大鼠肝再生中脂肪滴蛋白质组的差异分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝脏的再生机制是肝脏研究中一个关键而复杂的问题。对于这一涉及复杂调控网络的多阶段生理过程,全面系统的展示其分子基础至关重要。近几年,比较蛋白质组学技术的发展为研究肝再生分子机制提供了技术平台,迅速推进了肝再生相关效应因子、信号通路的数据积累。而针对亚细胞蛋白质组的研究策略能提供蛋白质的亚细胞定位信息,从而有助于研究者阐释其作用机理,更进一步理解其在肝再生整体调控网络中所处的位置。
     脂肪滴(Lipid Droplets)作为脂质代谢调控的中心细胞器,广泛参与多种生理过程。研究显示脂肪滴与其他细胞器存在普遍的相互作用和分子交流,并能通过调节细胞内的脂质平衡,辅助细胞应对特定时期和状况下的细胞环境。近年有研究报道肝脏细胞内的脂肪滴在肝再生早、中期大量积累,与肝再生进程密切关联,但其中机制尚未明确,有待探讨。
     本研究以2/3肝切除的大鼠为肝再生模型,首次应用八标iTRAQ (8-plex isobaric Tags for Relative and Absolute Quantitation)技术结合2D LC-MS/MS以正常大鼠肝组织和假手术大鼠肝组织为对照,全面分析了再生早期(6h,12h)、中期(24h,48h)和晚期(72h,120h)肝脏细胞内脂肪滴蛋白质的表达差异,以期为深入探讨脂肪滴调控肝再生的机制做好铺垫。目前,课题主要获得如下结果。
     第一、大鼠肝再生各时间点的脂肪滴蛋白质的质谱鉴定结果通过IPI数据库检索共得到248种蛋白质,对应到200个基因,与以往的脂肪滴蛋白质组研究结果比较,其中158个为本研究首次鉴定。利用GO(Gene Ontology)对这些基因的分子功能、生物过程和细胞组分的注释进行分类分析,结果提示脂肪滴蛋白质可能与细胞增殖状态相关,参与调节肝再生进程中脂肪合成、积累和分解代谢,以保持细胞能量供给稳定,提供生物膜合成底物,并调节胞内的氧化水平,防止胞浆中脂质过量形成的细胞毒性等。
     第二、利用Protein Pilot软件给出的蛋白质定量信息,对各时间点的脂肪滴蛋白质的整体表达模式进行分层聚类分析,结果显示术后脂肪滴蛋白质组的表达变化与肝再生进程紧密相关:肝再生早期6h和12h的表达模式相似,而24h的与二者相近;随后48h和72h的表达谱相似,而120h的与二者相近;在这6个时间点中,肝再生晚期120h的蛋白表达变化最接近于假手术组。这些结果与我们的理论预期相符,也显示了八标iTRAQ技术是平行分析多组蛋白质样品的有效工具。
     第三、本研究共发现29种蛋白质在大鼠肝再生过程中呈现差异表达,其中14种主体上呈上调表达,15种呈下调表达。如脂肪滴表面17-βHSD 11/13、ACSL的水平在术后24h显著上调,而脂肪结合蛋白L-FABP在肝再生24h-72h期间出现显著下调,这些蛋白质可能通过调节细胞内脂质的运输、合成和代谢,参与肝再生中损伤应激和细胞增殖等生物进程。
     总结:本研究首次建立了脂肪滴蛋白质在肝再生中的动态变化图谱,发现了潜在的差异分子,并系统探讨了脂肪滴及其表面蛋白参与调节肝再生进程的可能途径和方式:1)参与细胞应激,调节胞内氧化水平;2)储存脂类,降低脂质过量产生的细胞毒性;3)保持脂质代谢平衡,供给细胞增殖所需能量和生物膜合成底物;4)募集和转运蛋白因子,与其它细胞器相互交流;5)暂存胞内大量合成的蛋白,收容失活异常蛋白辅助降解,维持细胞内环境平衡等。本研究为进一步研究脂肪滴功能和肝再生机理提供了有价值的线索。
The mechanism of liver's unique regenerative capacity is a hotspot as well as a complicated issue in liver research. Determining the molecular base is crucial to understand this multi-stage pathophysiological process involving complex networks. The comparative proteomic approach is a powerful tool to investigate molecular changes and has been employed to elucidate crucial information about liver regeneration in recent years. Among them, subcellular proteomics is a valuable addition to the commonly used proteomic approaches in liver regeneration for providing subcellular compartments information which facilitates understand proteins' functional roles in the regulating system of regeneration.
