5 is indispensable for the interaction between RBM5 and DHX15. Finally, we provide the first evidence that recombinant DHX15 has an ATP-dependent helicase activity. Interestingly, recombinant RBM5 stimulates DHX15 helicase activity in vitro, suggesting of a potentially biological significance of the physical interaction between RBM5 and DHX15. Taken together, these findings provide new insights on the mechanisms by which RBM5 functions as a splicing regulator.
引文
[1]Albesiano E, Messmer BT, Damle RN, Allen SL, Rai KR, Chiorazzi N. Activation-induced cytidine deaminase in chronic lymphocytic leukemia B cells:expression as multiple forms in a dynamic, variably sized fraction of the clone[J]. Blood,2003,102(9):3333-3339.
    [2]Aravind L, Koonin EV. G-patch:a new conserved domain in eukaryotic RNA-processing proteins and type D retroviral polyproteins[J]. Trends Biochem. Sci.,1999,24(9):342-344.
    [3]Arenas JE, Abelson JN. Prp43:An RNA helicase-like factor involved in spliceosome disassembly[J]. Proc. Natl. Acad. Sci. USA,1997, 94(22):11798-11802.
    [4]Ars E, Serra E, Garcia J, Kruyer H, Gaona A, Lazaro C, Estivill X. Mutations affecting mRNA splicing are the most common molecular defects in patients with neurofibromatosis type 1[J]. Hum. Mol. Genet.,2000,9(2):237-247.
    [5]Behzadnia N, Golas MM, Hartmuth K, Sander B, Kastner B, Deckert J, Dube P, Will CL, Urlaub H, Stark H, Luhrmann R. Composition and three-dimensional EM structure of double affinity-purified, human prespliceosomal A complexes[J]. EMBO J.,2007,26(6):1737-1748.
    [6]Berget SM, Moore C, Sharp PA. Spliced segments at the 5'terminus of adenovirus 2 late mRNA[J]. Proc. Natl. Acad. Sci. USA,1997, 74(8):3171-3175.
    [7]Black DL. Mechanisms of alternative pre-messenger RNA splicing[J]. Annu. Rev. Biochem.,2003,72:291-336.
    [8]Blencowe BJ. Alternative splicing:new insights from global analyses[J]. Cell,2006,126 (1):37-47.
    [9]Bohnsack MT, Martin R, Granneman S, Ruprecht M, Schleiff E, Tollervey D. Prp43 bound at different sites on the pre-rRNA performs distinct functions in ribosome synthesis[J]. Mol. Cell, 2009,36(4):583-592.
    [10]Bonnal S, Martinez C, Forch P, Bachi A, Wilm M, Valcarcel J. RBM5/Luca-15/H37 regulates Fas alternative splice site pairing after exon definition[J]. Mol. Cell,2008,32(1):81-95.
    [11]Brais B, Bouchard JP, Xie YG, Rochefort DL, Chretien N, Tome FM, Lafreniere RG, Rommens JM, Uyama E, Nohira 0, Blumen S, Korczyn AD, Heutink P, Mathieu J, Duranceau A, Codere F, Fardeau M, Rouleau GA. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy[J]. Nat. Genet.,1998,18(2):164-167.
    [12]Buckanovich RJ, Posner JB, Darnell RB. Nova, the paraneoplastic Ri antigen, is homologous to an RNA-binding protein and is specifically expressed in the developing motor system[J]. Neuron, 1993,11(4):657-672.
    [13]Busa R, Paronetto MP, Farini D, Pierantozzi E, Botti F, Angelini DF, Attisani F, Vespasiani G, Sette C. The RNA-binding protein Sam68 contributes to proliferation and survival of human prostate cancer cells[J]. Oncogene,2007,26(30):4372-4382.
    [14]Chan SP, Cheng SC. (2005). The Prpl9-associated complex is required for specifying interactions of U5 and U6 with pre-mRNA during spliceosome activation[J]. J. Biol. Chem.,2005, 280(35):31190-31199.
    [15]Chan SP, Kao DI, Tsai WY, Cheng SC. The Prpl9p-associated complex in spliceosome activation[J]. Science,2003,302(5643):279-282.
    [16]Chakarova CF, Hims MM, Bolz H, Abu-Safieh L, Patel RJ, Papaioannou MG, Inglehearn CF, Keen TJ, Willis C, Moore AT, Rosenberg T, Webster AR, Bird AC, Gal A, Hunt D, Vithana EN, Bhattacharya SS. Mutations in HPRP3, a third member of pre-mRNA splicing factor genes, implicated in autosomal dominant retinitis pigmentosa[J]. Hum. Mol. Genet.,2002,11(1):87-92.
    [17]Chaudhuri J, Basu U, Zarrin A, Yan C, Franco S, Perlot T, Vuong B, Wang J, Phan RT, Datta A, Manis J, Alt FW. Evolution of the immunoglobulin heavy chain class switch recombination mechanism[J]. Adv. Immunol.,2007,94:157-214.
