DLP,一个新的DIM1蛋白家族成员—参与Pre-mRNA剪接与细胞周期调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发现新的功能基因,确定每个基因的独特功能和生物学意义,并阐明其调节机制,是功能基因组时代研究的一个重要领域。阐明基因选择性表达所依赖的调控信息及其相互作用的分子机制,是揭示生命现象本质的核心问题,是结构基因组之后功能基因组研究的重要内容。随着基因组学的广泛开展,基因的表达调控研究已经逐渐从单个基因点、线式的调控拓展到立体层面上多基因、基因簇以至整个基因组的调控网络。如何有效利用已有的基因组学数据,充分整合多学科的新思路,并建立新的实验系统和技术体系,阐明真核基因组表达的调控网络,已经成为功能基因组学领域内国际竞争的焦点。因此,识别出人类基因组中所有的基因并对其功能进行分析成为生物医学研究的重点之一。尤其是对细胞因子、原癌基因、转录因子、剪接因子和信号传导因子等的克隆和鉴定。同时生物信息学技术的发展也为发现新的,低丰度基因提供了可行性。
     我们在对一个细胞因子类似因子-CKLF的研究过程中,发现在其染色体区域附近约10Mb处存在一个新的蛋白质编码基因。对这个基因进行生物信息学分析,没有得到有关趋化因子的提示,这个基因的结构分析表明从4-135氨基酸为一个DIMl结构域,因此我们将这个基因编码的蛋白称为DIM1-like Protein(DLP)。氨基酸序列进行同源性分析发现DLP与酵母的一个15KD的剪接体蛋白U5有弱的同源性,和一种有丝分裂蛋白DIMl及人硫氧还蛋白分别有39%、24%的同源性,同时发现它在人、鼠、Arabidopsis thaliana、Oryza、melanogaster、果蝇、酵母菌等各种属之间有相当的保守性。DLP的序列与Golemis命名的DIM2相同(Zhang et al.1999)。因此,我们推测DLP也许是DIM1家族的成员之一。向GenBank提交登记获得接受,GenBank的登记号为AY566808。DIM1属近几年发现的一个硫氧还原蛋白超家族的第六分支。在人和酵母中,DIM1蛋白是U4/U6和U5tri-snRNP的一个亚基,其突变能使细胞停滞在G2/M期并且影响Pre-mRNA剪接过程。考虑到DIM1蛋白可能是通过影响Pre-mRNA的剪接来间接影响细胞周期,所以我们设想DLP也可能参与Pre-mRNA剪接的过程。
     我们首先对DLP进行表达谱分析,Nothem Blot显示DLP在骨骼肌、肝脏、心脏和胰腺中高表达,在肾脏,脑和胎盘中中等程度的表达,在肺中表达较低。RT-PCR证实DLP在人的乳腺癌细胞MCF-7,肝癌细胞HepG2和子宫内膜癌细胞Ishikawa中也有高表达。说明DLP在体内多个组织均有表达但又有特异性。用绿色荧光蛋白做定位表明DLP
Metazoans display an extraordinarily broad spectrum of functional and behavioural complexity. The size of the proteome of an organism can be expanded during evolution by increasing the numbers of genes, by elaborating pre-existing mechanisms that generate protein diversity and/or by elaborating the relationships between components (for example, regulatory networks), and by inventing new mechanisms. Mechanisms that increase protein diversity in all metazoans include the use of multiple transcription start sites, alternative pre-mRNA splicing, polyadenylation, pre-mRNA editing, and post-transcriptional protein modification. Among these mechanisms, alternative Pre-mRNA splicing is considered to be the most important source of protein diversity in vertebrates. The recent completion of a draft of human genome indicated that alternative splicing of Pre-mRNAs plays a crucial role in obtaining biological complexity, because more than 59% of the human genes seem to be alternatively spliced (Hastings and Krainer 2001).In addition, it was estimated that about 15% of all mutations that cause a genetic disease in humans lead to a failure in the correct splicing of the corresponding pre-mRNA, which disturbs the expression of the gene (Philips and Cooper 2000). Thus, the removal of pre-mRNA introns plays a major role in gene regulation. As of 1999, around 100 splicing factors were identified; however (Burge et al., 1999), that number has now nearly doubled due primarily to improved purification of spliceosomes coupled with advances in mass spectrometry analyses of complex mixtures.
    Both genetic and biochemical studies have revealed that essential components of the spliceosome include five small RNAs-U1, U2, U4, U5 and U6, and as many as 300 distinct proteins. Here we reported the molecular cloning and functional analysis of a novel cDNA encoding for a protein of 149 amino acids. This protein has 38% amino acid sequence identity
引文
1. Abovich, N., P. Legrain, and M. Rosbash. 1990. The yeast PRP6 gene encodes a U4/U6 small nuclear ribonucleoprotein particle (snRNP) protein, and the PRP9 gene encodes a protein required for U2 snRNP binding. Mol Cell Biol 10:6417-25.
    2. Adams, M. D., D. Z. Rudner, and D. C. Rio. 1996. Biochemistry and regulation of pre-mRNA splicing. Curr Opin Cell Biol 8:331-9.
    3. Ajuh, P., J. Sleeman, J. Chusainow, and A. I. Lamond. 2001. A direct interaction between the carboxyl-terminal region of CDC5L and the WD40 domain of PLRG1 is essential for pre-mRNA splicing. J Biol Chem 276:42370-81.
    4. Ajuh, P., J. Chusainow, U. Ryder, and A. I. Lamond. 2002. A novel function for human factor C1 (HCF-1), a host protein required for herpes simplex virus infection, in pre-mRNA splicing. Embo J 21:6590-602.
    5. Alley, M. C, D. A. Scudiero, A. Monks, M. L. Hursey, M. J. Czerwinski, D. L. Fine, B. J. Abbott, J. G. Mayo, R. H. Shoemaker, and M. R. Boyd. 1988. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 48:589-601.
    6. Beales, M., N. Flay, R. McKinney, Y. Habara, Y. Ohshima, T. Tani, and J. Potashkin. 2000. Mutations in the large subunit of U2AF disrupt pre-mRNA splicing, cell cycle progression and nuclear structure. Yeast 16:1001-13.
    7. Bernstein, H. S., and S. R. Coughlin. 1998. A mammalian homolog of fission yeast Cdc5 regulates G2 progression and mitotic entry. J Biol Chem 273:4666-71.
    8. Berry, L. D., and K. L. Gould. 1997. Fission yeast diml(+) encodes a functionally conserved polypeptide essential for mitosis. J Cell Biol 137:1337-54.
    9. Berry, L. D., A. Feoktistova, M. D. Wright, and K. L. Gould. 1999. The schizosaccharomyces pombe diml(+) gene interacts with the anaphase-promoting complex or cyclosome (APC/C) component lidl(+) and is required for APC/C function. Mol Cell Biol 19:2535-46.
    10.Brummelkamp, T. R., R. Bernards, and R. Agami. 2002. A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550-3.
    11.Burgi, W., and K. Schmid. 1961. Preparation and properties of Zn-alpha 2-glycoprotein of normal human plasma. J Biol Chem 236:1066-74.
    12.Cariou, S., J. C. Donovan, W. M. Flanagan, A. Milic, N. Bhattacharya, and J. M. Slingerland. 2000. Down-regulation of p21WAF1/CIP1 or p27Kipl abrogates antiestrogen-mediated cell cycle arrest in human breast cancer cells. Proc Natl Acad Sci U S A 97:9042-6.
    13.Chawla, G, A. K. Sapra, U. Surana, and U. Vijayraghavan. 2003. Dependence of pre-mRNA introns on PRP17, a non-essential splicing factor: implications for efficient progression through cell cycle transitions. Nucleic Acids Res 31:2333-43.
    14.Chou, M. Y, N. Rooke, C. W. Turck, and D. L. Black. 1999. hnRNP H is a component of a splicing enhancer complex that activates a c-src alternative exon in neuronal cells. Mol Cell Biol 19:69-77.
    15.Chung, S., M. R. McLean, and B. C. Rymond. 1999. Yeast ortholog of the Drosophilacrooked neck protein promotes spliceosome assembly through stable U4/U6.U5 snRNP addition. Rna 5:1042-54.
    16.Engemann, H., V. Heinzel, G. Page, U. Preuss, and K. H. Scheidtmann. 2002. DAP-like kinase interacts with the rat homolog of Schizosaccharomyces pombe CDC5 protein, a factor involved in pre-mRNA splicing and required for G2/M phase transition. Nucleic Acids Res 30:1408-17.
    17.Forrester, W., F. Stutz, M. Rosbash, and M. Wickens. 1992. Defects in mRNA 3'-end formation, transcription initiation, and mRNA transport associated with the yeast mutation prp20: possible coupling of mRNA processing and chromatin structure. Genes Dev 6:1914-26.
    18.Galisson, F., and P. Legrain. 1993. The biochemical defects of prp4-1 and prp6-1 yeast splicing mutants reveal that the PRP6 protein is required for the accumulation of the [U4/U6.U5] tri-snRNP. Nucleic Acids Res 21:1555-62.
