类泛素修饰蛋白Saccharomyces cerevisae Urm1的溶液结构测定、进化意义分析及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的工作重点包括S.cerevisiae Urm1蛋白的克隆、表达纯化并用核磁共振的方法解析了溶液中Urm1蛋白的结构。基于结构,我们分析研究了修饰蛋白与载硫蛋白的进化关系以及Urm1修饰体系中Urm1与它的活化酶Uba4的相互作用模式。我们作了整个泛素超家族蛋白的结构比较和结构联配的序列比对。进化分析显示,Urm1是泛素超家族的分子化石,它的结构和序列可能最好的保守了这个超家族共同祖先蛋白质的特征。我们还推测了Urm1与Uba4的作用界面。另外,我们还采用蛋白质组学方法来分析Urm1修饰体系的靶蛋白。
     第一章是蛋白质修饰体系的简介,介绍了蛋白质修饰体系的分类和生物学功能。目前已发现的修饰体系有11类,包括:Ubiquitin、NEDD8/Rub1、SUMO、ISG15/UCRP、FAT10、FUB1、UBL5/Hub1、Atg8 and Atg12、Ufm1和Urm1修饰体系。本章重点介绍了Urm1修饰体系的研究背景。Urm1修饰体系自2000年首次被报道,现在已得到越来越多的关注。已经有报道Urm1修饰体系在酵母的出芽生殖、营养缺陷时的侵染性生长的形态发生中发挥功能、参与TOR信号传导途径下游通路的调控和氧化应激反应的调控。但是目前关于Urm1修饰体系功能的研究还主要是通过缺失基因观察表型,更具体的作用机理和可能还有待进一步的研究发现。本章还介绍了关于修饰蛋白进化起源的研究。
     第二章介绍了分子进化研究的基本理论和研究方法。分子进化钟与中性理论是分子进化研究的基础。构建进化树是研究分子进化的主要手段。构建序列进化树的步骤包括:1.序列比对建立数据模型。2.决定取代模型。3.选择建树方法。4.进化树搜索。5.确定树根。6.进化树评估。我们还介绍了蛋白质进化的基本特点和蛋白质进化关系的识别。
     第三章中我们解析了S.cerevisae Urm1蛋白的溶液结构,并分析了其进化意义。从Saccharomyces cerevisae(S288C)菌株染色体中获取编码Urm1蛋白的基因,构建表达菌株,经纯化以及同位素标记的预处理,通过核磁共振技术,在计算机软件辅助下,计算出S.cerevisae Urm1蛋白在水溶液中的结构。Urm1的空间结构是由一个含有五段β-strand的β-sheet和四段α螺旋折叠而成。β-strand以21534的顺序组装成β-sheet曲面。四段螺旋在空间上相互靠近,将β-sheet曲面的凹面封闭,形成一个疏水的核心,包装成紧凑的球形结构。α2螺旋内侧疏水残基与β-sheet凹面疏水残基的疏水相互作用是维持此球形结构域的主要作用力。α1和α3在空间上相互靠近,可以检测到它们的远程NOE。紧随β4 strand后的四个残基折叠成小螺旋α4,可以观察到α2螺旋N末端前的残基(33-35)与α4螺旋C末端后的几个残基(80-83)间的远程NOE。Urm1在C末端的六个残基构成柔性的尾巴从球形结构域伸出。结构相似性比较分析显示,Urm1与ThiS,MoaD的结构相似程度更高于它与其它修饰蛋白的结构相似性。Urm1的表面静电,疏水特性也与MoaD的分子表面特征相似,意味着它们可能以相似的方式与配体蛋白质发生相互作用。序列比对和结构比较的结果共同支持了修饰蛋白质由古老载硫蛋白进化产生的推测,同时为Urm1是泛素超家族中的‘分子化石’,即Urm1最好的保守了泛素超家族的共有祖先的分子特性的推测提供了重要的证据。另外,分子表面性质分析提示,类似MoaD,Urm1通过一个暴露的疏水平台和平台周围一些带电残基与配体发生相互作用。我们相信Urm1蛋白结构的解析为揭示泛素超家族蛋白质进化起源提供了重要证据,同时也为进一步研究修饰蛋白质的生理功能和修饰机理提供了新的信息。
     第四章介绍了我们用蛋白质组学方法研究Urm1修饰体系靶蛋白的工作进展。首先综述介绍了蛋白质组学概念和研究策略,以及用蛋白质组学方法分析修饰蛋白体系靶蛋白的策略和研究进展。我们希望通过蛋白质组学方法分析鉴定Urm1修饰体系的潜在的靶蛋白,帮助我们更深入的了解Urm1修饰体系的生理功能、作用机理。目前我们已经成功构建了HisX6-Urm1的酵母诱导表达菌株,并建立了初步的纯化富集方案。我们遇到了无法用western blot检测内源表达蛋白及检测不到Urm1化靶蛋白等问题,在下一步的工作中还需要进一步优化我们的纯化富集方案和检测手段,以及用2DLC-MS/MS分析纯化产物。
Our work focuses on the cloning, expression, purification and solving the solution structure of S. cerevisiae Urm1 protein by NMR method. Structure of Urm1 is based to infer the evolutionary relationships between the protein modifiers and sulfur carrier proteins and explore the function and interaction pattern of the Urm1 conjugation system. We use both structural comparison and phylogenetic analysis of the ubiquitin superfamily to test the hypothesis that Urm1 is a "molecular fossil" in the superfamily and has the most conserved structural features of the family's common ancestor. We presumed a possible partner-binding interface of Urm1 to Uba4. Besides, we are studying the targets of Urm1 conjugation system using proteomic strategy and methods.