    [18]Chen M, Manley JL. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches[J]. Nat. Rev. Mol. Cell Biol.,2009,10(11):741-754
    [19]Chow LT, Gelinas RE, Broker TR, Roberts RJ. An amazing sequence arrangement at the 5'ends of adenovirus 2 messenger RNA[J]. Cell, 1977,12(1):1-8.
    [20]Clark J, Lu YJ, Sidhar SK, Parker C, Gill S, Smedley D, Hamoudi R, Linehan WM, Shipley J, Cooper CS. Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma[J]. Oncogene,1997,15(18):2233-2239.
    [21]Combs DJ, Nagel RJ, Ares M Jr, Stevens SW. Prp43p is a DEAH-box spliceosome disassembly factor essential for ribosome biogenesis[J]. Mol. Cell. Biol.,2006,26(2):523-534.
    [22]Corsini L, Bonnal S, Basquin J, Hothorn M, Scheffzek K, Valcarcel J, Sattler M. U2AF-homology motif interactions are required for alternative splicing regulation by SPF45[J]. Nat. Struct. Mol. Biol.,2007,14(7):620-629.
    [23]Cote J, Dupuis S, Jiang Z, Wu JY. Caspase-2 pre-mRNA alternative splicing:Identification of an intronic element containing a decoy 3' acceptor site[J]. Proc. Natl. Acad. Sci. USA,2001, 98(3):938-943.
    [24]Coutinho-Mansfield GC, Xue Y, Zhang Y, Fu XD. PTB/nPTB switch:a post-transcriptional mechanism for programming neuronal differentiation[J]. Genes Dev.,2007,21(13):1573-1577.
    [25]Deckert J, Hartmuth K, Boehringer D, Behzadnia N, Will CL, Kastner B, Stark H, Urlaub H, Luhrmann R. Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under physiological conditions[J]. Mol. Cell. Biol.,2006,26(14):5528-5543.
    [26]de la Mata M, Alonso CR, Kadener S, Fededa JP, Blaustein M, Pelisch F, Cramer P, Bentley D, Kornblihtt AR. A slow RNA polymerase Ⅱ affects alternative splicing in vivo[J]. Mol. Cell, 2003,12(2):525-532.
    [27]Di Noia JM, Neuberger MS. Molecular mechanisms of antibody somatic hypermutation[J]. Annu. Rev. Biochem.,2007,76:1-22.
    [28]Disset A, Bourgeois CF, Benmalek N, Claustres M, Stevenin J, Tuffery-Giraud S. An exon skipping-associated non-sense mutation in the dystrophin gene uncovers a complex interplay between multiple antagonistic splicing elements[J]. Hum. Mol. Genet. 2006,15(6):999-1013.
    [29]Drabkin HA, West JD, Hotfilder M, Heng YM, Erickson P, Calvo R, Dalmau J, Gemmill RM, Sablitzky F. DEF-3(g16/NY-LU-12), an RNA binding protein from the 3p21.3 homozygous deletion region in SCLC[J]. Oncogene,1999,18(16):2589-2597.
    [30]Edamatsu H., Kaziro Y., Itoh H. LUCA15, a putative tumour suppressor gene encoding an RNA-binding nuclear protein, is down-regulated in ras-transformed Rat-1 eells[J]. Genes Cells,2000, 5(10):849-858.
    [31]Endo Y, Marusawa H, Kinoshita K, Morisawa T, Sakurai T, Okazaki IM, Watashi K, Shimotohno K, Honjo T, Chiba T. Expression of activation-induced cytidine deaminase in human hepatocytes via NF-kappaB signaling[J]. Oncogene,2007,26(38):5587-9555.
    [32]Fushimi K, Ray P, Kar A, Wang L, Sutherland LC, Wu JY. Up-regulation of the proapoptotic caspase 2 splicing isoform by a candidate tumor suppressor, RBM5[J]. Proc. Natl. Acad. Sci. USA, 2008,105(4):15708-15713.
    [33]Fouraux MA, Kolkman MJ, Van der Heijden A, De Jong AS, Van Venrooij WJ, Pruijn GJ. The human La (SS-B) autoantigen interacts with DDX15/hPrp43, a putative DEAH-box RNA helicase[J]. RNA, 2002,8 (11):1428-1443.
    [34]Gabellini D, D' Antona G, Moggio M, Prelle A, Zecca C, Adami R, Angeletti B, Ciscato P, Pellegrino MA, Bottinelli R, Green MR, Tupler R. Facioscapulohumeral muscular dystrophy in mice overexpressing FRG1[J]. Nature,2006,439(7-79):973-977.
    [35]Gatchel JR, Zoghbi HY. Diseases of unstable repeat expansion: mechanisms and common principles[J]. Nat. Rev. Genet.,2005, 6(10):743-755.
    [36]Garcia-Blanco MA, Baraniak AP, Lasda EL. Alternative splicing in disease and therapy[J]. Nat. Biotechnol.,2004,22(5):535-546.