     Lipd droplets (LDs), the central organelles regulating lipid synthesis and metabolism, are volved in multiple physiological processes. Studies revealed universal interaction between LDs and other organelles, as well as LDs' roles in regulating lipid homeostasis that function in specific cellular condition. A recent work reported LDs accumulated in hepatocytes in early and middle stages of liver regeneration, and correlated with regeneration process. Wheras the mechanism remains undetermined.
     In the present study, comparative proteomic analysis in rat liver regeneration after 2/3 hepatectomy (PH) was performed using 8-plex iTRAQ technology coupled with 2D LC-MS/MS for the first time. Differentially expressed proteins in the early stage (6h,12h), middle stage (24h,48h) and late stage (72h,120h) were profiled, using normal and sham operated liver as control.4 main results were achieved as follows.
     Firstly, the data from 2D LC-MS/MS were analyzed against IPI database and 248 distinct proteins, matching 200 genes, were identified in total.158 out of 200 genes were newly detected on LDs. The outcome from functional analysis with GO annotation system suggested LDs proteins might regulate intracellular lipid homeostasis, through which LDs function as stable energy supplier for cell proliferation and repository for substrates of membrane synthesis. LDs, together with their surface proteins, could further adjust intracellular oxidative stress and prevent cytotoxicity caused by excessive lipid.
     Secondly, hierarchical clustering analysis of the proteins expression patterns demonstrated correlation between LDs proteome changes and liver regeneration progress:proteins expression at 6h and 12h after PH hold a like pattern, which of 24h was similar to those of 6h and 12h, that of 48h similar to 72h, and that of 120h was more close to sham than any other time points.
     Thirdly, we employed significance analysis using ProteinPilot, and found 29 proteins with notable changes (p<0.05) at one time point or more, of which 14 were up-regulated and 15 were down-regulated. Some of these proteins, for instance L-FABP,17-βHSD 11/13 and ACSL, might be directly linked to cell proliferation and other reponses following stimulus by modulating intracellular lipid transport, synthesis and metabolism.
     In conclusion, this study figured out a dynamically quantitative expression pattern of LD proteins during liver regeneration for the first time, and detected some protential key factors. These findings indicated the possible roles of LDs in liver regeneration as follows:1. regulating intracellular oxidation level responding to the stimulus; 2. storing lipid and buffering cells from the toxic effects of excessive amounts of lipid,3. regulating lipid homestasis, providing energy for cell proliferation and building blocks for biological membranes, such as phospholipids and sterols; 4. recruiting and delivering proteins, crosstalking with the other organelles; 5. sequestrating abnormal proteins before degradation, maintaining intracellular microenviroment. Our results provided useful clues for further research on this issue.