    19.Gottschalk, A., G. Neubauer, J. Banroques, M. Mann, R. Luhrmann, and P. Fabrizio. 1999. Identification by mass spectrometry and functional analysis of novel proteins of the yeast [U4/U6.U5] tri-snRNP. Embo J 18:4535-48.
    20.Grabowski, P. J., and D. L. Black. 2001. Alternative RNA splicing in the nervous system. Prog Neurobiol 65:289-308.
    21.Graveley, B. R. 2001. Alternative splicing: increasing diversity in the proteomic world. Trends Genet 17:100-7.
    22. Gross, T., M. Lutzelberger, H. Weigmann, A. Klingenhoff, S. Shenoy, and N. F. Kaufer. 1997. Functional analysis of the fission yeast Prp4 protein kinase involved in pre-mRNA splicing and isolation of a putative mammalian homologue. Nucleic Acids Res 25:1028-35.
    23.Habara, Y, S. Urushiyama, T. Shibuya, Y. Ohshima, and T. Tani. 2001. Mutation in the prp12+ gene encoding a homolog of SAP130/SF3bl30 causes differential inhibition of pre-mRNA splicing and arrest of cell-cycle progression in Schizosaccharomyces pombe. Rna 7:671-81.
    24.Hale, L. P., D. T. Price, L. M. Sanchez, W. Demark-Wahnefried, and J. F. Madden. 2001. Zinc alpha-2-glycoprotein is expressed by malignant prostatic epithelium and may serve as a potential serum marker for prostate cancer. Clin Cancer Res 7:846-53.
    25.Hwang, L. H., and A. W. Murray. 1997. A novel yeast screen for mitotic arrest mutants identifies DOC1, a new gene involved in cyclin proteolysis. Mol Biol Cell 8:1877-87.
    26.Imamura, O., K. Saiki, T. Tani, Y Ohshima, M. Sugawara, and Y. Furuichi. 1998. Cloning and characterization of a human DEAH-box RNA helicase, a functional homolog of fission yeast Cdc28/Prp8. Nucleic Acids Res 26:2063-8.
    27Jiang, Z. H., W. J. Zhang, Y. Rao, and J. Y. Wu. 1998. Regulation of Ich-1 pre-mRNA alternative splicing and apoptosis by mammalian splicing factors. Proc Natl Acad Sci U S A 95:9155-60.
    28.Komuro, A., M. Saeki, and S. Kato. 1999. Npw38, a novel nuclear protein possessing a WW domain capable of activating basal transcription. Nucleic Acids Res 27:1957-65.
    29. Kramer, A. 1996. The structure and function of proteins involved in mammalianpre-mRNA splicing. Annu Rev Biochem 65:367-409.
    30.Labourier, E., E. Allemand, S. Brand, M. Fostier, J. Tazi, and H. M. Bourbon. 1999. Recognition of exonic splicing enhancer sequences by the Drosophila splicing repressor RSF1. Nucleic Acids Res 27:2377-86.
    31.Lafontaine, D. L., T. Preiss, and D. Tollervey. 1998. Yeast 18S rRNA dimethylase Dimlp: a quality control mechanism in ribosome synthesis? Mol Cell Biol 18:2360-70.
    32.Law, S. F., Y. Z. Zhang, A. J. Klein-Szanto, and E. A. Golemis. 1998. Cell cycle-regulated processing of HEF1 to multiple protein forms differentially targeted to multiple subcellular compartments. Mol Cell Biol 18:3540-51.
    33.Legrain, P., and A. Choulika. 1990. The molecular characterization of PRP6 and PRP9 yeast genes reveals a new cysteine/histidine motif common to several splicing factors. Embo J 9:2775-81.
    34.Lei, X. H., X. Shen, X. Q. Xu, and H. S. Bernstein. 2000. Human Cdc5, a regulator of mitotic entry, can act as a site-specific DNA binding protein. J Cell Sci 113 Pt 24:4523-31.
    35.Lockhart, S. R., and B. C. Rymond. 1994. Commitment of yeast pre-mRNA to the splicing pathway requires a novel U1 small nuclear ribonucleoprotein polypeptide, Prp39p. Mol Cell Biol 14:3623-33.
    36.Lundgren, K., S. Allan, S. Urushiyama, T. Tani, Y. Ohshima, D. Frendewey, and D. Beach. 1996. A connection between pre-mRNA splicing and the cell cycle in fission yeast: cdc28+ is allelic with prp8+ and encodes an RNA-dependent ATPase/helicase. Mol Biol Cell 7:1083-94.
    37.Makarov, E. M., O. V. Makarova, T. Achsel, and R. Luhrmann. 2000. The human homologue of the yeast splicing factor prp6p contains multiple TPR elements and is stably associated with the U5 snRNP via protein-protein interactions. J Mol Biol 298:567-75.
    38.Maniatis, T., and B. Tasic. 2002. Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418:236-43.
    39.Mayeda, A., G. R. Screaton, S. D. Chandler, X. D. Fu, and A. R. Krainer. 1999. Substrate specificities of SR proteins in constitutive splicing are determined by their RNA recognition motifs and composite pre-mRNA exonic elements. Mol Cell Biol 19:1853-63.
    40.Nasmyth, K. A., K. Tatchell, B. D. Hall, C. Astell, and M. Smith. 1981. A position effect in the control of transcription at yeast mating type loci. Nature 289:244-50.
    41.Ohi, R., D. McCollum, B. Hirani, G. J. Den Haese, X. Zhang, J. D. Burke, K. Turner, and K. L. Gould. 1994. The Schizosaccharomyces pombe cdc5+ gene encodes an essential protein with homology to c-Myb. Embo J 13:471-83.
    42.Potashkin, J., D. Kim, M. Fons, T. Humphrey, and D. Frendewey. 1998. Cell-division-cycle defects associated with fission yeast pre-mRNA splicing mutants. Curr Genet 34:153-63.
    43.Reed, R. 1996. Initial splice-site recognition and pairing during pre-mRNA splicing. Curr Opin Genet Dev 6:215-20.
    44. Reed, R. 2000. Mechanisms of fidelity in pre-mRNA splicing. Curr Opin Cell Biol 12:340-5.45.Reuter, K., S. Nottrott, P. Fabrizio, R. Luhrmann, and R. Ficner. 1999. Identification, characterization and crystal structure analysis of the human spliceosomal U5 snRNP-specific 15 kD protein. J Mol Biol 294:515-25.
    46.Russell, C. S., S. Ben-Yehuda, I. Dix, M. Kupiec, and J. D. Beggs. 2000. Functional analyses of interacting factors involved in both pre-mRNA splicing and cell cycle progression in Saccharomyces cerevisiae. Rna 6:1565-72.
    47. Sanchez, L. M, C. Lopez-Otin, and P. J. Bjorkman. 1997. Biochemical characterization and crystalization of human Zn-alpha2-glycoprotein, a soluble class I major histocompatibility complex homolog. Proc Natl Acad Sci U S A 94:4626-30.
    48. Sanchez, L. M, A. J. Chirino, and P. Bjorkman. 1999. Crystal structure of human ZAG, a fat-depleting factor related to MHC molecules. Science 283:1914-9.
    49.Schwelnus, W., K. Richert, F. Opitz, T. Gross, Y. Habara, T. Tani, and N. F. Kaufer. 2001. Fission yeast Prp4p kinase regulates pre-mRNA splicing by phosphorylating a non-SR-splicing factor. EMBO Rep 2:35-41.
    50.Seghezzi, W., K. Chua, F. Shanahan, O. Gozani, R. Reed, and E. Lees. 1998. Cyclin E associates with components of the pre-mRNA splicing machinery in mammalian cells. Mol Cell Biol 18:4526-36.
    51.Shao, W., S. Halachmi, and M. Brown. 2002. ERAP140, a conserved tissue-specific nuclear receptor coactivator. Mol Cell Biol 22:3358-72.
    52. Shea, J. E., J. H. Toyn, and L. H. Johnston. 1994. The budding yeast U5 snRNP Prp8 is a highly conserved protein which links RNA splicing with cell cycle progression. Nucleic Acids Res 22:5555-64.
    53. Stevens, S. W., and J. Abelson. 1999. Purification of the yeast U4/U6.U5 small nuclear ribonucleoprotein particle and identification of its proteins. Proc Natl Acad Sci U S A 96:7226-31.
    54.Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673-80.
    55.Tsai, W. Y, Y T. Chow, H. R. Chen, K. T. Huang, R. I. Hong, S. P. Jan, N. Y. Kuo, T. Y Tsao, C. H. Chen, and S. C. Cheng. 1999. Ceflp is a component of the Prp19p-associated complex and essential for pre-mRNA splicing. J Biol Chem 274:9455-62.
    56.Uetz, P., L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields, and J. M. Rothberg. 2000. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623-7.
    57.Urushiyama, S., T. Tani, and Y. Ohshima. 1996. Isolation of novel pre-mRNA splicing mutants of Schizosaccharomyces pombe. Mol Gen Genet 253:118-27.
    58.Urushiyama, S., T. Tani, and Y Ohshima. 1997. The prpl+ gene required for pre-mRNA splicing in Schizosaccharomyces pombe encodes a protein that contains TPR motifs and is similar to Prp6p of budding yeast. Genetics 147:101-15.