    [37]Grey M, Dusterhoft A, Henriques JA, Brendel M. Allelism of PS04 and PRP19 links pre-mRNA processing with recombination and error-prone DNA repair in Saccharomyces cerevisiae[J]. Nucleic Acids Res.,1996,24(20):4009-4014.
    [38]Grover A, Houlden H, Baker M, Adamson J, Lewis J, Prihar G, Pickering-Brown S, Duff K, Hutton M. 5' splice site mutations in tau associated with the inherited dementia FTDP-17 affect a stem-loop structure that regulates alternative splicing of exon 10[J]. J. Biol. Chem.,1999,274(21):15134-15143.
    [39]Heinzen EL, Yoon W, Tate SK, Sen A, Wood NW, Sisodiya SM, Goldstein DB. Nova2 interacts with a cis-acting polymorphism to influence the proportions of drug-responsive splice variants of SCN1A[J]. Am. J. Hum. Genet.,2007,80(5):876-883.
    [40]Ichikawa H, Shimizu K, Hayashi Y, Ohki M. An RNA-binding protein gene, TLS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation[J]. Cancer Res.,1994, 54(11):2865-2868.
    [41]Ichikawa H, Shimizu K, Katsu R, Ohki M. Dual transforming activities of the FUS (TLS)-ERG leukemia fusion protein conferred by two N-terminal domains of FUS (TLS) [J]. Mol. Cell. Biol., 1999,19(11):7639-7650.
    [42]Imai H, Chan EK, Kiyosawa K, Fu XD, Tan EM. Novel nuclear autoantigen with splicing factor motifs identified with antibody from hepatocellular carcinoma[J]. J. Clin. Invest.,1993, 92(5):2419-2426.
    [43]Izquierdo JM, Majos N, Bonnal S, Martinez C, Castelo R, Guigo R, Bilbao D, Valcarcel J. Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition[J]. Mol. Cell,2005,19(4):475-484.
    [44]Iwahashi CK, Yasui DH, An HJ, Greco CM, Tassone F, Nannen K, Babineau B, Lebrilla CB, Hagerman RJ, Hagerman PJ[J]. Protein composition of the intranuclear inclusions of FXTAS. Brain,2006, 129(Ptl):256-271.
    [45]Jiang Z, Tang H, Havlioglu N, Zhang X, Stamm S, Yan R, Wu JY. Mutations in tau gene exon 10 associated with FTDP-17 alter the activity of an exonic splicing enhancer to interact with Tra2 beta[J]. J. Biol. Chem.,2003,278(21):18997-19007.
    [46]Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays[J]. Science,2003,302(5653):2141-2144.
    [47]Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol.,2007,14(3):185-193.
    [48]Kishore S, Stamm S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C[J]. Science,2006, 311 (5758):230-232.
    [49]Kobayashi T, Ishida J, Musashi M, Ota S, Yoshida T, Shimizu Y, Chuma M, Kawakami H, Asaka M, Tanaka J, Imamura M, Kobayashi M, Itoh H, Edamatsu H, Sutherland LC, Brachmann RK[J]. p53 transactivation is involved in the antiproliferative activity of the putative tumor suppressor RBM5. Int. J. Cancer,2011, 128(2):304-318.
    [50]Kotlajich MV, Hertel KJ. Death by splicing:tumor suppressor RBM5 freezes splice-site pairing[J]. Mol. Cell,2008,32(2):162-164.
    [51]Kramer A. The structure and function of proteins involved in mammalian pre-mRNA splicing[J]. Annu. Rev. Biochem.,1996, 65:367-409.
    [52]Krawczak M, Reiss J, Cooper DN. The mutational spectrum of single base-pair substitutions in messenger RNA splice junctions of human genes-causes and consequences[J]. Hum. Genet.,1992,90(1-2):41-54.
    [53]Kuyumcu-Martinez NM, Wang GS, Cooper TA. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation[J]. Mol. Cell,2007,28(1):68-78.
    [54]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al. Initial sequencing and analysis of the human genome[J]. Nature,2001,409(6822): 860-921.
    [55]Larriba S, Bassas L, Gimenez J, Ramos MD, Segura A, Nunes V, Estivill X, Casals T. Testicular CFTR splice variants in patients with congenital absence of the vas deferens[J]. Hum. Mol. Genet., 1998,7(11):1739-1743.
    [56]Lebaron S, Froment C, Fromont-Racine M, Rain JC, Monsarrat B, Caizergues-Ferrer M, Henry Y. The splicing ATPase prp43p is a component of multiple preribosomal particles[J]. Mol. Cell. Biol. 2005,25(21):9269-9282.
    [57]Lebaron S, Papin C, Capeyrou R, Chen YL, Froment C, Monsarrat B, Caizergues-Ferrer M, Grigoriev M, Henry Y. The ATPase and helicase activities of Prp43p are stimulated by the G-patch protein Pfalp during yeast ribosome biogenesis[J]. EMBO J.,2009, 28(24):3808-3819.