引文
[1]K. Jungermann and N. Katz. Functional Specialization of Different Hepatocyte Populations[J]. Physiological Reviews,1989,69(3):708-764
    [2]G. M. Higgins and R. M. Anderson. Experimental pathology of the liver I Restoration of the liver of the white rat following partial surgical removal[J]. Archives of Pathology,1931,12(2):186-202
    [3]N. Kaplowitz. Biochemical and cellular mechanisms of toxic liver injury[J]. Seminars in Liver Disease,2002,22(2):137-144
    [4]D. Palmes and H. U. Spiegel. Animal models of liver regeneration[J]. Biomaterials,2004,25(9):1601-1611
    [5]R. Taub. Liver regeneration:From myth to mechanism[J]. Nature Reviews Molecular Cell Biology,2004,5(10):836-847
    [6]G. K. Michalopoulos. Liver regeneration[J]. Journal of Cellular Physiology,2007,213(2):286-300
    [7]N. Fausto, J. S. Campbell and K. J. Riehle. Liver regeneration[J]. Hepatology,2006,43(2 Suppl 1):S45-53
    [8]M. Iwai, T. X. Cui, H. Kitamura, et al. Increased secretion of tumour necrosis factor and interleukin 6 from isolated, perfused liver of rats after partial hepatectomy[J]. Cytokine,2001,13(1):60-64
    [9]E. M. Webber, J. Bruix, R. H. Pierce, et al. Tumor necrosis factor primes hepatocytes for DNA replication in the rat[J]. Hepatology,1998,28(5): 1226-1234
    [10]M. J. Fitzgerald, E. M. Webber, J. R. Donovan, et al. Rapid DNA-Binding by Nuclear Factor Kappa-B in Hepatocytes at the Start of Liver-Regeneration[J]. Cell Growth & Differentiation,1995,6(4):417-427
    [11]D. Mangnall, N. C. Bird and A. W. Majeed. The molecular physiology of liver regeneration following partial hepatectomy[J]. Liver International,2003, 23(2):124-138
    [12]D. E. Cressman, R. H. Diamond and R. Taub. Rapid Activation of the Stat3 Transcription Complex in Liver-Regeneration[J]. Hepatology,1995,21(5): 1443-1449
    [13]Y. Yamada, E. M. Webber, I. Kirillova, et al. Analysis of liver regeneration in mice lacking type 1 or type 2 tumor necrosis factor receptor: Requirement for type 1 but not type 2 receptor[J]. Hepatology,1998,28(4): 959-970
    [14]Y. Yamada, I. Kirillova, J. J. Peschon, et al. Initiation of liver growth by tumor necrosis factor:Deficient liver regeneration in mice lacking type Ⅰ tumor necrosis factor receptor[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(4):1441-1446
    [15]R. A. DeAngelis, K. Kovalovich, D. E. Cressman, et al. Normal liver regeneration in p50/nuclear factor kappa B1 knockout mice[J]. Hepatology, 2001,33(4):915-924
    [16]R. M. Gallucci, P. P. Simeonova, W. Toriumi, et al. TNF-alpha regulates transforming growth factor-alpha expression in regenerating murine liver and isolated hepatocytes[J]. Journal of Immunology,2000,164(2):872-878
    [17]T. Kinoshita, S. Hirao, K. Matsumoto, et al. Possible Endocrine Control by Hepatocyte Growth-Factor of Liver-Regeneration after Partial-Hepatectomy[J]. Biochemical and Biophysical Research Communications,1991,177(1):330-335
    [18]G. A. Patijn, A. Lieber, D. B. Schowalter, et al. Hepatocyte growth factor (HGF) induces high level hepatocyte proliferation in vivo and allows for efficient retroviral-mediated gene transfer in mice.[J]. Hepatology,1998,28(4): 175a-175a
    [19]M. Borowiak, A. N. Garratt, T. Wustefeld, et al. Met provides essential signals for liver regeneration[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(29):10608-10613
    [20]J. Okano, G. Shiota, K. Matsumoto, et al. Hepatocyte growth factor exerts a proliferative effect on oval cells through the PI3K/AKT signaling pathway[J]. Biochemical and Biophysical Research Communications,2003, 309(2):298-304