     First chapter is the brief review of protein modifiers. Classification of protein modifiers and their biological functions were introduced. Till now, 11 protein conjugation systems have been identified, include: Ubiquitin, NEDD8/Rubl, SUMO, ISG15/UCRP, FAT10, FUB1, UBL5/Hub1, Atg8, Atg12, Ufm1 and Urm1 conjugation systems. We focused on introducing the investigation background of Urm1 conjugation system. The gene for all urmylation pathway proteins, Urm1 and Uba4, is essential for S. cerevisiae viability during budding in vegetative growth and is shown to play a role in invasive growth into agar in the haploid state and in pseudohyphal growth and cell elongation under starvation conditions in the diploid state. A functional cross-link between the TOR (target of rapamycin) signaling pathway and the urmylation pathway was also detected, in which Urm1 was shown to be involved in nutrient sensing. It was found that Urm1 covalently attaches to antioxidant protein Ahp1 to modulate its activity in oxidant-stress response. However, much still remains to be learned about the biological function and functional mechanism of the Urm1 conjugation system. We also introduced the evolutionary study on protein modifiers in this chapter.
     The second chapter introduced the primary theory and study method on molecular evolution. 'Molecular clock' and 'Neutral theory' based the investigation on molecular evolution. Construction of evolutionary and phylogenetic tree is usually used to study molecular evolution. The steps of constructing of evolutionary and phylogenetic tree include: 1. sequence alignment orientated data model. 2. Determination of substitute model. 3. Selective constructing. 4. Query of phylogenetic tree. 5. Root determination. 6. Estimation of phylogenetic tree. We also introduced the characters of protein evolution and identification of protein evolutionary relationships.
     In the third chapter, we solved the solution structure of S. cerevisae Urm1 and analyzed its evolutionary implications. The gene coding full length Urm1 protein was obtained by PCR from Saccharomyces cerevisae(S288C) genome. Recombinant Urm1 was cloned and expressed in E.coli and was purified using Ni-chelating column. The solution structure of S. cerevisae Urm1 was obtained by heteronuclear three-dimensional spectroscopy and calculated with the supplement of computer softwares. The structure of Urm1 contains one five-strandβ-sheet and fourα-helices. Theβ-sheet is arranged in the order 21534, as in ubiquitin; four helices together back the curvedβ-sheet on the concave side; Interaction between the inner face of theα2-helix and the concave face of theβ-sheet form a hydrophobic core, which is essential to maintain the compact fold. The short one-turnα4-helix follows theβ4-strand tightly. Long-range NOEs were observed from the N terminus (residues 33-35) of a2-helix to the residues (80-83) after the C terminus ofα4-helix. The C terminus (residues 95-99) is flexible and protrudes from the globular fold as a tail. Structural comparison indicates that Urm1 shares higher structural similarity with ThiS and MoaD than with other protein modifiers. The similarities of 3D structure and hydrophobic and electrostatic surface features between Urm1 and MoaD suggest that they may interact with partners in a similar manner. Both structural comparison and phylogenetic analysis of the ubiquitin superfamily, with emphasis on the Urm1 family, indicate that Urm1 is the unique 'molecular fossil' that has the most conserved structural and sequence features of the common ancestor of the entire superfamily. On the other hand, it is proposed that, analogy to MoaD, the partner-binding interface of Urm1 may consist of a hydrophobic region exposed to solvent and some charged residues. We believe that the solved Urm1 protein structure, which is considered to be a critical piece of evidence for inferring the evolutionary origin of the ubiquitin superfamily, would also be extremely informative for further investigation of the complex function and mechanism of the modification pathway during the evolution of protein modifiers.
     The fourth chapter introduced the work processed on identifying the modification targets of Urm1 conjugation system. The concepts of proteomics and the study strategy and methods were introduced firstly. Then the strategy for proteomic studies of protein modifiers was discussed. To identify potential targets of Urm1 conjugation system is significant for uncovering the biological process the system involved and its functional mechanism. Till now, we have successfully constructed the yeast strain which can be induced to express His-tagged Urm1 protein. We also have set up a primary strategy for purifying and enriching Urm1 and Urm1 conjugated proteins. However, we can not detect the Urm1 protein expressed by wild-type strains and the Urm1 conjugated proteins seem to be missed during purification according to Western blot results. In the future work, purification strategy and detection method should be optimized and we will try to analysis the purified product by 2DLC-MS/MS method.