    [58]Leeds NB, Small EC, Hiley SL, Hughes TR, Staley JP. The splicing factor Prp43p, a DEAH box ATPase, functions in ribosome biogenesis[J]. Mol. Cell. Biol.,2006,26(2):513-522.
    [59]Lefebvre S, Burglen L, Reboullet S, Clermont 0, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, et al. Identification and characterization of a spinal muscular atrophy-determining gene[J]. Cell,1995,80(1):155-165.
    [60]Lerman, M. I., Minna, J. D. The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3:identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium[J]. Cancer Res.,2000,60(21):6116-6133.
    [61]Li N, Yuan K, Yan F, Huo Y, Zhu T, Liu X, Guo Z, Yao X. PinXl is recruited to the mitotic chromosome periphery by Nucleolin and facilitates chromosome congression[J]. Biochem. Biophys. Res. Commun.,2009,384(1):76-81.
    [62]Li R, Zhang H, Yu W, Chen Y, Gui B, Liang J, Wang Y, Sun L, Yang X, Zhang Y, Shi L, Li Y, Shang Y. ZIP:a novel transcription repressor, represses EGFR oncogene and suppresses breast carcinogenesis[J]. EMBO J.,2009,28(18):2763-2776.
    [63]Li X, Niu T, Manley JL. The RNA binding protein RNPS1 alleviates ASF/SF2 depletion-induced genomic instability[J]. RNA,2007, 13(12):2108-2115.
    [64]Licatalosi DD, Darnell RB. Splicing regulation in neurologic disease[J]. Neuron,2006,52(1):93-101.
    [65]Lin C, Yang L, Tanasa B, Hutt K, Ju BG, Ohgi K, Zhang J, Rose DW, Fu XD, Glass CK, Rosenfeld MG. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer[J]. Cell,2009,139(6):1069-1083.
    [66]Lin ML, Fukukawa C, Park JH, Naito K, Kijima K, Shimo A, Ajiro M, Nishidate T, Nakamura Y, Katagiri T.Involvement of G-patch domain containing 2 overexpression in breast carcinogenesis[J]. Cancer Sci.,2009,100(8):1443-1450.
    [67]Liu, H. X., Cartegni, L., Zhang, M. Q. and Krainer, A. R. A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes[J]. Nat. Genet.,2001,27(1):55-58.
    [68]Loughlin FE, Mansfield RE, Vaz PM, McGrath AP, Setiyaputra S, Gams jaeger R, Chen ES, Morris BJ, Guss JM, Mackay JP. The zinc fingers of the SR-like protein ZRANB2 are single-stranded RNA-binding domains that recognize 5'splice site-like sequences[J]. Proc. Natl. Acad. Sci. USA,2009,106(14):5581-5586.
    [69]Lu X, Timchenko NA, Timchenko LT. Cardiac elav-type RNA-binding protein (ETR-3) binds to RNA CUG repeats expanded in myotonic dystrophy [J]. Hum. Mol. Genet.,1999,8(1):53-60.
    [70]Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T. Regulation of alternative splicing by histone modifications[J]. Science,2010,327(5968):996-1000.
    [71]Lukong KE, Chang KW, Khandjian EW, Richard, S. RNA-binding proteins in human genetic disease[J]. Trends Genet.,2008, 24(8):416-425.
    [72]Ma YL, Peng JY, Zhang P, Huang L, Liu WJ, Shen TY, Chen HQ, Zhou YK, Zhang M, Chu ZX, Qin HL. Heterogeneous nuclear ribonucleoprotein A1 is identified as a potential biomarker for colorectal cancer based on differential proteomics technology[J]. J. Proteome Res.,2009,8(10):4525-4535.
    [73]Mahajan KN, Mitchell BS. Role of human Pso4 in mammalian DNA repair and association with terminal deoxynucleotidyl transferase[J]. Proc. Natl. Acad. Sci. USA,2003,100(19):10746-10751.
    [74]Makarova OV, Makarov EM, Urlaub H, Will CL, Gentzel M, Wilm M, Luhrmann R. A subset of human 35S U5 proteins, including Prp19, function prior to catalytic step 1 of splicing[J]. EMBO J.,2004, 23(12):2381-2391.
    [75]Matlin AJ, Clark F, Smith CW. Understanding alternative splicing: Toward a cellular code[J]. Nat. Rev. Mol. Cell. Biol.,2005, 6(5):386-398.
    [76]Martin A, Schneider S, Schwer B. Prp43 is an essential RNA-dependent ATPase required for release of lariat-intron from the spliceosome[J]. J. Biol. Chem.,2002,277(20):17743-17750.
    [77]Marusawa H, Chiba T. Helicobacter pylori-induced activation-induced cytidine deaminase expression and carcinogenesis[J]. Curr. Opin. Immunol.,2010,22(4):442-447.