    59.Waragai, M., C. H. Lammers, S. Takeuchi, I. Imafuku, Y. Udagawa, I. Kanazawa, M.Kawabata, M. M. Mouradian, and H. Okazawa. 1999. PQBP-1, a novel polyglutamine tract-binding protein, inhibits transcription activation by Brn-2 and affects cell survival. Hum Mol Genet 8:977-87.
    60.Waragai, M., E. Junn, M. Kajikawa, S. Takeuchi, I. Kanazawa, M. Shibata, M. M. Mouradian, and H. Okazawa. 2000. PQBP-1/Npw38, a nuclear protein binding to the polyglutamine tract, interacts with U5-15kD/dimlp via the carboxyl-terminal domain. Biochem Biophys Res Commun 273:592-5.
    61.Zhang, Y. Z., C. A. Reddy, and A. Rasooly. 1991. Cloning of several lignin peroxidase (LIP)-encoding genes: sequence analysis of the LIP6 gene from the white-rot basidiomycete, Phanerochaete chrysosporium. Gene 97:191-8.
    62.Zhang, Y. Z., K. L. Gould, R. J. Dunbrack, H. Cheng, H. Roder, and E. A. Golemis. 1999. The evolutionarily conserved Diml protein defines a novel branch of the thioredoxin fold superfamily. Physiol Genomics 1:109-18.
    63.Zhou, Z., L. J. Licklider, S. P. Gygi, and R. Reed. 2002. Comprehensive proteomic analysis of the human spliceosome. Nature 419: 182-5.1. Abovich, N., P. Legrain, and M. Rosbash. 1990. The yeast PRP6 gene encodes a U4/U6 small nuclear ribonucleoprotein particle (snRNP) protein, and the PRP9 gene encodes a protein required for U2 snRNP binding. Mol Cell Biol 10: 6417-25.
    2. Abovich, N., X. C. Liao, and M. Rosbash. 1994. The yeast MUD2 protein: an interaction with PRP 11 defines a bridge between commitment complexes and U2 snRNP addition. Genes Dev 8: 843-54.
    3. Abovich, N., and M. Rosbash. 1997. Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Cell 89: 403-12.
    4. Ajuh, P., J. Chusainow, U. Ryder, and A. I. Lamond. 2002. A novel function for human factor C1 (HCF-1), a host protein required for herpes simplex virus infection, in pre-mRNA splicing. Embo J 21: 6590-602.
    5. Alahari, S. K., H. Schmidt, and N. E Kaufer. 1993. The fission yeast prp~(4+) gene involved in pre-mRNA splicing codes for a predicted serine/threonine kinase and is essential for growth. Nucleic Acids Res 21: 4079-83.
    6. Amrein, H., M. L. Hedley, and T. Maniatis. 1994. The role of specific protein-RNA and protein-protein interactions in positive and negative control of pre-mRNA splicing by Transformer 2. Cell 76: 735-46.
    7. Anderson, G. J., M. Bach, R. Luhrmann, and J. D. Beggs. 1989. Conservation between yeast and man of a protein associated with U5 small nuclear ribonucleoprotein. Nature 342: 819-21.
    8. Arenas, J. E., and J. N. Abelson. 1993. The Saccharomyces cerevisiae PRP21 gene product is an integral component of the prespliceosome. Proc Natl Acad Sci U S A 90: 6771-5.
    9. Arenas, J. E., and J. N. Abelson. 1997. Prp43: An RNA helicase-like factor involved in spliceosome disassembly. Proc Natl Acad Sci U S A 94:11798-802.
    10. Ast, G, D. Goldblatt, D. Offen, J. Sperling, and R. Sperling. 1991. A novel splicing factor is an integral component of 200S large nuclear ribonucleoprotein (InRNP) particles. Embo J 10:425-32.
    11. Bach, M., G. Winkelmann, and R. Luhrmann. 1989. 20S small nuclear ribonucleoprotein U5 shows a surprisingly complex protein composition. Proc Natl Acad Sci U S A 86:6038-42.
    12. Bastos, R., A. Lin, M. Enarson, and B. Burke. 1996. Targeting and function in mRNA export of nuclear pore complex protein Nup 153. J Cell Biol 134:1141-56.
    13. Behrens, S. E., and R. Luhrmann. 1991. Immunoaffinity purification of a [U4/U6.U5] tri-snRNP from human cells. Genes Dev 5:1439-52.
    14. Bennett, M., S. Pinol-Roma, D. Staknis, G Dreyfuss, and R. Reed. 1992. Differential binding of heterogeneous nuclear ribonucleoproteins to mRNA precursors prior to spliceosome assembly in vitro. Mol Cell Biol 12:3165-75.
    15. Bennett, M., S. Michaud, J. Kingston, and R. Reed. 1992. Protein components specifically associated with prespliceosome and spliceosome complexes. Genes Dev 6:1986-2000.
    16. Bennett, M., and R. Reed. 1993. Correspondence between a mammalian spliceosome component and an essential yeast splicing factor. Science 262:105-8.
    17. Berget, S. M. 1995. Exon recognition in vertebrate splicing. J Biol Chem 270:2411-4.
    18. Birney, E., S. Kumar, and A. R. Krainer. 1993. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res 21:5803-16.
    19. Black, D. L., B. Chabot, and J. A. Steitz. 1985. U2 as well as U1 small nuclear ribonucleoproteins are involved in premessenger RNA splicing. Cell 42:737-50.
    20. Blencowe, B. J., J. A. Nickerson, R. Issner, S. Penman, and P. A. Sharp. 1994. Association of nuclear matrix antigens with exon-containing splicing complexes. J Cell Biol 127:593-607.
    21. Blencowe, B. J., R. Issner, J. Kim, P. McCaw, and P. A. Sharp. 1995. New proteins related to the Ser-Arg family of splicing factors. Rna 1:852-65.
    22. Blencowe, B. J., R. Issner, J. A. Nickerson, and P. A. Sharp. 1998. A coactivator of pre-mRNA splicing. Genes Dev 12:996-1009.
    23. Blencowe, B. J. 2000. Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem Sci 25:106-10.
    24. Bouck, J., X. D. Fu, A. M. Skalka, and R. A. Katz. 1998. Role of the constitutive splicing factors U2AF65 and SAP49 in suboptimal RNA splicing of novel retroviral mutants. J Biol Chem 273:15169-76.25. Braun, I. C, E. Rohrbach, C. Schmitt, and E. Izaurralde. 1999. TAP binds to the constitutive transport element (CTE) through a novel RNA-binding motif that is sufficient to promote CTE-dependent RNA export from the nucleus. Embo J 18:1953-65.
    26. Brosi, R., H. P. Hauri, and A. Kramer. 1993. Separation of splicing factor SF3 into two components and purification of SF3a activity. J Biol Chem 268:17640-6.
    27. Brosi, R., K. Groning, S. E. Behrens, R. Luhrmann, and A. Kramer. 1993. Interaction of mammalian splicing factor SF3a with U2 snRNP and relation of its 60-kD subunit to yeast PRP9. Science 262:102-5.
    28. Burd, C. G, and G Dreyfuss. 1994. RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. Embo J 13:1197-204.
    29. Burgess, S., J. R. Couto, and C. Guthrie. 1990. A putative ATP binding protein influences the fidelity of branchpoint recognition in yeast splicing. Cell 60:705-17.
    30. Caceres, J. F., S. Stamm, D. M. Helfman, and A. R. Krainer. 1994. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 265:1706-9.
    31. Caputi, M., A. Mayeda, A. R. Krainer, and A. M. Zahler. 1999. hnRNP A/B proteins are required for inhibition of HIV-1 pre-mRNA splicing. Embo J 18:4060-7.
    32. Caspary, F., A. Shevchenko, M. Wilm, and B. Seraphin. 1999. Partial purification of the yeast U2 snRNP reveals a novel yeast pre-mRNA splicing factor required for pre-spliceosome assembly. Embo J 18:3463-74.
    33. Cavaloc, Y., M. Popielarz, J. P. Fuchs, R. Gattoni, and J. Stevenin. 1994. Characterization and cloning of the human splicing factor 9G8: a novel 35 kDa factor of the serine/arginine protein family. Embo J 13:2639-49.
    34. Chabot, B., S. Bisotto, and M. Vincent. 1995. The nuclear matrix phosphoprotein p255 associates with splicing complexes as part of the [U4/U6.U5] tri-snRNP particle. Nucleic Acids Res 23:3206-13.
    35. Champion-Arnaud, P., O. Gozani, L. Palandjian, and R. Reed. 1995. Accumulation of a novel spliceosomal complex on pre-mRNAs containing branch site mutations. Mol Cell Biol 15:5750-6.
    36. Chang, T. H., M. W. Clark, A. J. Lustig, M. E. Cusick, and J. Abelson. 1988. RNA11 protein is associated with the yeast spliceosome and is localized in the periphery of the cell nucleus. Mol Cell Biol 8:2379-93.
    37. Chang, D. D., and P. A. Sharp. 1989. Regulation by HIV Rev depends upon recognition of splice sites. Cell 59:789-95.
    38. Chapon, C, and P. Legrain. 1992. A novel gene, spp91-1, suppresses the splicing defect and the pre-mRNA nuclear export in the prp9-1 mutant. Embo J 11:3279-88.