    [21]C. G. Huh, V. M. Factor, A. Sanchez, et al. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(13):4477-4482
    [22]J. E. Mead and N. Fausto. Transforming Growth Factor-Alpha May Be a Physiological Regulator of Liver-Regeneration by Means of an Autocrine Mechanism[J]. Proceedings of the National Academy of Sciences of the United States of America,1989,86(5):1558-1562
    [23]M. Bockhorn, M. Goralski, D. Prokofiev, et al. VEGF is important for early liver regeneration after partial hepatectomy[J]. Journal of Surgical Research,2007,138(2):291-299
    [24]C. W. Strey, M. Markiewski, D. Mastellos, et al. The proinflammatory mediators C3a and C5a are essential for liver regeneration[J]. Journal of Experimental Medicine,2003,198(6):913-923
    [25]J. S. Campbell, L. Prichard, F. Schaper, et al. Expression of suppressors of cytokine signaling during liver regeneration[J]. J Clin Invest, 2001,107(10):1285-92
    [26]C. Trautwein, T. Rakemann, M. Niehof, et al. Acute-phase response factor, increased binding, and target gene transcription during liver regeneration[J]. Gastroenterology,1996,110(6):1854-1862
    [27]C. W. Strey, M. S. Winters, M. M. Markiewski, et al. Partial hepatectomy induced liver proteome changes in mice[J]. Proteomics,2005, 5(1):318-325
    [28]F. Z. Guo, H. Nian, H. Zhang, et al. Proteomic analysis of the transition from quiescent to proliferating stages in rat liver hepatectomy model[J]. Proteomics,2006,6(10):3075-3086
    [29]Y. Sun, X. Deng, W. Li, et al. Liver proteome analysis of adaptive response in rat immediately after partial hepatectomy[J]. Proteomics,2007, 7(23):4398-407
    [30]D. X. Zhou, Y. X. Tan, H. P. Hu, et al. Comparative proteomic analysis of liver regeneration-preliminary results[J]. Journal of Gastroenterology and Hepatology,2006,21(A210-A210
    [31]H. C. Hsieh, Y. T. Chen, J. M. Li, et al. Protein Profilings in Mouse Liver Regeneration after Partial Hepatectomy Using iTRAQ Technology[J]. Journal of Proteome Research,2009,8(2):1004-1013
    [32]Q. J. Sun, M. Y. Miao, X. Jia, et al. Subproteomic analysis of the mitochondrial proteins in rats 24 h after partial hepatectomy[J]. Journal of Cellular Biochemistry,2008,105(1):176-184
    [33]S. Martin and R. G. Parton. Lipid droplets:a unified view of a dynamic organelle[J]. Nat Rev Mol Cell Biol,2006,7(5):373-8
    [34]M. Waltermann, A. Hinz, H. Robenek, et al. Mechanism of lipid-body formation in prokaryotes:how bacteria fatten up[J]. Mol Microbiol,2005,55(3): 750-63
    [35]K. Tauchi-Sato, S. Ozeki, T. Houjou, et al. The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition[J]. J Biol Chem,2002,277(46):44507-12
    [36]D. A. Brown. Lipid droplets:proteins floating on a pool of fat[J]. Curr Biol,2001,11(11):R446-9
    [37]D. J. Murphy and J. Vance. Mechanisms of lipid-body formation[J]. Trends Biochem Sci,1999,24(3):109-15
    [38]S. J. Smith, S. Cases, D. R. Jensen, et al. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat[J]. Nat Genet,2000,25(1):87-90
    [39]T. Y. Chang, C. C. Chang, S. Lin, et al. Roles of acyl-coenzyme A:cholesterol acyltransferase-1 and-2[J]. Curr Opin Lipidol,2001,12(3): 289-96
    [40]L. Andersson, P. Bostrom, J. Ericson, et al. PLD1 and ERK2 regulate cytosolic lipid droplet formation[J]. J Cell Sci,2006,119(Pt 11):2246-57
    [41]V. Puri, S. Konda, S. Ranjit, et al. Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage[J]. J Biol Chem,2007, 282(47):34213-8
    [42]N. E. Wolins, B. K. Quaynor, J. R. Skinner, et al. OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization[J]. Diabetes,2006,55(12):3418-28