引文
Anglade, P, Vyas, S., Javoy-Agid, F., Herrero, M. T., Michel, P. P., Marquez, J., Mouatt-Prigent, A., Ruberg, M., Hirsch, E.C., and Agid, Y. (1997). Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol Histopathol 12, 25-31.
    Bates, E.E., Ravel, O., Dieu, M. C., Ho, S., Guret, C., Bridon, J. M., Ait-Yahia, S., Briere, F., Caux, C., Banchereau, J., and Lebecque, S. (1997). Identification and analysis of a novel member of the ubiquitin family expressed in dendritic cells and mature B cells. Eur J Immunol 27, 2471-2477.
    Beck, T., and Hall, M. N. (1999). The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402, 689-692.
    Blom, N., Sicheritz-Ponten, T., Gupta, R., Gammeltoft, S., and Brunak, S. (2004). Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4, 1633-1649.
    Cardone, L., Hirayama, J., Giordano, F., Tamaru, T., Palvimo, J.J., and Sassone-Corsi, P. (2005). Circadian clock control by SUMOylation of BMAL1. Science 309, 1390-1394.
    Casey, P.J. (1995). Protein lipidation in cell signaling. Science 268, 221-225.
    Chen, E.J., and Kaiser, C.A. (2002). Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomycescerevisiae. Proc Natl Acad Sci U S A 99, 14837-14842.
    Coffman, J.A., Rai, R., Cunningham, T., Svetlov, V., and Cooper, T.G. (1996). Gatlp, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae. Mol Cell Biol 16, 847-858.
    Cope, G. A., and Deshaies, R. J. (2003). COP9 signalosome: a multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell 114, 663-671.
    Courchesne, W. E., and Magasanik, B. (1988). Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J Bacteriol 170, 708-713.
    Cvrckova, F., De Virgilio, C., Manser, E., Pringle, J.R., and Nasmyth, K. (1995). Ste20-like protein kinases are required for normal localization of cell growth and for cytokinesis in budding yeast. Genes Dev 9, 1817-1830.
    D'Cunha, J., Ramanujam, S., Wagner, R.J., Witt, P.L., Knight, E., Jr., and Borden, E.C. (1996). In vitro and in vivo secretion of human ISG15, an IFN-induced immunomodulatory cytokine. J Immunol 157, 4100-4108.
    Daugherty, J. R., Rai, R., el Berry, H. M., and Cooper, T. G. (1993). Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae. J Bacteriol 175, 64-73.
    De Virgilio, C., and Loewith, R. (2006). Cell growth control: little eukaryotes make big contributions. Oncogene 25, 6392-6415.
    Dittmar, G. A., Wilkinson, C. R., Jedrzejewski, P. T., and Finley, D. (2002). Role of a ubiquitin-like modification in polarized morphogenesis. Science 295, 2442-2446.
    Drubin, D.G., and Nelson, W. J. (1996). Origins of cell polarity. Cell 84, 335-344.
    Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., Burke, D. J., Ross, M. M., Shabanowitz, J., Hunt, D. F., and White, F. M. (2002). Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20, 301-305.
    Fichtner, L., Jablonowski, D., Schierhorn, A., Kitamoto, H.K., Stark, M. J., and Schaffrath, R. (2003). Elongator's toxin-target (TOT) function is nuclear localization sequence dependent and suppressed by post-translational modification. Mol Microbiol 49, 1297-1307.
    Friedman, J.S., Koop, B.F., Raymond, V., and Waiter, M.A. (2001). Isolation ofa ubiquitin-like (UBL5) gene from a screen identifying highly expressed and conserved iris genes. Genomics 71, 252-255.
    Furukawa, K., Mizushima, N., Noda, T., and Ohsumi, Y. (2000). A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes. J Biol Chem 275, 7462-7465.
    Gill, G. (2004). SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 18, 2046-2059.
    Goehring, A.S., Rivers, D.M., and Sprague, G.E, Jr. (2003a). Attachment of the ubiquitin-related protein Urm1p to the antioxidant protein Ahplp. Eukaryot Cell 2, 930-936.
    Goehring, A.S., Rivers, D.M., and Sprague, G.F., Jr. (2003b). Urmylation: a ubiquitin-like pathway that functions during invasive growth and budding in yeast. Mol Biol Cell 14, 4329-4341.
    Grenson, M., Hou, C., and Crabeel, M. (1970). Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. Ⅳ. Evidence for a general amino acid permease. J Bacteriol 103, 770-777.
    Hamerman, J. A., Hayashi, F., Schroeder, L.A., Gygi, S.P., Haas, A.L., Hampson, L., Coughlin, P., Aebersold, R., and Aderem, A. (2002). Serpin 2a is induced in activated macrophages and conjugates to a ubiquitin homolog. J Immunol 168, 2415-2423.