    39. Chawla, G, A. K. Sapra, U. Surana, and U. Vijayraghavan. 2003. Dependence ofpre-mRNA introns on PRP17, a non-essential splicing factor: implications for efficient progression through cell cycle transitions. Nucleic Acids Res 31:2333-43.
    40. Chen, J. H., and R. J. Lin. 1990. The yeast PRP2 protein, a putative RNA-dependent ATPase, shares extensive sequence homology with two other pre-mRNA splicing factors. Nucleic Acids Res 18:6447.
    41. Chen, E. J., A. R. Frand, E. Chitouras, and C. A. Kaiser. 1998. A link between secretion and pre-mRNA processing defects in Saccharomyces cerevisiae and the identification of a novel splicing gene, RSE1. Mol Cell Biol 18:7139-46.
    42. Cheng, S. C, and J. Abelson. 1987. Spliceosome assembly in yeast. Genes Dev 1:1014-27.
    43. Chiara, M. D., P. Champion-Arnaud, M. Buvoli, B. Nadal-Ginard, and R. Reed. 1994. Specific protein-protein interactions between the essential mammalian spliceosome-associated proteins SAP 61 and SAP 114. Proc Natl Acad Sci U S A 91:6403-7.
    44. Choi, Y. D., P. J. Grabowski, P. A. Sharp, and G. Dreyfuss. 1986. Heterogeneous nuclear ribonucleoproteins: role in RNA splicing. Science 231:1534-9.
    45. Chou, T. B., Z. Zachar, and P. M. Bingham. 1987. Developmental expression of a regulatory gene is programmed at the level of splicing. Embo J 6:4095-104.
    46. Chua, K., and R. Reed. 1999. The RNA splicing factor hSlu7 is required for correct 3' splice-site choice. Nature 402:207-10.
    47. Chua, K., and R. Reed. 1999. Human step II splicing factor hSlu7 functions in restructuring the spliceosome between the catalytic steps of splicing. Genes Dev 13:841-50.
    48. Collins, C. A., and C. Guthrie. 1999. Allele-specific genetic interactions between Prp8 and RNA active site residues suggest a function for Prp8 at the catalytic core of the spliceosome. Genes Dev 13:1970-82.
    49. Colwill, K., L. L. Feng, J. M. Yeakley, G. D. Gish, J. F. Caceres, T. Pawson, and X. D. Fu. 1996. SRPK1 and Clk/Sty protein kinases show distinct substrate specificities for serine/arginine-rich splicing factors. J Biol Chem 271:24569-75.
    50. Company, M., J. Arenas, and J. Abelson. 1991. Requirement of the RNA helicase-like protein PRP22 for release of messenger RNA from spliceosomes. Nature 349:487-93.
    51. Corden, J. L., and M. Patturajan. 1997. A CTD function linking transcription to splicing. Trends Biochem Sci 22:413-6.
    52. Cramer, P., C. G. Pesce, F. E. Baralle, and A. R. Kornblihtt. 1997. Functional association between promoter structure and transcript alternative splicing. Proc Natl Acad Sci U S A 94:11456-60.
    53. Cramer, P., J. F. Caceres, D. Cazalla, S. Kadener, A. F. Muro, F. E. Baralle, and A. R. Kornblihtt. 1999. Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer. Mol Cell 4:251-8.
    54. Crispino, J. D., B. J. Blencowe, and P. A. Sharp. 1994. Complementation by SR proteins of pre-mRNA splicing reactions depleted of U1 snRNP. Science 265:1866-9.
    55. Crispino, J. D., and P. A. Sharp. 1995. A U6 snRNA:pre-mRNA interaction can be rate-limiting for U1-independent splicing. Genes Dev 9:2314-23.
    56. Dahl, R., B. Wani, and M. J. Hayman. 1998. The Ski oncoprotein interacts with Skip, the human homolog of Drosophila Bx42. Oncogene 16:1579-86.
    57. Dalbadie-McFarland, G, and J. Abelson. 1990. PRP5: a helicase-like protein required for mRNA splicing in yeast. Proc Natl Acad Sci U S A 87:4236-40.
    58. Das, B. K., L. Xia, L. Palandjian, O. Gozani, Y. Chyung, and R. Reed. 1999. Characterization of a protein complex containing spliceosomal proteins SAPs 49, 130, 145, and 155. Mol Cell Biol 19:6796-802.
    59. Datta, B., and A. M. Weiner. 1991. Genetic evidence for base pairing between U2 and U6 snRNA in mammalian mRNA splicing. Nature 352:821-4.
    60. Del Gatto-Konczak, R, M. Olive, M. C. Gesnel, and R. Breathnach. 1999. hnRNP A1 recruited to an exon in vivo can function as an exon splicing silencer. Mol Cell Biol 19:251-60.
    61. Delannoy, P., and M. H. Caruthers. 1991. Detection and characterization of a factor which rescues spliceosome assembly from a heat-inactivated HeLa cell nuclear extract. Mol Cell Biol 11:3425-31.
    62. Denhez, R, and R. Lafyatis. 1994. Conservation of regulated alternative splicing and identification of functional domains in vertebrate homologs to the Drosophila splicing regulator, suppressor-of-white-apricot. J Biol Chem 269:16170-9.
    63. Dreyfuss, G, M. J. Martinis, S. Pinol-Roma, and C. G. Burd. 1993. hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62:289-321.
    64. Edery, I., and N. Sonenberg. 1985. Cap-dependent RNA splicing in a HeLa nuclear extract. Proc Natl Acad Sci U S A 82:7590-4.
    65. Eperon, L. P., I. R. Graham, A. D. Griffiths, and I. C. Eperon. 1988. Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase? Cell 54:393-401.
    66. Eperon, I. C, D. C. Ireland, R. A. Smith, A. Mayeda, and A. R. Krainer. 1993. Pathways for selection of 5' splice sites by U1 snRNPs and SF2/ASR Embo J 12:3607-17.
    67. Frank, D., B. Patterson, and C. Guthrie. 1992. Synthetic lethal mutations suggest interactions between U5 small nuclear RNA and four proteins required for the second step of splicing. Mol Cell Biol 12:5197-205.
    68. Frank, D., and C. Guthrie. 1992. An essential splicing factor, SLU7, mediates 3' splice site choice in yeast. Genes Dev 6:2112-24.
    69. Frendewey, D., and W. Keller. 1985. Stepwise assembly of a pre-mRNA splicing complex??requires U-snRNPs and specific intron sequences. Cell 42:355-67.
    70. Frilander, M. J., and J. A. Steitz. 1999. Initial recognition of U12-dependent introns requires both U11/5' splice-site and U12/branchpoint interactions. Genes Dev 13:851-63.
    71. Fu, X. D., A. Mayeda, T. Maniatis, and A. R. Krainer. 1992. General splicing factors SF2 and SC35 have equivalent activities in vitro, and both affect alternative 5' and 3' splice site selection. Proc Natl Acad Sci U S A 89:11224-8.
    72. Fu, X. D. 1993. Specific commitment of different pre-mRNAs to splicing by single SR proteins. Nature 365:82-5.
    73. Fu, X. D. 1995. The superfamily of arginine/serine-rich splicing factors. Rna 1:663-80.
    74. Fuller-Pace, F. V. 1994. RNA helicases: modulators of RNA structure. Trends Cell Biol 4:271-4.
    75. Garcia-Blanco, M. A., S. F. Jamison, and P. A. Sharp. 1989. Identification and purification of a 62,000-dalton protein that binds specifically to the polypyrimidine tract of introns. Genes Dev 3:1874-86.
    76. Garcia-Blanco, M. A., G. J. Anderson, J. Beggs, and P. A. Sharp. 1990. A mammalian protein of 220 kDa binds pre-mRNAs in the spliceosome: a potential homologue of the yeast PRP8 protein. Proc Natl Acad Sci U S A 87:3082-6.
    77. Gaur, R. K., J. Valcarcel, and M. R. Green. 1995. Sequential recognition of the pre-mRNA branch point by U2AF65 and a novel spliceosome-associated 28-kDa protein. Rna 1:407-17.
    78. Ge, H., Y. Si, and A. P. Wolffe. 1998. A novel transcriptional coactivator, p52, functionally interacts with the essential splicing factor ASF/SF2. Mol Cell 2:751-9.
    79. Ghetti, A., S. Pinol-Roma, W. M. Michael, C. Morandi, and G. Dreyfuss. 1992. hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res 20:3671-8.
    80. Gil, A., P. A. Sharp, S. F. Jamison, and M. A. Garcia-Blanco. 1991. Characterization of cDNAs encoding the polypyrimidine tract-binding protein. Genes Dev 5:1224-36.
    81. Goldstrohm, A. C, A. L. Greenleaf, and M. A. Garcia-Blanco. 2001. Co-transcriptional splicing of pre-messenger RNAs: considerations for the mechanism of alternative splicing. Gene 277:31-47.