    [43]S. Y. Cho, E. S. Shin, P. J. Park, et al. Identification of mouse Prp19p as a lipid droplet-associated protein and its possible involvement in the biogenesis of lipid droplets[J]. J Biol Chem,2007,282(4):2456-65
    [44]S. Prattes, G. Horl, A. Hammer, et al. Intracellular distribution and mobilization of unesterified cholesterol in adipocytes:triglyceride droplets are surrounded by cholesterol-rich ER-like surface layer structures[J]. J Cell Sci, 2000,113 (Pt17)(2977-89
    [45]P. Targett-Adams, D. Chambers, S. Gledhill, et al. Live cell analysis and targeting of the lipid droplet-binding adipocyte differentiation-related protein[J]. J Biol Chem,2003,278(18):15998-6007
    [46]K. M. Szymanski, D. Binns, R. Bartz, et al. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology[J]. Proc Natl Acad Sci U S A,2007,104(52):20890-5
    [47]J. M. Goodman. The gregarious lipid droplet[J]. J Biol Chem,2008, 283(42):28005-9
    [48]P. Bostrom, M. Rutberg, J. Ericsson, et al. Cytosolic lipid droplets increase in size by microtubule-dependent complex formation[J]. Arterioscler Thromb Vasc Biol,2005,25(9):1945-51
    [49]Y. Fujimoto, H. Itabe, T. Kinoshita, et al. Involvement of ACSL in local synthesis of neutral lipids in cytoplasmic lipid droplets in human hepatocyte HuH7[J]. J Lipid Res,2007,48(6):1280-92
    [50]P. Bostrom, L. Andersson, M. Rutberg, et al. SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity[J]. Nat Cell Biol,2007,9(11):1286-93
    [51]P. E. Bickel, J. T. Tansey and M. A. Welte. PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores[J]. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids,2009,1791(6): 419-440
    [52]S. Miura, J. W. Gan, J. Brzostowski, et al. Functional conservation for lipid storage droplet association among perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium[J]. Journal of Biological Chemistry,2002,277(35):32253-32257
    [53]D. L. Brasaemle, G. Dolios, L. Shapiro, et al. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes (vol 279, pg 46835,2004)[J]. Journal of Biological Chemistry,2005,280(5):4004-4004
    [54]S. Sato, M. Fukasawa, Y. Yamakawa, et al. Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein[J]. Journal of Biochemistry,2006,139(5):921-930
    [55]N. E. Wolins, J. R. Skinner, M. J. Schoenfish, et al. Adipocyte protein S3-12 coats nascent lipid droplets[J]. Journal of Biological Chemistry,2003, 278(39):37713-37721
    [56]T. Fujimoto, Y. Ohsaki, J. Cheng, et al. Lipid droplets:a classic organelle with new outfits[J]. Histochemistry and Cell Biology,2008,130(2): 263-279
    [57]H. Robenek, M. J. Robenek and D. Troyer. PAT family proteins pervade lipid droplet cores[J]. Journal of Lipid Research,2005,46(6): 1331-1338
    [58]N. E. Wolins, B. K. Quaynor, J. R. Skinner, et al. S3-12, adipophilin, and TIP47 package lipid in adipocytes[J]. Journal of Biological Chemistry,2005, 280(19):19146-19155
    [59]M. Bell, H. Wang, H. Chen, et al. Consequences of lipid droplet coat protein downregulation in liver cells:abnormal lipid droplet metabolism and induction of insulin resistance[J]. Diabetes,2008,57(8):2037-2045
    [60]D. L. Brasaemle, B. Rubin, I. A. Harten, et al. Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis[J]. Journal of Biological Chemistry,2000,275(49):38486-38493
    [61]J. T. Tansey, C. Sztalryd, J. Gruia-Gray, et al. Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(11): 6494-6499
    [62]C. Sztalryd, G. H. Xu, H. Dorward, et al. Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation[J]. Journal of Cell Biology,2003,161(6):1093-1103
    [63]G. M. Clifford, C. Londos, F. B. Kraemer, et al. Translocation of hormone-sensitive lipase and perilipin upon lipolytic stimulation of rat adipocytes[J]. Journal of Biological Chemistry,2000,275(7):5011-5015