    [78]McCarthy H, Wierda WG, Barron LL, Cromwell CC, Wang J, Coombes KR, Rangel R, Elenitoba-Johnson KS, Keating MJ, Abruzzo LV. High expression of activation-induced cytidine deaminase (AID) and splice variants is a distinctive feature of poor-prognosis chronic lymphocytic leukemia[J]. Blood,2003,101(12):4903-4908.
    [79]McKie AB, McHale JC, Keen TJ, Tarttelin EE, Goliath R, van Lith-Verhoeven JJ, Greenberg J, Ramesar RS, Hoyng CB, Cremers FP, Mackey DA, Bhattacharya SS, Bird AC, Markham AF, Inglehearn CF. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13) [J]. Hum. Mol. Genet.,2001, 10(15):1555-1562.
    [80]Mierau M, Drexler GA, Kutzera A, Braunschmidt K, Ellwart J, Eckardt-Schupp F, Fritz E, Bachl J, Jungnickel B. Non-conservative homologous recombination in human B lymphocytes is promoted by activation-induced cytidine deaminase and transcription[J]. Nucleic Acids Res.,2008,36(17):5591-5601.
    [81]Miller JW, Urbinati CR, Teng-Umnuay P, Stenberg MG, Byrne BJ, Thornton CA, Swanson MS. Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy[J]. EMBO J.,2000,19(17):4439-4448.
    [82]Mine M, Brivet M, Touati G, Grabowski P, Abitbol M, Marsac C. Splicing error in Elalpha pyruvate dehydrogenase mRNA caused by novel intronic mutation responsible for lactic acidosis and mental retardation[J]. J. Biol. Chem.,2003,278(14):11768-11772.
    [83]Modrek B, Lee C. A genomic view of alternative splicing[J]. Nat. Genet.,2002,30(1):13-19.
    [84]Morgan HD, Dean W, Coker HA, Reik W, Petersen-Mahrt SK. Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues:Implications for epigenetic reprogramming[J]. J. Biol. Chem.,2004,279(50):52353-52360.
    [85]Mourtada-Maarabouni M, Keen J, Clark J, Cooper CS, Williams GT. Candidate tumor suppressor LUCA-15/RBM5/H37 modulates expression of apoptosis and cell cycle genes[J]. Exp. Cell. Res.,2006, 312(10):1745-1752.
    [86]Mourtada-Maarabouni M, Sutherland LC, Meredith JM, Williams GT. Simultaneous acceleration of the cell cycle and suppression of apoptosis by splice variant delta-6 of the candidate tumour suppressor LUCA-15/RBM5[J]. Genes Cells.,2003,8(2):109-119.
    [87]Mourtada-Maarabouni M, Sutherland LC, Williams GT. Candidate tumour suppressor LUCA-15 can regulate multiple apoptotic pathways[J]. Apoptosis,2002,7(5):421-432.
    [88]Munoz MJ, Perez Santangelo MS, Paronetto MP, de la Mata M, Pelisch F, Boireau S, Glover-Cutter K, Ben-Dov C, Blaustein M, Lozano JJ, Bird G, Bentley D, Bertrand E, Kornblihtt AR. (2009). DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation[J]. Cell,137(4):708-720.
    [89]Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme[J]. Cell,2000,102(5):553-563.
    [90]Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO, Honjo T. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells[J]. J. Biol. Chem, 1999,274(26):18470-18476.
    [91]Nguyen CD, Mansfield RE, Leung W, Vaz PM, Loughlin FE, Grant RP, Mackay JP. Characterization of a Family of RanBP2-Type Zinc Fingers that Can Recognize Single-Stranded RNA[J]. J. Mol. Biol. 2011,407(2):273-283.
    [92]Nielsen KB, Sφrensen S, Cartegni L, Corydon TJ, Doktor TK, Schroeder LD, Reinert LS, Elpeleg 0, Krainer AR, Gregersen N, Kjems J, Andresen BS. Seemingly neutral polymorphic variants may confer immunity to splicing-inactivating mutations:a synonymous SNP in exon 5 of MCAD protects from deleterious mutations in a flanking exonic splicing enhancer[J]. Am. J. Hum. Genet.,2007, 80(3):416-432.
    [93]Oh JJ, Grosshans DR, Wong SG, Slamon DJ. Identification of differentially expressed genes associated with HER-2/neu overexpression in human breast cancer cells[J]. Nucleic Acids Res.,1999,27(20):4008-4017.
    [94]Oh JJ, Razfar A, Delgado I, Reed RA, Malkina A, Boctor B, Slamon DJ.3p21.3 tumor suppressor gene H37/Luca15/RBM5 inhibits growth of human lung cancer cells through cell cycle arrest and apoptosis[J]. Cancer Res.,2006,66(7):3419-3427.
    [95]Oh JJ, Taschereau E0, Koegel AK, Ginther CL, Rotow JK, Isfahani KZ, Slamon DJ. RBM5/H37 tumor suppressor, located at the lung cancer hot spot 3p21.3, alters expression of genes involved in metastasis[J]. Lung Cancer,2010,70(3):253-262.