    82. Gottschalk, A., G. Neubauer, J. Banroques, M. Mann, R. Luhrmann, and P. Fabrizio. 1999. Identification by mass spectrometry and functional analysis of novel proteins of the yeast [U4/U6.U5] tri-snRNP. Embo J 18:4535-48.
    83. Gozani, O., J. G. Patton, and R. Reed. 1994. A novel set of spliceosome-associated proteins and the essential splicing factor PSF bind stably to pre-mRNA prior to catalytic step II of the splicing reaction. Embo J 13:3356-67.
    84. Grabowski, P. J., S. R. Seiler, and P. A. Sharp. 1985. A multicomponent complex is
    involved in the splicing of messenger RNA precursors. Cell 42:345-53.
    85. Graveley, B. R. 2000. Sorting out the complexity of SR protein functions. Rna 6:1197-211.
    86. Graveley, B. R., K. J. Hertel, and T. Maniatis. 2001. The role of U2AF35 and U2AF65 in enhancer-dependent splicing. Rna 7:806-18.
    87. Gui, J. F., W. S. Lane, and X. D. Fu. 1994. A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature 369:678-82.
    88. Guth, S., C. Martinez, R. K. Gaur, and J. Valcarcel. 1999. Evidence for substrate-specific requirement of the splicing factor U2AF(35) and for its function after polypyrimidine tract recognition by U2AF(65). Mol Cell Biol 19:8263-71.
    89. Guthrie, C. 1991. Messenger RNA splicing in yeast: clues to why the spliceosome is a ribonucleoprotein. Science 253:157-63.
    90. Hall, S. L., and R. A. Padgett. 1994. Conserved sequences in a class of rare eukaryotic nuclear introns with non-consensus splice sites. J Mol Biol 239:357-65.
    91. Hamm, J., E. Darzynkiewicz, S. M. Tahara, and I. W. Mattaj. 1990. The trimethylguanosine cap structure of U1 snRNA is a component of a bipartite nuclear targeting signal. Cell 62:569-77.
    92. Hartmuth, K., H. Urlaub, H. P. Vornlocher, C. L. Will, M. Gentzel, M. Wilm, and R. Luhrmann. 2002. Protein composition of human prespliceosomes isolated by a tobramycin affinity-selection method. Proc Natl Acad Sci U S A 99:16719-24.
    93. Horowitz, D. S., and J. Abelson. 1993. A U5 small nuclear ribonucleoprotein particle protein involved only in the second step of pre-mRNA splicing in Saccharomyces cerevisiae. Mol Cell Biol 13:2959-70.
    94. Horowitz, D. S., and J. Abelson. 1993. Stages in the second reaction of pre-mRNA splicing: the final step is ATP independent. Genes Dev 7:320-9.
    95. Huang, Z. M., and T. S. Yen. 1995. Role of the hepatitis B virus posttranscriptional regulatory element in export of intronless transcripts. Mol Cell Biol 15:3864-9.
    96. Huang, Y, and G. G. Carmichael. 1997. The mouse histone H2a gene contains a small element that facilitates cytoplasmic accumulation of intronless gene transcripts and of unspliced HIV-1-related mRNAs. Proc Natl Acad Sci U S A 94:10104-9.
    97. Inoue, K., M. Ohno, H. Sakamoto, and Y. Shimura. 1989. Effect of the cap structure on pre-mRNA splicing in Xenopus oocyte nuclei. Genes Dev 3:1472-9.
    98. Izaurralde, E., J. Lewis, C. McGuigan, M. Jankowska, E. Darzynkiewicz, and I. W. Mattaj. 1994. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78:657-68.
    99. Izaurralde, E., J. Lewis, C. Gamberi, A. Jarmolowski, C. McGuigan, and I. W. Mattaj. 1995. A cap-binding protein complex mediating U snRNA export. Nature 376:709-12.
    100. Izaurralde, E., and S. Adam. 1998. Transport of macromolecules between the nucleus and the cytoplasm. Rna 4:351-64.
    101. Jackson, I. J. 1991. A reappraisal of non-consensus mRNA splice sites. Nucleic Acids Res 19:3795-8.
    102. Jamison, S. R, A. Crow, and M. A. Garcia-Blanco. 1992. The spliceosome assembly pathway in mammalian extracts. Mol Cell Biol 12:4279-87.
    103. Jamison, S. F., Z. Pasman, J. Wang, C. Will, R. Luhrmann, J. L. Manley, and M. A. Garcia-Blanco. 1995. U1 snRNP-ASF/SF2 interaction and 5' splice site recognition: characterization of required elements. Nucleic Acids Res 23:3260-7.
    104. Jurica, M. S., L. J. Licklider, S. R. Gygi, N. Grigorieff, and M. J. Moore. 2002. Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. Rna 8:426-39.
    105. Jurica, M. S., and M. J. Moore. 2003. Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 12:5-14.
    106. Kadener, S., P. Cramer, G Nogues, D. Cazalla, M. de la Mata, J. P. Fededa, S. E. Werbajh, A. Srebrow, and A. R. Kornblihtt. 2001. Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing. Embo J 20:5759-68.
    107. Kan, J. L., and M. R. Green. 1999. Pre-mRNA splicing of IgM exons Ml and M2 is directed by a juxtaposed splicing enhancer and inhibitor. Genes Dev 13:462-71.
    108. Kataoka, N., M. Ohno, K. Kangawa, Y. Tokoro, and Y. Shimura. 1994. Cloning of a complementary DNA encoding an 80 kilodalton nuclear cap binding protein. Nucleic Acids Res 22:3861-5.
    109. Kataoka, N., M. Ohno, I. Moda, and Y. Shimura. 1995. Identification of the factors that interact with NCBP, an 80 kDa nuclear cap binding protein. Nucleic Acids Res 23:3638-41.
    110.Kiledjian, M., and G. Dreyfuss. 1992. Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. Embo J 11:2655-64.
    111.Kim, S. H., and R. J. Lin. 1993. Pre-mRNA splicing within an assembled yeast spliceosome requires an RNA-dependent ATPase and ATP hydrolysis. Proc Natl Acad Sci U S A 90:888-92.
    112.King, D. S., and J. D. Beggs. 1990. Interactions of PRP2 protein with pre-mRNA splicing complexes in Saccharomyces cerevisiae. Nucleic Acids Res 18:6559-64.
    113.Kohtz, J. D., S. F. Jamison, C. L. Will, P. Zuo, R. Luhrmann, M. A. Garcia-Blanco, and J. L. Manley. 1994. Protein-protein interactions and 5'-splice-site recognition in mammalian mRNA precursors. Nature 368:119-24.
    114.Konarska, M. M., R. A. Padgett, and P. A. Sharp. 1984. Recognition of cap structure in splicing in vitro of mRNA precursors. Cell 38:731-6.
    115.Konarska, M. M., and P. A. Sharp. 1986. Electrophoretic separation of complexes involved in the splicing of precursors to mRNAs. Cell 46:845-55.
    116.Konarska, M. M., and P. A. Sharp. 1987. Interactions between small nuclear ribonucleoprotein particles in formation of spliceosomes. Cell 49:763-74.
    117.Krainer, A. R., T. Maniatis, B. Ruskin, and M. R. Green. 1984. Normal and mutant human beta-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell 36:993-1005.
    118.Krainer, A. R., and T. Maniatis. 1985. Multiple factors including the small nuclear ribonucleoproteins Ul and U2 are necessary for pre-mRNA splicing in vitro. Cell 42:725-36.
    119.Krainer, A. R., G. C. Conway, and D. Kozak. 1990. The essential pre-mRNA splicing factor SF2 influences 5' splice site selection by activating proximal sites. Cell 62:35-42.
    120. Kramer, A., and U. Utans. 1991. Three protein factors (SF1, SF3 and U2AF) function in pre-splicing complex formation in addition to snRNPs. Embo J 10:1503-9.
    121. Kramer, A., P. Legrain, F. Mulhauser, K. Groning, R. Brosi, and G Bilbe. 1994. Splicing factor SF3a60 is the mammalian homologue of PRP9 of S.cerevisiae: the conserved zinc finger-like motif is functionally exchangeable in vivo. Nucleic Acids Res 22:5223-8.
    122. Kramer, A., F. Mulhauser, C. Wersig, K. Groning, and G. Bilbe. 1995. Mammalian splicing factor SF3a120 represents a new member of the SURP family of proteins and is homologous to the essential splicing factor PRP21p of Saccharomyces cerevisiae. Rna 1:260-72.
    123. Kramer, A. 1996. The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu Rev Biochem 65:367-409.
    124. Kramer, A., P. Gruter, K. Groning, and B. Kastner. 1999. Combined biochemical and electron microscopic analyses reveal the architecture of the mammalian U2 snRNP. J Cell Biol 145:1355-68.
    125. Kuhn, A. N., Z. Li, and D. A. Brow. 1999. Splicing factor Prp8 governs U4/U6 RNA unwinding during activation of the spliceosome. Mol Cell 3:65-75.
    126. Lai, M. C, B. H. Teh, and W. Y. Tarn. 1999. A human papillomavirus E2 transcriptional activator. The interactions with cellular splicing factors and potential function in pre-mRNA processing. J Biol Chem 274:11832-41.