    Harder, Z., Zunino, R., and McBride, H. (2004). Sumol conjugates mitochondrial substrates and participates in mitochondrial fission. Curr Biol 14, 340-345.
    Hartman, J. L. t., Garvik, B., and Hartwell, L. (2001). Principles for the buffering of genetic variation. Science 291, 1001-1004.
    Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annu Rev Biochem 67, 425-479.
    Hicke, L. (2001). Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2, 195-201.
    Hipp, M.S., Raasi, S., Groettrup, M., and Schmidtke, G. (2004). NEDD8 ultimate buster-IL interacts with the ubiquitin-like protein FAT10 and accelerates its degradation. J Biol Chem 279, 16503-16510.
    Hochstrasser, M. (2000). Evolution and function of ubiquitin-like protein-conjugation systems. Nat Cell Biol 2, E153-157.
    Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G., and Jentsch, S. (2002). RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135-141.
    Hori, T., Osaka, F., Chiba, T., Miyamoto, C., Okabayashi, K., Shimbara, N., Kato, S., and Tanaka, K. (1999). Covalent modification of all members of human cullin family proteins by NEDDS. Oncogene 18, 6829-6834.
    Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., Noda, T., and Ohsumi, Y. (2000). A ubiquitin-likc system mediates protein lipidation. Nature 408, 488-492.
    Johnson, D. I., and Pringle, J. R. (1990). Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J Cell Biol 111, 143-152.
    Kamitani, T., Kito, K., Fukuda-Kamitani, T., and Yeh, E. T. (2001). Targeting of NEDD8 and its conjugates for proteasomal degradation by NUBI. J Biol Chem 276, 46655-46660.
    Kang, S. H., Kim, G.R., Seong, M., Back, S.H., Seol, J.H., Bang, O.S., Ovaa, H., Tatsumi, K., Komatsu, M., Tanaka, K., and Chung, C.H. (2007). Two novel ubiquitin-fold modifier 1 (Ufml)-specific proteases, UfSP1 and UfSP2. J Biol Chem 282, 5256-5262.
    Kantham, L., Kerr-Bayles, L., Godde, N., Quick, M., Webb, R., Sunderland, T., Bond, J., Walder, K., Augert, G., and Collier, G. (2003), Beacon interacts with cdc2/cdc28-like kinases. Biochem Biophys Res Commun 304, 125-129.
    Komatsu, M., Chiba, T., Tatsumi, K., Iemura, S., Tanida, I., Okazaki, N., Ueno, T., Kominami, E., Natsume, T., and Tanaka, K. (2004). A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. Embo J 23, 1977-1986.
    Krupa, A., Preethi, G., and Srinivasan, N. (2004). Structural modes of stabilization of permissive phosphorylation sites in protein kinases: distinct strategies in Ser/Thr and Tyr kinases. J Mol Biol 339, 1025-1039.
    Kulkami, A.A., Abul-Hamd, A. T., Rai, R., El Berry, H., and Cooper, T.G. (2001). Gin3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae. J Biol Chem 276, 32136-32144.
    Latonen, L., and Laiho, M. (2004). [Nobel prize in chemistry goes to three persons with a key role in revealing the ubiquitin-mediated protein degradation pathway]. Duodecim 120, 2868-2871.
    Lee, C. G., Ren, J., Cheong, I.S., Ban, K.H., Ooi, L.L., Yong Tan, S., Kan, A., Nuchprayoon, I., Jin, R., Lee, K.H., Choti, M., and Lee, L.A. (2003). Expression of the FAT10 gene is highly upregulated in hepatocellular carcinoma and other gastrointestinal and gynecological cancers. Oncogene 22, 2592-2603.
    Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., and Levine, B. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672-676.
    Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J. L., Bonenfant, D., Oppliger, W., Jenoe, P., and Hall, M.N. (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10, 457-468.
    Luders, J., Pyrowolakis, G., and Jentsch, S. (2003). The ubiquitin-like protein HUB1 forms SDS-resistant complexes with cellular proteins in the absence of ATP. EMBO Rep 4, 1169-1174.
    Magasanik, B., and Kaiser, C.A. (2002). Nitrogen regulation in Saccharomyces cerevisiae. Gene 290, 1-18.
    Makarova, O.V., Makarov, E.M., Urlaub, H., Will, C.L., Gentzel, M., Wilm, M., and Luhrmann, R. (2004). A subset of human 35S U5 proteins, including Prp19, function prior to catalytic step 1 of splicing. Embo J 23, 2381-2391.
    Malakhov, M.P., Kim, K.I., Malakhova, O.A., Jacobs, B.S., Borden, E.C., and Zhang, D.E. (2003). High-throughput immunoblotting. Ubiquitiin-like protein ISG15 modifies key regulators of signal transduction. J Biol Chem 278, 16608-16613.