    [96]Oh JJ, West AR, Fishbein MC, Slamon DJ. A candidate tumor suppressor gene, H37, from the human lung cancer tumor suppressor locus 3p21.3[J]. Cancer Res.,2002,62(11):3207-3213.
    [97]Ohi MD, Link AJ, Ren L, Jennings JL, McDonald WH, Gould KL. Proteomics analysis reveals stable multiprotein complexes in both fission and budding yeasts containing Myb-related Cdc5p/Ceflp, novel pre-mRNA splicing factors, and snRNAs[J]. Mol. Cell. Bio. 2002,22(7):2011-2024.
    [98]Pagani F, Raponi M, Baralle FE. Synonymous mutations in CFTR exon 12 affect splicing and are not neutral in evolution[J]. Proc. Natl. Acad. Sci. USA,2005,102(18):6368-6372.
    [99]Pascual M, Vicente M, Monferrer L, Artero R. The Muscleblind family of proteins:an emerging class of regulators of developmentally programmed alternative splicing[J]. Differentiation,2006,74 (2-3):65-80.
    [100]Pasqualucci L, Kitaura Y, Gu H, Dalla-Favera R. PKA-mediated phosphorylation regulates the function of activation-induced deaminase (AID) in B cells[J]. Proc. Natl. Acad. Sci. USA,2006, 103(2):395-400.
    [101]Patel AA, Steitz JA. (2003). Splicing double:insights from the second spliceosome[J]. Nat. Rev. Mol. Cell. Biol.,2003, 4(12):960-970.
    [102]Pauklin S, Sernandez IV, Bachmann G, Ramiro AR, Petersen-Mahrt SK. 2009. Estrogen directly activates AID transcription and function[J]. J. Exp. Med.,2009,206(1):99-111.
    [103]Pollard AJ, Krainer AR, Robson SC, Europe-Finner GN. Alternative splicing of the adenylyl cyclase stimulatory G-protein G alpha(s) is regulated by SF2/ASF and heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) and involves the use of an unusual TG 3'-splice Site[J]. J. Biol. Chem.,2002,277(18):15241-15251.
    [104]Ramiro AR, Jankovic M, Eisenreich T, Difilippantonio S, Chen-Kiang S, Muramatsu M, Honjo T, Nussenzweig A, Nussenzweig MC. AID is required for c-myc/IgH chromosome translocations in vivo[J]. Cell,2004,118(4):431-438.
    [105]Rees DJ, Rizza CR, Brownlee GG. Haemophilia B caused by a point mutation in a donor splice junction of the human factor IX gene[J]. Nature,1985,316(6029):643-645.
    [106]Rintala-Maki ND, Goard CA, Langdon CE, Wall VE, Traulsen KE, Morin CD, Bonin M, Sutherland LC. Expression of RBM5-related factors in primary breast tissue[J]. J. Cell. Biochem.,2007, 100(6):1440-1458.
    [107]Rintala-Maki ND, Sutherland LC. LUCA-15/RBM5, a putative tumour suppressor, enhances multiple receptor-initiated death signals[J]. Apoptosis,2004,9(4):475-484.
    [108]Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y, Difilippantonio S, Bolland DJ, Chen HT, Corcoran AE, Nussenzweig A, Nussenzweig MC. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations[J]. Cell,2008, 135(6):1028-1038.
    [109]Roberts R, Timchenko NA, Miller JW, Reddy S, Caskey CT, Swanson MS, Timchenko LT. Altered phosphorylation and intracellular distribution of a (CUG)n triplet repeat RNA-binding protein in patients with myotonic dystrophy and in myotonin protein kinase knockout mice[J]. Proc. Natl. Acad. Sci. USA,1997,94(24):13221-13226.
    [110]Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, et al. (2005) Towards a proteome-scale map of the human protein-protein interaction network[J]. Nature,437(7062):1173-1178.
    [111]Rudnicki DD, Holmes SE, Lin MW, Thornton CA, Ross CA, Margolis RL. Huntington's disease-like 2 is associated with CUG repeat-containing RNA foci[J]. Ann. Neurol.,2007,61(3):272-282.
    [112]Sauliere J, Sureau A, Expert-Bezancon A, Marie J. The polypyrimidine tract binding protein (PTB) represses splicing of exon 6B from the beta-tropomyosin pre-mRNA by directly interfering with the binding of the U2AF65 subunit[J]. Mol. Cell Biol.,2006,26(23):8755-8769.
    [113]Sakashita E, Tatsumi S, Werner D, Endo H, Mayeda A. Human RNPS1 and its associated factors:a versatile alternative pre-mRNA splicing regulator in vivo[J]. Mol. Cell Biol.,2004,24(3):1174-1187.