    127. Lamond, A. I. 1993. The spliceosome. Bioessays 15:595-603.
    128. Lavigueur, A., H. La Branche, A. R. Kornblihtt, and B. Chabot. 1993. A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes Dev 7:2405-17.
    129. Lee, M. S., and P. A. Silver. 1997. RNA movement between the nucleus and the cytoplasm. Curr Opin Genet Dev 7:212-9.
    130. Legrain, P., and M. Rosbash. 1989. Some cis- and trans-acting mutants for splicingtarget pre-mRNAto the cytoplasm. Cell 57:573-83.
    131. Legrain, P., and A. Choulika. 1990. The molecular characterization of PRP6 and PRP9 yeast genes reveals a new cysteine/histidine motif common to several splicing factors. Embo J 9:2775-81.
    132. Legrain, P., and C. Chapon. 1993. Interaction between PRP11 and SPP91 yeast splicing factors and characterization of a PRP9-PRP11-SPP91 complex. Science 262:108-10.
    133. Lerner, M. R., J. A. Boyle, S. M. Mount, S. L. Wolin, and J. A. Steitz. 1980. Are snRNPs involved in splicing? Nature 283:220-4.
    134. Li, Y., and B. J. Blencowe. 1999. Distinct factor requirements for exonic splicing enhancer function and binding of U2AF to the polypyrimidine tract. J Biol Chem 274:35074-9.
    135. Li, Q., H. Zhao, L. Jiang, Y. Che, C. Dong, L. Wang, J. Wang, and L. Liu. 2002. An SR-protein induced by HSVI binding to cells functioning as a splicing inhibitor of viral pre-mRNA. J Mol Biol 316:887-94.
    136. Lin, R. J., A. J. Lustig, and J. Abelson. 1987. Splicing of yeast nuclear pre-mRNA in vitro requires a functional 40S spliceosome and several extrinsic factors. Genes Dev 1:7-18.
    137. Lin, C. H., and J. G. Patton. 1995. Regulation of alternative 3' splice site selection by constitutive splicing factors. Rna 1:234-45.
    138. Linder, P., P. F. Lasko, M. Ashburner, P. Leroy, P. J. Nielsen, K. Nishi, J. Schnier, and P. P. Slonimski. 1989. Birth of the D-E-A-D box. Nature 337:121-2.
    139. Lindsey, L. A., A. J. Crow, and M. A. Garcia-Blanco. 1995. A mammalian activity required for the second step of pre-messenger RNA splicing. J Biol Chem 270:13415-21.
    140. Liu, X., and J. E. Mertz. 1995. HnRNP L binds a cis-acting RNA sequence element that enables intron-dependent gene expression. Genes Dev 9:1766-80.
    141. Lossky, M, G. J. Anderson, S. P. Jackson, and J. Beggs. 1987. Identification of a yeast snRNP protein and detection of snRNP-snRNP interactions. Cell 51:1019-26.
    142. Luhrmann, R., B. Kastner, and M. Bach. 1990. Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. Biochim Biophys Acta 1087:265-92.
    143. Luo, H. R., G. A. Moreau, N. Levin, and M. J. Moore. 1999. The human Prp8 protein is a component of both U2- and U12-dependent spliceosomes. Rna 5:893-908.
    144. Luo, M. J., and R. Reed. 1999. Splicing is required for rapid and efficient mRNA export in metazoans. Proc Natl Acad Sci U S A 96:14937-42.
    145. MacMillan, A. M., C. C. Query, C. R. Allerson, S. Chen, G. L. Verdine, and P. A. Sharp. 1994. Dynamic association of proteins with the pre-mRNA branch region. Genes Dev 8:3008-20.
    146. Madhani, H. D., and C. Guthrie. 1992. A novel base-pairing interaction between U2and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 71:803-17.
    147. Madhani, H. D., and C. Guthrie. 1994. Dynamic RNA-RNA interactions in the spliceosome. Annu Rev Genet 28:1-26.
    148. Maniatis, T., and R. Reed. 2002. An extensive network of coupling among gene expression machines. Nature 416:499-506.
    149. Martinez, E., V. B. Palhan, A. Tjernberg, E. S. Lymar, A. M. Gamper, T. K. Kundu, B. T. Chait, and R. G. Roeder. 2001. Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol Cell Biol 21:6782-95.
    150. Maschhoff, K. L., and R. A. Padgett. 1993. The stereochemical course of the first step of pre-mRNA splicing. Nucleic Acids Res 21:5456-62.
    151. Mattaj, I. W., and L. Englmeier. 1998. Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67:265-306.
    152. Matunis, M. J., W. M. Michael, and G. Dreyfuss. 1992. Characterization and primary structure of the poly(C)-binding heterogeneous nuclear ribonucleoprotein complex K protein. Mol Cell Biol 12:164-71.
    153. Mayeda, A., A. M. Zahler, A. R. Krainer, and M. B. Roth. 1992. Two members of a conserved family of nuclear phosphoproteins are involved in pre-mRNA splicing. Proc Natl Acad Sci USA 89:1301-4.
    154. Mayeda, A., D. M. Helfman, and A. R. Krainer. 1993. Modulation of exon skipping and inclusion by heterogeneous nuclear ribonucleoprotein A1 and pre-mRNA splicing factor SF2/ASF. Mol Cell Biol 13:2993-3001.
    155. Mayeda, A., S. H. Munroe, J. F. Caceres, and A. R. Krainer. 1994. Function of conserved domains of hnRNP A1 and other hnRNP A/B proteins. Embo J 13:5483-95.
    156. Mayeda, A., G. R. Screaton, S. D. Chandler, X. D. Fu, and A. R. Krainer. 1999. Substrate specificities of SR proteins in constitutive splicing are determined by their RNA recognition motifs and composite pre-mRNA exonic elements. Mol Cell Biol 19:1853-63.
    157. Mayrand, S. H., and T. Pederson. 1990. Crosslinking of hnRNP proteins to pre-mRNA requires U1 and U2 snRNPs. Nucleic Acids Res 18:3307-18.
    158. McCracken, S., N. Fong, E. Rosonina, K. Yankulov, G. Brothers, D. Siderovski, A. Hessel, S. Foster, S. Shuman, and D. L. Bentley. 1997. 5'-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev 11:3306-18.
    159. Merendino, L., S. Guth, D. Bilbao, C. Martinez, and J. Valcarcel. 1999. Inhibition of msl-2 splicing by Sex-lethal reveals interaction between U2AF35 and the 3' splice site AG. Nature 402:838-41.
    160. Mermoud, J. E., P. Cohen, and A. I. Lamond. 1992. Ser/Thr-specific protein phosphatases are required for both catalytic steps of pre-mRNA splicing. Nucleic Acids Res 20:5263-9.
    161. Michaud, S., and R. Reed. 1991. An ATP-independent complex commits pre-mRNA to the mammalian spliceosome assembly pathway. Genes Dev 5:2534-46.
    162. Michaud, S., and R. Reed. 1993. A functional association between the 5' and 3' splice site is established in the earliest prespliceosome complex (E) in mammals. Genes Dev 7:1008-20.
    163. Min, H., R. C. Chan, and D. L. Black. 1995. The generally expressed hnRNP F is involved in a neural-specific pre-mRNA splicing event. Genes Dev 9:2659-71.
    164. Mintz, P. J., S. D. Patterson, A. F. Neuwald, C. S. Spahr, and D. L. Spector. 1999. Purification and biochemical characterization of interchromatin granule clusters. Embo J 18:4308-20.
    165. Miriami, E., M. Angenitzki, R. Sperling, and J. Sperling. 1995. Magnesium cations are required for the association of U small nuclear ribonucleoproteins and SR proteins with pre-mRNA in 200 S large nuclear ribonucleoprotein particles. J Mol Biol 246:254-63.
    166. Monsalve, M., Z. Wu, G. Adelmant, P. Puigserver, M. Fan, and B. M. Spiegelman. 2000. Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol Cell 6:307-16.
    167. Moore, M. J., and P. A. Sharp. 1993. Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing. Nature 365:364-8.
    168. Mount, S. M., I. Pettersson, M. Hinterberger, A. Karmas, and J. A. Steitz. 1983. The U1 small nuclear RNA-protein complex selectively binds a 5' splice site in vitro. Cell 33:509-18.
    169. Mullen, M. P., C. W. Smith, J. G. Patton, and B. Nadal-Ginard. 1991. Alpha-tropomyosin mutually exclusive exon selection: competition between branchpoint/polypyrimidine tracts determines default exon choice. Genes Dev 5:642-55.
    170. Murphy, R., J. L. Watkins, and S. R. Wente. 1996. GLE2, a Saccharomyces cerevisiae homologue of the Schizosaccharomyces pombe export factor RAE1, is required for nuclear pore complex structure and function. Mol Biol Cell 7:1921-37.
    171. Murphy, R., and S. R. Wente. 1996. An RNA-export mediator with an essential nuclear export signal. Nature 383:357-60.
    172. Nakielny, S., and G. Dreyfuss. 1997. Nuclear export of proteins and RNAs. Curr Opin Cell Biol 9:420-9.
    173. Newman, A. J. 1994. Pre-mRNA splicing. Curr Opin Genet Dev 4:298-304.
    174. Ohno, M., H. Sakamoto, and Y. Shimura. 1987. Preferential excision of the 5' proximal intron from mRNA precursors with two introns as mediated by the cap structure.Proc Natl Acad Sci U S A 84:5187-91.