    [64]M. Imamura, T. Inoguchi, S. Ikuyama, et al. ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts[J]. American Journal of Physiology-Endocrinology and Metabolism,2002,283(4): E775-E783
    [65]J. Gao and G. Serrero. Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake[J]. Journal of Biological Chemistry,1999,274(24):16825-16830
    [66]N. Nakamura, T. Akashi, T. Taneda, et al. ADRP is dissociated from lipid droplets by ARF1-dependent mechanism[J]. Biochemical and Biophysical Research Communications,2004,322(3):957-965
    [67]N. Nakamura, Y. Banno and K. Tamiya-Koizumi. Arf1-dependent PLD1 is localized to oleic acid-induced lipid droplets in NIH3T3 cells[J]. Biochemical and Biophysical Research Communications,2005,335(1):117-123
    [68]D. Marchesan, M. Rutberg, L. Andersson, et al. A phospholipase D-dependent process forms lipid droplets containing caveolin, adipocyte differentiation-related protein, and vimentin in a cell-free system[J]. Journal of Biological Chemistry,2003,278(29):27293-27300
    [69]G. M. Jenkins and M. A. Frohman. Phospholipase D:a lipid centric review[J]. Cellular and Molecular Life Sciences,2005,62(19-20):2305-2316
    [70]J. Martinez-Botas, J. B. Anderson, D. Tessier, et al. Absence of perilipin results in leanness and reverses obesity in Lepr db db mice[J]. Nature Genetics,2000,26(4):474-479
    [71]E. Diaz and S. R. Pfeffer. TIP47:A cargo selection device for mannose 6-phosphate receptor trafficking [J]. Cell,1998,93(3):433-443
    [72]S. J. Hickenbottom, A. R. Kimmel, C. Londos, et al. Structure of a lipid droplet protein:The PAT family member TIP47[J]. Structure,2004,12(7): 1199-1207
    [73]K. T. Dalen, T. Dahl, E. Holter, et al. LSDP5 is a PAT protein specifically expressed in fatty acid oxidizing tissues[J]. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids,2007,1771(2):210-227
    [74]N. E. Wolins, B. K. Quaynor, J. R. Skinner, et al. OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization[J]. Diabetes,2006,55(12):3418-3428
    [75]T. V. Kurzchalia and R. G. Parton. Membrane microdomains and caveolae[J]. Current Opinion in Cell Biology,1999,11(4):424-431
    [76]A. G. Ostermeyer, J. M. Paci, Y. C. Zeng, et al. Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets[J]. Journal of Cell Biology,2001,152(5):1071-1078
    [77]A. Pol, S. Martin, M. A. Fernandez, et al. Dynamic and regulated association of caveolin with lipid bodies:Modulation of lipid body motility and function by a dominant negative mutant[J]. Molecular Biology of the Cell,2004, 15(1):99-110
    [78]B. Razani, T. P. Combs, X. B. Wang, et al. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities[J]. Journal of Biological Chemistry,2002,277(10): 8635-8647
    [79]A. W. Cohen, B. Razani, W. Schubert, et al. Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation[J]. Diabetes,2004,53(5): 1261-1270
    [80]S. Le Lay, E. Hajduch, M. R. Lindsay, et al. Cholesterol-induced caveolin targeting to lipid droplets in adipocytes:A role for caveolar endocytosis[J]. Traffic,2006,7(5):549-561
    [81]M. A. Fernandez, C. Albor, M. Ingelmo-Torres, et al. Caveolin-1 is essential for liver regeneration[J]. Science,2006,313(5793):1628-1632
    [82]R. Mayoral, A. Fernandez-Martinez, R. Roy, et al. Dispensability and dynamics of caveolin-1 during liver regeneration and in isolated hepatic cells[J]. Hepatology,2007,46(3):813-822
    [83]T. Fujimoto, H. Kogo, K. Ishiguro, et al. Caveolin-2 is targeted to lipid droplets, a new "membrane domain" in the cell[J]. J Cell Biol,2001,152(5): 1079-85