    [114]Senchenko VN, Liu J, Loginov W, Bazov I, Angeloni D, Seryogin Y, Ermilova V, Kazubskaya T, Garkavtseva R, Zabarovska VI, Kashuba VI, Kisselev LL, Minna JD, Lerman MI, Klein G, Braga EA, Zabarovsky ER. Discovery of frequent homozygous deletions in chromosome 3p21.3 LUCA and AP20 regions in renal, lung and breast carcinomas[J]. Oncogene,2004,23(34):5719-5728.
    [115]Sharma S, Falick AM, Black DL. Polypyrimidine tract binding protein blocks the 5'splice site-dependent assembly of U2AF and the prespliceosomal E complex[J]. Mol. Cell.2005,19(4):485-496.
    [116]Silverman EJ, Maeda A, Wei J, Smith P, Beggs JD, Lin RJ. Interaction between a G-patch protein and a spliceosomal DEXD/H-box ATPase that is critical for splicing[J]. Mol. Cell. Biol. 2004,24(23):10101-10110.
    [117]Song EJ, Werner SL, Neubauer J, Stegmeier F, Aspden J, Rio D, Harper JW, Elledge SJ, Kirschner MW, Rape M. The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome[J]. Genes Dev.,2010, 24(13):1434-1447.
    [118]Srebrow A, Kornblihtt AR. The connection between splicing and cancer[J]. J. Cell. Sci.,2006,119(Pt 13):2635-2641.
    [119]Sridharan V, Singh R. A conditional role of U2AF in splicing of introns with unconventional polypyrimidine tracts[J]. Mol. Cell. Biol.,2007,27(20):7334-7344.
    [120]Srivastava S, Mukherjee M, Panigrahi I, Shanker Pandey G, Pradhan S, Mittal B. SMN2-deletion in childhood-onset spinal muscular atrophy[J]. Am. J. Med. Genet.,2001,101(3):198-202.
    [121]Stirnimann CU, Petsalaki E, Russell RB, Mtiller CW. WD40 proteins propel cellular networks[J]. Trends Biochem. Sci.,2010, 35(10):565-574.
    [122]Sugliani M, Brambilla V, Clerkx EJ, Koornneef M, Soppe WJ. The conserved splicing factor SUA controls alternative splicing of the developmental regulator ABI3 in Arabidopsis[J]. Plant Cell, 2010,22(6):1936-1946.
    [123]Sun H, Chasin LA. Multiple splicing defects in an intronic false exon[J]. Mol. Cell. Biol.,2000,20(17):6414-6425.
    [124]Sundaresan V, Chung G, Heppell-Parton A, Xiong J, Grundy C, Roberts I, James L, Cahn A, Bench A, Douglas J, Minna J, Sekido Y, Lerman M, Latif F, Bergh J, Li H, Lowe N, Ogilvie D, Rabbitts P. Homozygous deletions at 3p12 in breast and lung cancer[J]. Oncogene,1998,17 (13):1723-1729.
    [125]Sutherland LC, Edwards SE, Cable HC, Poirier GG, Miller BA, Cooper CS, Williams GT. LUCA-15-encoded sequence variants regulate CD95-mediated apoptosis[J]. Oncogene,2000,19(33):3774-3781.
    [126]Sutherland LC, Rintala-Maki ND, White RD, Morin CD. RNA binding motif (RBM) proteins:a novel family of apoptosis modulators? [J]. J. Cell. Biochem.,2005,94(1):5-24.
    [127]Svec M, Bauerova H, Pichova I, Konvalinka J, Strisovsky K. Proteinases of betaretroviruses bind single-stranded nucleic acids through a novel interaction module, the G-patch[J]. FEBS Lett.,2004,576(1-2):271-276.
    [128]Tanaka N, Aronova A, Schwer B. Ntrl activates the Prp43 helicase to trigger release of lariat-intron from the spliceosome[J]. Genes Dev.,2007,21(18):2312-2325.
    [129]Tanaka N, Schwer B. Mutations in PRP43 that uncouple RNA- dependent NTPase activity and pre-mRNA splicing function[J]. Biochemistry,2006,45(20):6510-6521.
    [130]Tange TO, Damgaard CK, Guth S, Valcarcel J, Kjems J. The hnRNP Al protein regulates HIV-1 tat splicing via a novel intron silencer element[J]. EMBO J.,2001,20(20):5748-5758.
    [131]Tarn WY, Hsu CH, Huang KT, Chen HR, Kao HY, Lee KR, Cheng SC. Functional association of essential splicing factor(s) with PRP19 in a protein complex[J]. EMBO J.,1994,13(10):2421-2431.
    [132]Teraoka SN, Telatar M, Becker-Catania S, Liang T, Onengut S, Tolun A, Chessa L, Sanal 0, Bernatowska E, Gatti RA, Concannon P. Splicing defects in the ataxia-telangiecta-sia gene, ATM: underlying mutations and consequences[J]. Am. J. Hum. Genet., 1999,64(6):1617-1631.