    175. Ono, Y., M. Ohno, and Y. Shimura. 1994. Identification of a putative RNA helicase (HRH1), a human homolog of yeast Prp22. Mol Cell Biol 14:7611-20.
    176. Patton, J. G, S. A. Mayer, P. Tempst, and B. Nadal-Ginard. 1991. Characterization and molecular cloning of polypyrimidine tract-binding protein: a component of a complex necessary for pre-mRNA splicing. Genes Dev 5:1237-51.
    177. Patton, J. G, E. B. Porro, J. Galceran, P. Tempst, and B. Nadal-Ginard. 1993. Cloning and characterization of PSF, a novel pre-mRNA splicing factor. Genes Dev 7:393-406.
    178. Patzelt, E., E. Thalmann, K. Hartmuth, D. Blaas, and E. Kuechler. 1987. Assembly of pre-mRNA splicing complex is cap dependent. Nucleic Acids Res 15:1387-99.
    179. Pikielny, C. W., B. C. Rymond, and M. Rosbash. 1986. Electrophoresis of ribonucleoproteins reveals an ordered assembly pathway of yeast splicing complexes. Nature 324:341-5.
    180. Pinol-Roma, S., M. S. Swanson, J. G Gall, and G Dreyfuss. 1989. A novel heterogeneous nuclear RNP protein with a unique distribution on nascent transcripts. J Cell Biol 109:2575-87.
    181. Pinto, A. L., and J. A. Steitz. 1989. The mammalian analogue of the yeast PRP8 splicing protein is present in the U4/5/6 small nuclear ribonucleoprotein particle and the spliceosome. Proc Natl Acad Sci U S A 86:8742-6.
    182. Pritchard, C. E., M. Fornerod, L. H. Kasper, and J. M. van Deursen. 1999. RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains. J Cell Biol 145:237-54.
    183. Puig, O., A. Gottschalk, P. Fabrizio, and B. Seraphin. 1999. Interaction of the U1 snRNP with nonconserved intronic sequences affects 5' splice site selection. Genes Dev 13:569-80.
    184. Puigserver, P., Z. Wu, C. W. Park, R. Graves, M. Wright, and B. M. Spiegelman. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829-39.
    185. Raker, V. A., K. Hartmuth, B. Kastner, and R. Luhrmann. 1999. Spliceosomal U snRNP core assembly: Sm proteins assemble onto an Sm site RNA nonanucleotide in a specific and thermodynamically stable manner. Mol Cell Biol 19:6554-65.
    186. Ramchatesingh, J., A. M. Zahler, K. M. Neugebauer, M. B. Roth, and T. A. Cooper. 1995. A subset of SR proteins activates splicing of the cardiac troponin T alternative exon by direct interactions with an exonic enhancer. Mol Cell Biol 15:4898-907.
    187. Ranish, J. A., E. C. Yi, D. M. Leslie, S. O. Purvine, D. R. Goodlett, J. Eng, and R. Aebersold. 2003. The study of macromolecular complexes by quantitative proteomics. Nat Genet 33:349-55.
    188. Rappsilber, J., U. Ryder, A. I. Lamond, and M. Mann. 2002. Large-scale proteomic analysis of the human spliceosome. Genome Res 12:1231-45.
    189. Reed, R. 1989. The organization of 3' splice-site sequences in mammalian introns. Genes Dev 3:2113-23.
    190. Reed, R. 1996. Initial splice-site recognition and pairing during pre-mRNA splicing. Curr Opin Genet Dev 6:215-20.
    191. Reed, R. J., and P. Martin. 1997. Variants of melanoma. Semin Cutan Med Surg 16:137-58.
    192. Reed, R. J. 2000. Minimal deviation melanoma. Borderline and intermediate melanocytic neoplasia. Clin Lab Med 20:745-58.
    193. Rio, D. C. 1993. Splicing of pre-mRNA: mechanism, regulation and role in development. Curr Opin Genet Dev 3:574-84.
    194. Roberts, G. C, C. Gooding, H. Y. Mak, N. J. Proudfoot, and C. W. Smith. 1998. Co-transcriptional commitment to alternative splice site selection. Nucleic Acids Res 26:5568-72.
    195. Rogers, J., and R. Wall. 1980. A mechanism for RNA splicing. Proc Natl Acad Sci U S A 77:1877-9.
    196. Roth, M. B., C. Murphy, and J. G. Gall. 1990. A monoclonal antibody that recognizes a phosphorylated epitope stains lampbrush chromosome loops and small granules in the amphibian germinal vesicle. J Cell Biol 111:2217-23.
    197. Ruby, S. W., and J. Abelson. 1991. Pre-mRNA splicing in yeast. Trends Genet 7:79-85.
    198. Ruby, S. W., T. H. Chang, and J. Abelson. 1993. Four yeast spliceosomal proteins (PRP5, PRP9, PRP11, and PRP21) interact to promote U2 snRNP binding to pre-mRNA. Genes Dev 7:1909-25.
    199. Ruskin, B., P. D. Zamore, and M. R. Green. 1988. A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly. Cell 52:207-19.
    200. Santos-Rosa, H., H. Moreno, G. Simos, A. Segref, B. Fahrenkrog, N. Pante, and E. Hurt. 1998. Nuclear mRNA export requires complex formation between Mex67p and Mtr2p at the nuclear pores. Mol Cell Biol 18:6826-38.
    201. Sawa, H., and Y. Shimura. 1991. Requirement of protein factors and ATP for the disassembly of the spliceosome after mRNA splicing reaction. Nucleic Acids Res 19:6819-21.
    202. Sawa, H., and Y. Shimura. 1992. Association of U6 snRNA with the 5'-splice site region of pre-mRNA in the spliceosome. Genes Dev 6:244-54.
    203. Schaal, T. D., and T. Maniatis. 1999. Multiple distinct splicing enhancers in the protein-coding sequences of a constitutively spliced pre-mRNA. Mol Cell Biol 19:261-73.
    204. Schwer, B., and C. Guthrie. 1991. PRP16 is an RNA-dependent ATPase that interacts transiently with the spliceosome. Nature 349:494-9.
    205. Schwer, B., and C. H. Gross. 1998. Prp22, a DExH-box RNA helicase, plays two distinct roles in yeast pre-mRNA splicing. Embo J 17:2086-94.
    206. Screaton, G. R., J. F. Caceres, A. Mayeda, M. V. Bell, M. Plebanski, D. G. Jackson, J. I. Bell, and A. R. Krainer. 1995. Identification and characterization of three members of the human SR family of pre-mRNA splicing factors. Embo J 14:4336-49.
    207. Segault, V., C. L. Will, M. Polycarpou-Schwarz, I. W. Mattaj, C. Branlant, and R. Luhrmann. 1999. Conserved loop I of U5 small nuclear RNA is dispensable for both catalytic steps of pre-mRNA splicing in HeLa nuclear extracts. Mol Cell Biol 19:2782-90.
    208. Segref, A., K. Sharma, V. Doye, A. Hellwig, J. Huber, R. Luhrmann, and E. Hurt. 1997. Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. Embo J 16:3256-71.
    209. Shao, W., S. Halachmi, and M. Brown. 2002. ERAP140, a conserved tissue-specific nuclear receptor coactivator. Mol Cell Biol 22:3358-72.
    210. Shea, J. E., J. H. Toyn, and L. H. Johnston. 1994. The budding yeast U5 snRNP Prp8 is a highly conserved protein which links RNA splicing with cell cycle progression. Nucleic Acids Res 22:5555-64.
    211.Shepard, J., M. Reick, S. Olson, and B. R. Graveley. 2002. Characterization of U2AF(6), a splicing factor related to U2AF(35). Mol Cell Biol 22:221-30.
    212. Shin, C, and J. L. Manley. 2002. The SR protein SRp38 represses splicing in M phase cells. Cell 111:407-17.
    213. Sierakowska, H., W. Szer, P. J. Furdon, and R. Kole. 1986. Antibodies to hnRNP core proteins inhibit in vitro splicing of human beta-globin pre-mRNA. Nucleic Acids Res 14:5241-54.
    214. Sillekens, P. T., R. P. Beijer, W. J. Habets, and W. J. van Venrooij. 1988. Human U1 snRNP-specific C protein: complete cDNA and protein sequence and identification of a multigene family in mammals. Nucleic Acids Res 16:8307-21.
    215. Singh, R., J. Valcarcel, and M. R. Green. 1995. Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 268:1173-6.
    216. Siomi, H., M. C. Siomi, R. L. Nussbaum, and G. Dreyfuss. 1993. The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell 74:291-8.
    217. Spikes, D. A., J. Kramer, P. M. Bingham, and K. Van Doren. 1994. SWAP pre-mRNA splicing regulators are a novel, ancient protein family sharing a highly conserved sequence motif with the prp21 family of constitutive splicing proteins. Nucleic Acids Res 22:4510-9.