    [84]A. Pol, R. Luetterforst, M. Lindsay, et al. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance[J]. Journal of Cell Biology,2001,152(5):1057-1070
    [85]W. G. Yu, P. T. Bozza, D. M. Tzizik, et al. Co-compartmentalization of MAP kinases and cytosolic phospholipase A(2) at cytoplasmic arachidonate-rich lipid bodies[J]. American Journal of Pathology,1998,152(3): 759-769
    [86]M. Zerial and H. McBride. Rab proteins as membrane organizers (vol 2, pg 107,2001)[J]. Nature Reviews Molecular Cell Biology,2001,2(3):216-216
    [87]S. Cermelli, Y. Guo, S. P. Gross, et al. The lipid-droplet proteome reveals that droplets are a protein-storage depot[J]. Current Biology,2006, 16(18):1783-1795-
    [88]M. Beller, D. Riedel, L. Jansch, et al. Characterization of the Drosophila lipid droplet subproteome[J]. Molecular & Cellular Proteomics, 2006,5(6):1082-1094
    [89]Y. Fujimoto, H. Itabe, J. Sakai, et al. Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7[J]. Biochimica Et Biophysica Acta-Molecular Cell Research,2004, 1644(1):47-59
    [90]S. Murphy, S. Martin and R. G. Parton. Lipid droplet-organelle interactions; sharing the fats[J]. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids,2009,1791(6):441-447
    [91]S. Martin, K. Driessen, S. J. Nixon, et al. Regulated localization of rab18 to lipid droplets-Effects of lipolytic stimulation and inhibition of lipid droplet catabolism[J]. Journal of Biological Chemistry,2005,280(51): 42325-42335
    [92]P. S. Liu, R. Bartz, J. K. Zehmer, et al. Rab-regulated interaction of early endosomes with lipid droplets[J]. Biochimica Et Biophysica Acta-Molecular Cell Research,2007,1773(6):784-793
    [93]T. Sollner, M. K. Bennett, S. W. Whiteheart, et al. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion[J]. Cell,1993,75(3): 409-18
    [94]M. J. Lewis, J. C. Rayner and H. R. Pelham. A novel SNARE complex implicated in vesicle fusion with the endoplasmic reticulum[J]. EMBO J,1997, 16(11):3017-24
    [95]J. A. McNew, F. Parlati, R. Fukuda, et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins[J]. Nature,2000, 407(6801):153-159
    [96]R. Zechner, J. G. Strauss, G. Haemmerle, et al. Lipolysis:pathway under construction[J]. Current Opinion in Lipidology,2005,16(3):333-340
    [97]P. T. Bozza, R. C. N. Melo and C. Bandeira-Melo. Leukocyte lipid bodies regulation and function:Contribution to allergy and host defense[J]. Pharmacology & Therapeutics,2007,113(1):30-49
    [98]Y. Imanishi, V. Gerke and K. Palczewski. Retinosomes:new insights into intracellular managing of hydrophobic substances in lipid bodies[J]. Journal of Cell Biology,2004,166(4):447-453
    [99]M. A. Welte. Proteins under new management:lipid droplets deliver[J]. Trends in Cell Biology,2007,17(8):363-369
    [100]T. Yamaguchi, N. Omatsu, S. Matsushita, et al. CGI-58 interacts with perilipin and is localized to lipid droplets-Possible involvement of CGI-58 mislocalization in Chanarin-Dorfman syndrome[J]. Journal of Biological Chemistry,2004,279(29):30490-30497
    [101]S. Y. Cho, E. S. Shin, P. J. Park, et al. Identification of mouse Prp19p as a lipid droplet-associated protein and its possible involvement in the biogenesis of lipid droplets[J]. Journal of Biological Chemistry,2007,282(4): 2456-2465
    [102]N. B. Cole, D. D. Murphy, T. Grider, et al. Lipid droplet binding and oligomerization properties of the Parkinson's disease protein alpha-synuclein[J]. Journal of Biological Chemistry,2002,277(8):6344-6352
    [103]H. F. Jiang, J. H. He, S. S. Pu, et al. Heat shock protein 70 is translocated to lipid droplets in rat adipocytes upon heat stimulation[J]. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids,2007, 1771(1):66-74