    [133]Timmer T, Terpstra P, van den Berg A, Veldhuis PM, Ter Elst A, Voutsinas G, Hulsbeek MM, Draaijers TG, Looman MW, Kok K, Naylor SL, Buys CH. A comparison of genomic structures and expression patterns of two closely related flanking genes in a critical lung cancer region at 3p21.3[J]. Eur. J. Hum. Genet.,1999,7(4):478-486.
    [134]Tsai RT, Fu RH, Yeh FL, Tseng CK, Lin YC, Huang YH, Cheng SC. Spliceosome disassembly catalyzed by Prp43 and its associated components Ntrl and Ntr2[J]. Genes Dev.,2005,19(24):2991-3003.
    [135]Valadkhan S, Manley JL. Splicing-related catalysis by protein-free snRNAs [J]. Nature,2001,413(6857):701-707.
    [136]Valadkhan S, Mohammadi A, Jaladat Y, Geisler S. Protein-free small nuclear RNAs catalyze a two-step splicing reaction[J]. Proc Natl. Acad. Sci. USA,2009,106(29):11901-11906.
    [137]Venables JP, Elliott DJ, Makarova OV, Makarov EM, Cooke HJ, Eperon IC. RBMY, a probable human spermatogenesis factor, and other hnRNP G proteins interact with Tra2beta and affect splicing[J]. Hum. Mol. Genet.,2000,9(5):685-694.
    [138]Vithana EN, Abu-Safieh L, Allen MJ, Carey A, Papaioannou M, Chakarova C, Al-Maghtheh M, Ebenezer ND, Willis C, Moore AT, Bird AC, Hunt DM, Bhattacharya SS. A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11)[J]. Mol. Cell,2001, 8(2):375-381.
    [139]Wahl MC, Will CL, Luhrmann R. The spliceosome:design principles of a dynamic RNP machine[J]. Cell,2009,136(4):701-718.
    [140]Walbott H, Mouffok S, Capeyrou R, Lebaron S, Humbert 0, van Tilbeurgh H, Henry Y, Leulliot N. Prp43p contains a processive helicase structural architecture with a specific regulatory domain. EMBO J.,2010,29(13):2194-2204.
    [141]Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. Alternative isoform regulation in human tissue transcriptomes[J]. Nature,2008, 456(7221):470-476.
    [142]Wang GS, Cooper TA. Splicing in disease:disruption of the splicing code and the decoding machinery[J]. Nat. Rev. Genet. 2007,8(10):749-761.
    [143]Wang Z, Burge CB. Splicing regulation:from a parts list of regulatory elements to an integrated splicing code[J]. RNA,2008, 14(5):802-813.
    [144]Warzecha CC, Sato TK, Nabet B, Hogenesch JB, Carstens RP. ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing[J]. Mol. Cell,2009,33(5):591-601.
    [145]Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T, Watanabe-Fukunaga R, Fukunaga R, Teruya-Feldstein J, Pelletier J, Lowe SW. Dissecting eIF4E action in tumorigenesis[J]. Genes Dev.,2007, 21(24):3232-3237.
    [146]Wu S, Romfo CM, Nilsen TW, Green MR. Functional recognition of the 3' splice site AG by the splicing factor U2AF35[J]. Nature, 1999,402(6763):832-835.
    [147]Wu X, Darce JR, Chang SK, Nowakowski GS, Jelinek DF.2008. Alternative splicing regulates activation-induced cytidine deaminase (AID):implications for suppression of AID mutagenic activity in normal and malignant B cells[J]. Blood,2008, 112(12):4675-4682.
    [148]Xiao X, Wang Z, Jang M, Burge CB. Coevolutionary networks of splicing cis-regulatory elements[J]. Proc. Natl. Acad. Sci. USA, 2007,104(47):18583-18588.
    [149]Xue Y, Zhou Y, Wu T, Zhu T, Ji X, Kwon YS, Zhang C, Yeo G, Black DL, Sun H, Fu XD, Zhang Y. Genome-wide analysis of PTB-RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping[J]. Mol. Cell, 2009,36(6):996-1006.
    [150]Yang L, Embree LJ, Hickstein DD. TLS-ERG leukemia fusion protein inhibits RNA splicing mediated by serine-arginine proteins[J]. Mol. Cell. Biol.,2000,20(10):3345-3354.
    [151]Yang YY, Yin GL, Darnell RB. The neuronal RNA-binding protein Nova-2 is implicated as the autoantigen targeted in POMA patients with dementia[J]. Proc. Natl. Acad. Sci. USA,1998,95(22):13254- 13259.
    [152]Yoshimoto R, Kataoka N, Okawa K, Ohno M. Isolation and characterization of post-splicing lariat-intron complexes[J]. Nucleic Acids Res.,2009,37(3):891-902.
    [153]Zhang N, Kaur R, Lu, Shen X, Li L, Legerski RJ. The Pso4 mRNA splicing and DNA repair complex interacts with WRN for processing of DNA interstrand cross-links[J]. J. Biol. Chem.,2005, 280(49):40559-40567.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700