    218. Staknis, D., and R. Reed. 1994. Direct interactions between pre-mRNA and six U2 small nuclear ribonucleoproteins during spliceosome assembly. Mol Cell Biol 14:2994-3005.
    219. Staknis, D., and R. Reed. 1994. SR proteins promote the first specific recognition of Pre-mRNA and are present together with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex. Mol Cell Biol 14:7670-82.
    220. Staley, J. P., and C. Guthrie. 1998. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92:315-26.
    221. Staley, J. P., and C. Guthrie. 1999. An RNA switch at the 5' splice site requires ATP and the DEAD box protein Prp28p. Mol Cell 3:55-64.
    222. Stephens, R. M., and T. D. Schneider. 1992. Features of spliceosome evolution and function inferred from an analysis of the information at human splice sites. J Mol Biol 228:1124-36.
    223. Stevens, S. W., and J. Abelson. 1999. Purification of the yeast U4/U6.U5 small nuclear ribonucleoprotein particle and identification of its proteins. Proc Natl Acad Sci U S A 96:7226-31.
    224. Strauss, E. J., and C. Guthrie. 1991. A cold-sensitive mRNA splicing mutant is a member of the RNA helicase gene family. Genes Dev 5:629-41.
    225. Sun, Q., A. Mayeda, R. K. Hampson, A. R. Krainer, and F. M. Rottman. 1993. General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer. Genes Dev 7:2598-608.
    226. Swanson, M. S., and R. R. Isberg. 1995. Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infect Immun 63:3609-20.
    227. Tacke, R., and J. L. Manley. 1995. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. Embo J 14:3540-51.
    228. Tacke, R., and J. L. Manley. 1999. Determinants of SR protein specificity. Curr Opin Cell Biol 11:358-62.
    229. Tarn, W. Y, and J. A. Steitz. 1994. SR proteins can compensate for the loss of Ul snRNP functions in vitro. Genes Dev 8:2704-17.
    230. Tarn, W. Y, and J. A. Steitz. 1995. Modulation of 5' splice site choice in pre-messenger RNA by two distinct steps. Proc Natl Acad Sci U S A 92:2504-8.
    231. Tazi, J., C. Alibert, J. Temsamani, I. Reveillaud, G. Cathala, C. Brunei, and P. Jeanteur. 1986. A protein that specifically recognizes the 3' splice site of mammalian pre-mRNA introns is associated with a small nuclear ribonucleoprotein. Cell 47:755-66.
    232. Teigelkamp, S., M. McGarvey, M. Plumpton, and J. D. Beggs. 1994. The splicing factor PRP2, a putative RNA helicase, interacts directly with pre-mRNA. Embo J 13:888-97.
    233. Teigelkamp, S., A. J. Newman, and J. D. Beggs. 1995. Extensive interactions of PRP8 protein with the 5' and 3' splice sites during splicing suggest a role in stabilization of exon alignment by U5 snRNA. Embo J 14:2602-12.
    234. Tian, M., and T. Maniatis. 1993. A splicing enhancer complex controls alternativesplicing of doublesex pre-mRNA. Cell 74:105-14.
    235. Umen, J. G, and C. Guthrie. 1995. The second catalytic step of pre-mRNA splicing. Rna 1:869-85.
    236. Umen, J. G, and C. Guthrie. 1995. Prpl6p, Slu7p, and Prp8p interact with the 3' splice site in two distinct stages during the second catalytic step of pre-mRNA splicing. Rna 1:584-97.
    237. Urlaub, H., K. Hartmuth, and R. Luhrmann. 2002. A two-tracked approach to analyze RNA-protein crosslinking sites in native, nonlabeled small nuclear ribonucleoprotein particles. Methods 26:170-81.
    238. Utans, U., and A. Kramer. 1990. Splicing factor SF4 is dispensable for the assembly of a functional splicing complex and participates in the subsequent steps of the splicing reaction. Embo J 9:4119-26.
    239. Utans, U., S. E. Behrens, R. Luhrmann, R. Kole, and A. Kramer. 1992. A splicing factor that is inactivated during in vivo heat shock is functionally equivalent to the [U4/U6.U5] triple snRNP-specific proteins. Genes Dev 6:631-41.
    240. Verma, R., S. Chen, R. Feldman, D. Schieltz, J. Yates, J. Dohmen, and R. J. Deshaies. 2000. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol Cell 11:3425-39.
    241. Wang, Z., H. M. Hoffmann, and P. J. Grabowski. 1995. Intrinsic U2AF binding is modulated by exon enhancer signals in parallel with changes in splicing activity. Rna 1:21-35.
    242. Wang, J., Y. Takagaki, and J. L. Manley. 1996. Targeted disruption of an essential vertebrate gene: ASF/SF2 is required for cell viability. Genes Dev 10:2588-99.
    243. Watkins, J. L., R. Murphy, J. L. Emtage, and S. R. Wente. 1998. The human homologue of Saccharomyces cerevisiae Glelp is required for poly(A)+ RNA export. Proc Natl Acad Sci U S A 95:6779-84.
    244. Weiner, A. M. 1993. mRNA splicing and autocatalytic introns: distant cousins or the products of chemical determinism? Cell 72:161-4.
    245. Will, C. L., C. Schneider, R. Reed, and R. Luhrmann. 1999. Identification of both shared and distinct proteins in the major and minor spliceosomes. Science 284:2003-5.
    246. Williamson, M. P. 1994. The structure and function of proline-rich regions in proteins. Biochem J 297 (Pt 2):249-60.
    247. Wise, J. A. 1993. Guides to the heart of the spliceosome. Science 262:1978-9.
    248. Wu, J. A., and J. L. Manley. 1991. Base pairing between U2 and U6 snRNAs is necessary for splicing of a mammalian pre-mRNA. Nature 352:818-21.
    249. Wu, J. Y, and T. Maniatis. 1993. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75:1061-70.
    250. Wu, S., C. M. Romfo, T. W. Nilsen, and M. R. Green. 1999. Functional recognition of the 3' splice site AG by the splicing factor U2AF35. Nature 402:832-5.
    251. Xiao, S. H., and J. L. Manley. 1997. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev 11:334-44.
    252. Xiao, S. H., and J. L. Manley. 1998. Phosphorylation-dephosphorylation differentially affects activities of splicing factor ASF/SF2. Embo J 17:6359-67.
    253. Xu, D., and J. D. Friesen. 2001. Splicing factor sltllp and its involvement in formation of U2/U6 helix II in activation of the yeast spliceosome. Mol Cell Biol 21:1011-23.
    254. Yang, L., N. Li, C. Wang, Y. Yu, L. Yuan, M. Zhang, and X. Cao. 2004. Cyclin L2, a novel RNA polymerase II-associated cyclin, is involved in pre-mRNA splicing and induces apoptosis of human hepatocellular carcinoma cells. J Biol Chem 279:11639-48.
    255. Zahler, A. M., W. S. Lane, J. A. Stolk, and M. B. Roth. 1992. SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev 6:837-47.
    256. Zahler, A. M., K. M. Neugebauer, W. S. Lane, and M. B. Roth. 1993. Distinct functions of SR proteins in alternative pre-mRNA splicing. Science 260:219-22.
    257. Zamore, P. D., and M. R. Green. 1989. Identification, purification, and biochemical characterization of U2 small nuclear ribonucleoprotein auxiliary factor. Proc Natl Acad Sci U S A 86:9243-7.
    258. Zamore, P. D., and M. R. Green. 1991. Biochemical characterization of U2 snRNP auxiliary factor: an essential pre-mRNA splicing factor with a novel intranuclear distribution. Embo J 10:207-14.
    259. Zamore, P. D., J. G. Patton, and M. R. Green. 1992. Cloning and domain structure of the mammalian splicing factor U2AF. Nature 355:609-14.
    260. Zeng, C, D. He, S. M. Berget, and B. R. Brinkley. 1994. Nuclear-mitotic apparatus protein: a structural protein interface between the nucleoskeleton and RNA splicing. Proc Natl Acad Sci USA91:1505-9.
    261. Zhang, M., P. D. Zamore, M. Carmo-Fonseca, A. I. Lamond, and M. R. Green. 1992. Cloning and intracellular localization of the U2 small nuclear ribonucleoprotein auxiliary factor small subunit. Proc Natl Acad Sci U S A 89:8769-73.
    262. Zhang, D., and M. Rosbash. 1999. Identification of eight proteins that cross-link to pre-mRNA in the yeast commitment complex. Genes Dev 13:581-92.
    263. Zhou, Z., and R. Reed. 1998. Human homologs of yeast prp16 and prp17 reveal conservation of the mechanism for catalytic step II of pre-mRNA splicing. Embo J 17:2095-106.
    264. Zhou, Z., L. J. Licklider, S. P. Gygi, and R. Reed. 2002. Comprehensive proteomic analysis of the human spliceosome. Nature 419:182-5.
    265. Zorio, D. A., and T. Blumenthal. 1999. Both subunits of U2AF recognize the 3' splice site in Caenorhabditis elegans. Nature 402:835-8.
    266. Zuo, P., and T. Maniatis. 1996. The splicing factor U2AF35 mediates critical protein-protein interactions in constitutive and enhancer-dependent splicing. Genes Dev 10:1356-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700