    McNally, T., Huang, Q., Janis, R.S., Liu, Z., Olejniczak, E.T., and Reilly, R.M. (2003). Structural analysis of UBL5, a novel ubiquitin-like modifier. Protein Sci 12, 1562-1566.
    Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M.D., Klionsky, D. J., Ohsumi, M., and Ohsumi, Y. (1998). A protein conjugation system essential for autophagy. Nature 395, 395-398.
    Mizushima, N., Yoshimori, T., and Ohsumi, Y. (2003). Role of the Apg12 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 35, 553-561.
    Nakamura, M., and Tanigawa, Y. (2000). Protein tyrosine phosphorylation induced by ubiquitin-like polypeptide in murine T helper clone type 2. Biochem Biophys Res Commun 274, 565-570.
    Nakamura, M., and Tanigawa, Y. (2003). Characterization of ubiquitin-like polypeptide acceptor protein, a novel pro-apoptotic member of the Bcl2 family. Eur J Biochem 270, 4052-4058.
    Nakamura, M,, Xavier, R.M., Tsunematsu, T., and Tanigawa, Y. (1995). Molecular cloning and characterization of a cDNA encoding monoclonal nonspecific suppressor factor. Proc Natl Acad Sci U S A 92, 3463-3467.
    Narasimhan, J., Wang, M., Fu, Z., Klein, J.M., Haas, A.L., and Kim, J.J. (2005). Crystal structure of the interferon-induced ubiquitin-like protein ISGI5. J Biol Chem 280, 27356-27365.
    Palazzo, A., Ackerman, B., and Gundersen, G. G. (2003). Cell biology: Tubulin acetylation and cell motility. Nature 421, 230.
    Pickart, C. M. (2001). Mechanisms underlying ubiquitination. Annu Rev Biochem 70, 503-533.
    Raasi, S., Schmidtke, G., de Giuli, R., and Groettrup, M. (1999). A ubiquitin-like protein which is synergistically inducible by interferon-gamma and tumor necrosis factor-alpha. Eur J Immunol 29, 4030-4036.
    Raasi, S., Schmidtke, G, and Groettrup, M. (2001). The ubiquitin-like protein FAT10 forms covalent conjugates and induces apoptosis. J Biol Chem 276, 35334-35343.
    Rajan, S., Plant, L. D., Rabin, M. L., Butler, M.H., and Goldstein, S.A. (2005). Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell 121, 37-47.
    Rao-Naik, C., delaCruz, W., Laplaza, J.M., Tan, S., Callis, J., and Fisher, A.J. (1998). The rub family of ubiquitin-like proteins. Crystal structure of Arabidopsis rub1 and expression of multiple rubs in Arabidopsis. J Biol Chem 273, 34976-34982.
    Richman, T. J., and Johnson, D. I. (2000). Saccharomyces cerevisiae cdc42p GTPase is involved in preventing the recurrence of bud emergence during the cell cycle. Mol Cell Biol 20, 8548-8559.
    Roberg, K. J., Rowley, N., and Kaiser, C. A. (1997). Physiological regulation of membrane protein sorting late in the secretory pathway of Saccharomyces cerevisiae. J Cell Biol 137, 1469-1482.
    Rubio-Texeira, M. (2007). Urmylation controls Nillp and Gln3p-dependent expression of nitrogen-catabolite repressed genes in Saccharomyces cerevisiae. FEBS Lett 581, 541-550.
    Rubio-Texeira, M., and Kaiser, C.A. (2006). Amino acids regulate retrieval of the yeast general amino acid permease from the vacuolar targeting pathway. Mol Biol Cell 17, 3031-3050.
    Rudolph, M. J., Wuebbens, M.M., Rajagopalan, K.V., and Schindelin, H. (2001). Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nat Struct Biol 8, 42-46.
    Sasakawa, H., Sakata, E., Yamaguchi, Y., Komatsu, M., Tatsumi, K., Kominami,.E., Tanaka, K., and Kato, K. (2006). Solution structure and dynamics of Ufm1, a ubiquitin-fold modifier 1. Biochem Biophys Res Commun 343, 21-26.
    Schwartz, D. C., and Hochstrasser, M. (2003). A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem Sci 28, 321-328.
    Sheng, W., and Liao, X. (2002). Solution structure of a yeast ubiquitin-like protein Smt3: the role of structurally less defined sequences in protein-protein recognitions. Protein Sci 11, 1482-1491.
    Stanbrough, M., Rowen, D.W., and Magasanik, B. (1995). Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc Natl Acad Sci U S A 92, 9450-9454.
    Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., and Mural, R. J. (2001). The sequence of the human genome. Science 291, 1304-1351.
    Wang, C., Xi, J., Begley, T. P., and Nicholson, L. K. (2001). Solution structure of ThiS and implications for the evolutionary roots of ubiquitin. Nat Struct Biol 8, 47-51.
    Waterborg, J. H. (2002). Dynamics of histone acetylation in vivo. A function for acetylation turnover? Biochem Cell Biol 80, 363-378.
    Welchman, R. L., Gordon, C., and Mayer, R. J. (2005). Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 6, 599-609.
    Wilkinson, C. R., Dittmar, G. A., Ohi, M. D., Uetz, P., Jones, N., and Finley, D. (2004). Ubiquitin-like protein Hubl is required for pre-mRNA splicing and localization of an essential splicing factor in fission yeast. Curr Biol 14, 2283-2288.
    Wullsehleger, S., Loewith, R., and Hall, M. N. (2006). TOR signaling in growth and metabolism. Cell 124, 471-484.
    Xirodimas, D. P., Saville, M. K., Bourdon, J. C., Hay, R. T., and Lane, D. P. (2004). Mdm2-mediatedNEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118, 83-97.
    Zhao, C., Beaudenon, S. L., Kelley, M. L., Waddell, M. B., Yuan, W., Schulman, B. A., Huibregtse, J. M., and Krug, R. M. (2004). The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-alpha/beta-induced ubiquitin-like protein. Proc Natl Acad Sci U S A 101, 7578-7582.
    Zoladek, T. (2004). [Nobel prize in chemistry, degradation system and cellular protein]. Postepy Biochera 50, 294-295.
    刘世荣.(2006).SUMO化修饰:一种多功能的蛋白质翻译后修饰方式.医学分子生物学杂志 3(3),212-215.
    叶晓峰,吴乔.(2004).类泛素蛋白-SUMO.细胞生物学杂志 26(1),10-14.
    陈泉,施蕴渝.(2004).小泛素相关修饰物SUMO研究进展.生命科学,16(1),1-6.
    Baba, M. L., Darga, L. L., Goodman, M., Czelusniak, J. (1981). Evolution of Cytochromec investigated by the maximum parsimony method. Journal of Molecular Evoluton 35, 197-262.
    Chothia, C. (1984). Principles that determine the structure of proteins. Annu Rev Biochem 53,537-572.
    Dickerson, R. E. (1971). The structures of cytochrome c and the rates of molecular evolution. J Mol Evol 1, 26-45.
    Excoffier, L. (1993). AMOVA: Analysis of Molecular Variance, Version 1.55, Genetics and Biometry Lab, University of Geneva.
    Felsenstein, J. (1988). Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22, 521-565.
    Felsenstein, J. (1993). Phylogeny Inference Package(PHYLIP), Version 3.5, University of Washington, seattle.
    Felstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach Journal of Molecular Evoluton 17, 368-376.
    Fitch, W. M. (1970). Distinguishing homologous from analogous proteins. Syst Zool 19, 99-113.
    Fitch, W. M., and Margoliash, E. (1967). Construction of phylogenetic trees. Science 155, 279-284.
    Hasegawa, M., Kishino, H., Saitou, N. (1991). On the maximum likelihood method in molecular phylogenetics. Journal of Molecular Evoluton 32, 443-445.
    Hillis, D. M., Huelsenbeck, J. P., and Cunningham, C. W. (1994). Application and accuracy of molecular phylogenies. Science 264, 671-677.
    Holm, L., and Sander, C. (1993). Protein structure comparison by alignment of distance matrices. J Mol Biol 233, 123-138.
    Horimoto, K., Suzuki, H., Otsuka, J. (1990). Discrimination between adaptive and neutral amino acid substitutions in vertebrate. Journal of Molecular Evoluton 31, 302-324.
    Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge University Press: Cambridge Cambridgeshire; New York.
    Koonin, E. V., Tatusov, R. L., and Galperin, M. Y. (1998). Beyond complete genomes: from sequence to structure and function. Curr Opin Struct Biol 8, 355-363.
    Kumar, S., Tamura, K., Nei, M. (1993). MEGA: Molecular Evolutionary Genetics Analysis, Version 1.01, The Pennsylvania State University, University Park, PA 16802.
    Murzin, A.G. (1998). How far divergent evolution goes in proteins. Curr Opin Struct Biol 8, 380-387.
    Muse, S.V., and Weir, B.S. (1992). Testing for equality of evolutionary rates. Genetics 132, 269-276.
    Nei, M. (1987). Molecular genetics and evolution: Amsterdam: North-Holland.
    Penny, D. (1982). Towards a basis for classification: the incompleteness of distance measures, incompatibility analysis and phenetic classification. J Theor Biol 96, 129-142.
    Romero-Herrera, A. E., Lehmann, H., Joysey, K. A., and Friday, A. E. (1973). Molecular evolution of myoglobin and the fossil record: a phylogenetic synthesis. Nature 246, 389-395.
    Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406-425.
    Shpaer, E. G., Mulins, J.I. (1993). Rates of amino acid change in the envelope protein correlate with pathogenicity of primate lentiviruses. Journal of Molecular Evoluton 37, 57-65.
    Skolnick, J., and Fetrow, J. S. (2000). From genes to protein structure and function: novel applications of computational approaches in the genomic era. Trends Biotechnol 18, 34-39.
    Sneach, P. R. e. a. (1973). Numerical taxonomy: The principle and practice of numerical classfication. Freeman: San Francisco, CA.
    Swofford, D.L. (1993). Phylogenetic Analysis Using Parsimony(PAUP), Version 3.1.1., University of Illinois, Champaign.
    Swofford, D.L., Olsen, G.J.. (1990). Phylogeny reconstruction. Sinauer Associates Inc.: Sunderland.
    Swofford, D.L., Olsen, G.J., WaddeU, P.J. (1996). Phylogeny inference.
    Tateno, Y., Nei, M., and Tajima, E (1982). Accuracy of estimated phylogenetic trees from molecular data. I. Distantly related species. J Mol Evol 18, 387-404.
    Taylor, W. R., Flores, T. P., and Orengo, C. A. (1994). Multiple protein structure alignment. Protein Sci 3, 1858-1870.
    Taylor, W. R., and Orengo, C. A. (1989). Protein structure alignment. J Mol Biol 208, 1-22.
    Yokoyama, R., and Yokoyama, S. (1990). Convergent evolution of the red- and green-like visual pigment genes in fish, Astyanax fasciatus, and human. Proc Natl Acad Sci U S A 87, 9315-9318.
    Zhang, Z., Schaffer, A. A., Miller, W., Madden, T. L., Lipman, D. J., Koonin, E. V., and Altschul, S. F. (1998). Protein sequence similarity searches using patterns as seeds. Nucleic Acids Res 26, 3986-3990.
    Zuckerkandl, E., Pauling, L. (1962). Molecular desease, evolution and genetic heterogeneit. Academic Press: New York.
    梁国栋.(2001).最新分子生物学实验技术.科学出版社.
    吕宝忠.(1993).动物学研究.
    常青,周开亚.(1998).分子进化研究中系统发生树的重建。生物多样性 6(1),55-62
    Bayer, P., Arndt, A., Metzger, S., Mahajan, R., Melchior, F., Jaenicke, R., and Becker, J. (1998).
    Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol 280, 275-286.
    Cort, J. R., Chiang, Y., Zheng, D., Montelione, G. T., and Kennedy, M. A. (2002). NMR structure of conserved eukaryotic protein ZK652.3 from C. elegans: a ubiquitin-like fold. Proteins 48, 733-736.
    Ding, H., Xu, Y., Chen, Q., Dai, H., Tang, Y., Wu, J., and Shi, Y. (2005). Solution structure of human SUMO-3 C47S and its binding surface for Ubc9. Biochemistry 44, 2790-2799.
    Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696-704.
    Holm, L., and Sander, C. (1993). Protein structure comparison by alignment of distance matrices. J Mol Biol 233, 123-138.
    Johnson, M. S., Sali, A., and Blundell, T. L. (1990a). Phylogenetic relationships from three-dimensional protein structures. Methods Enzymol 183, 670-690.
    Johnson, M. S., Sutcliffe, M. J., and Blundell, T.L. (1990b). Molecular anatomy: phyletic relationships derived from three-dimensional structures of proteins. J Mol Evo130, 43-59.
    Kumar, S., Tamura, K., and Nei, M. (2004). MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150-163.
    Lake, M. W., Wuebbens, M. M., Rajagopalan, K.V., and Schindelin, H. (2001). Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex. Nature 414, 325-329.
    Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R., and Thornton, J.M. (1996). AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8, 477-486.
    Marsden, R.L., McGuffin, L.J., and Jones, D.T. (2002). Rapid protein domain assignment from amino acid sequence using predicted secondary structure. Protein Sci 11, 2814-2824.
    McNally, T., Huang, Q., Janis, R.S., Liu, Z., Olejniczak, E.T., and Reilly, R.M. (2003). Structural analysis of UBL5, a novel ubiquitin-like modifier. Protein Sci 12, 1562-1566.
    Ortiz, A. R., Strauss, C.E., and Olmea, O. (2002). MAMMOTH (matching molecular models obtained from theory): an automated method for model comparison. Protein Sci 11, 2606-2621.
    Rao-Naik, C., delaCruz, W., Laplaza, J.M., Tan, S., Callis, J., and Fisher, A.J. (1998). The rub family of ubiquitin-like proteins. Crystal structure of Arabidopsis rubl and expression of multiple rubs in Arabidopsis. J Biol Chem 273, 34976-34982.
    Rudolph, M. J., Wuebbens, M.M., Rajagopalan, K. V., and Schindelin, H. (2001). Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nat Struct Biol 8, 42-46.
    Swindells, M. B. (1996). Detecting structural similarities: a user's guide. Methods Enzymol 266, 643-653.
    Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876-4882.
    Wang, C., Xi, J., Begley, T.P., and Nicholson, L. K. (2001). Solution structure of ThiS and implications for the evolutionary roots of ubiquitin. Nat Struct Biol 8, 47-51.
    Whitby, F. G., Xia, G., Pickart, C. M., and Hill, C. P. (1998). Crystal structure of the human ubiquitin-like protein NEDD8 and interactions with ubiquitin pathway enzymes. J Biol Chem 273, 34983-34991.
    王明怡,杨益,吴平等.(2003).生物信息学.
    Black, D. L. (2000). Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103, 367-370.
    Duan, X. J., Xenarios, I., and Eisenberg, D. (2002). Describing biological protein interactions in terms of protein states and state transitions: the LiveDIP database. Mol Cell Proteomics 1, 104-116.
    Gorg, A., Obermaier, C., Boguth, G., and Weiss, W. (1999). Recent developments in two-dimensional gel electrophoresis with immobilized pH gradients: wide pH gradients up to pH 12, longer separation distances and simplified procedures. Electrophoresis 20, 712-717.
    Klose, J., and Kobalz, U. (1995). Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16, 1034-1059.
    Kushnirov, V. V. (2000). Rapid and reliable protein extraction from yeast. Yeast 16, 857-860.
    Lakey, J. H., and Raggett, E. M. (1998). Measuring protein-protein interactions. Curr Opin Struct Biol 8,119-123.
    Link, A. J., Hays, L. G., Carmack, E. B., and Yates, J. R., 3rd. (1997). Identifying the major proteome components of Haemophilus influenzae type-strain NCTC 8143. Electrophoresis 18, 1314-1334.
    Panse, V. G., Hardeland, U., Werner, T., Kuster, B., and Hurt, E. (2004). A proteome-wide approach identifies sumoylated substrate proteins in yeast. J Biol Chem 279, 41346-41351.
    Parker, K. C., Garrels, J. I., Hines, W., Butler, E. M., MeKee, A. H., Patterson, D., and Martin, S. (1998).
    Identification of yeast proteins from two-dimensional gels: working out spot cross-contamination. Electrophoresis 19, 1920-1932.
    Pelletier, J., and Sidhu, S. (2001). Mapping protein-protein interactions with combinatorial biology methods. Curr Opin Biotechnol 12, 340-347.
    Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C., Cheng, D., Marsischky, G., Roelofs, J., Finley, D., and Gygi, S. P. (2003). A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21, 921-926.
    Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999). A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17, 1030-1032.
    Simpson, R. J. (2003). Proteins and proteomics : a laboratory manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.
    Venkatram, S., Tasto, J. J., Feoktistova, A., Jennings, J. L., Link, A. J., and Gould, K. L. (2004).
    Identification and characterization of two novel proteins affecting fission yeast gamma-tubulin complex function. Mol Biol Cell 15, 2287-2301.
    Vertegaal, A. C., Ogg, S. C., Jaffray, E., Rodriguez, M. S., Hay, R. T., Andersen, J. S., Mann, M., and Lamond, A. I. (2004). A proteomic study of SUMO-2 target proteins. J Biol Chem 279, 33791-33798.
    Wang, H., and Hanash, S. (2003). Multi-dimensional liquid phase based separations in proteomics. J Chromatogr B Analyt Technol Biomed Life Sci 787, 11-18.
    Washburn, M. P., Wolters, D., and Yates, J. R., 3rd. (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19, 242-247.
    Wildgruber, R., Harder, A., Obermaier, C., Boguth, G., Weiss, W., Fey, S. J., Larsen, P. M., and Gorg, A. (2000). Towards higher resolution: two-dimensional electrophoresis of Saccharomyces cerevisiae proteins using overlapping narrow immobilized pH gradients. Electrophoresis 21, 2610-2616.
    Wohlschlegel, J. A., Johnson, E. S., Reed, S. I., and Yates, J. R., 3rd. (2004). Global analysis of protein sumoylation in Saccharomyces cerevisiae. J Biol Chem 279, 45662-45668.
    Xu, J., Zhang, J., Wang, L., Zhou, J., Huang, H., Wu, J., Zhong, Y., and Shi, Y. (2006). Solution structure of Urml and its implications for the origin of protein modifiers. Proc Natl Acad Sci U S A 103, 11625-11630.
    Zhao, C., Beaudenon, S. L., Kelley, M. L., Waddell, M. B., Yuan, W., Schulman, B. A., Huibregtse, J. M., and Krug, R. M. (2004). The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-alpha/beta-induced ubiquitin-like protein. Proc Natl Acad Sci U S A 101, 7578-7582.
    王阳梦,董银卯,何聪芬.(2006).蛋白质组学核心技术研究进展.北京工商大学学报 (自然科学版) 24,9-14.
    周海涛,朱红,贾少微,梅树江.(2006).蛋白质组学技术新进展.肿瘤防治研究 33,920-922.
    杨正平,王聪.(2006,).蛋白质组学研究的新进展.安阳示范学院学报,147.
    钱小红,等.(2003).蛋白质组学:理论与方法。
    饶友生,张细权.(2006).蛋白质组学的研究方法.现代生物医学进展 6,86-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700