    [104]R. Leber, K. Landl, E. Zinser, et al. Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles[J]. Molecular Biology of the Cell,1998,9(2): 375-386
    [105]V. Litvak, Y. D. Shaul, M. Shulewitz, et al. Targeting of Nir2 to lipid droplets is regulated by a specific threonine residue within its Pl-transfer domain[J]. Current Biology,2002,12(17):1513-1518
    [106]Y. Ohsaki, J. Cheng, A. Fujita, et al. Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B[J]. Molecular Biology of the Cell,2006,17(6):2674-2683
    [107]E. Umlauf, E. Csaszar, M. Moertelmaier, et al. Association of stomatin with lipid bodies[J]. Journal of Biological Chemistry,2004,279(22): 23699-23709
    [108]A. Gunjan, J. Paik and A. Verreault. Regulation of histone synthesis and nucleosome assembly[J]. Biochimie,2005,87(7):625-635
    [109]M. Komatsu, S. Waguri, T. Ueno, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice[J]. Journal of Cell Biology,2005,169(3):425-434
    [110]M. M. Dix, G. M. Simon and B. F. Cravatt. Global mapping of the topography and magnitude of proteolytic events in apoptosis[J]. Cell,2008, 134(4):679-691
    [111]R. G. Sturmey, P. J. O'Toole and H. J. Leese. Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte[J]. Reproduction,2006,132(6):829-37
    [112]P. S. Liu, Y. S. Ying, Y. M. Zhao, et al. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic[J]. Journal of Biological Chemistry,2004,279(5):3787-3792
    [113]R. Bartzt, J. K. Zehmer, M. F. Zhu, et al. Dynamic activity of lipid droplets:Protein phosphorylation and GTP-Mediated protein translocation[J]. Journal of Proteome Research,2007,6(8):3256-3265
    [114]L. H. Choe, K. Aggarwal, Z. Franck, et al. A comparison of the consistency of proteome quantitation using two-dimensional electrophoresis and shotgun isobaric tagging in Escherichia coli cells[J]. Electrophoresis,2005, 26(12):2437-49
    [115]W. W. Wu, G. Wang, S. J. Baek, et al. Comparative study of three proteomic quantitative methods, DIGE, clCAT, and iTRAQ, using 2D gel-or LC-MALDI TOF/TOF[J]. J Proteome Res,2006,5(3):651-8
    [116]C. F. Kurat, H. Wolinski, J. Petschnigg, et al. Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase Tgl4 in yeast links lipolysis to cell-cycle progression[J]. Mol Cell,2009,33(1):53-63
    [117]F. R. Maxfield and I. Tabas. Role of cholesterol and lipid organization in disease[J]. Nature,2005,438(7068):612-21
    [118]S. Ozeki, J. Cheng, K. Tauchi-Sato, et al. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane[J]. J Cell Sci,2005,118(Pt 12):2601-11
    [119]H. J. van Manen, Y. M. Kraan, D. Roos, et al. Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(29):10159-10164
    [120]K. S. Carroll, J. Hanna, I. Simon, et al. Role of Rab9 GTPase in facilitating receptor recruitment by TIP47[J]. Science,2001,292(5520):1373-6
    [121]M. Kauppi, A. Simonsen, B. Bremnes, et al. The small GTPase Rab22 interacts with EEA1 and controls endosomal membrane trafficking[J]. J Cell Sci,2002,115(Pt 5):899-911
    [122]R. Weigert, A. C. Yeung, J. Li, et al. Rab22a regulates the recycling of membrane proteins internalized independently of clathrin[J]. Mol Biol Cell, 2004,15(8):3758-70
    [123]A. K. Haas, S. Yoshimura, D. J. Stephens, et al. Analysis of GTPase-activating proteins:Rab1 and Rab43 are key Rabs required to maintain a functional Golgi complex in human cells[J]. J Cell Sci,2007,120(Pt 17):2997-3010
    [124]S. Y. Dejgaard, A. Murshid, A. Erman, et al. Rab18 and Rab43 have key roles in ER-Golgi trafficking[J]. J Cell Sci,2008,121 (Pt 16):2768-81
    [125]V. Goossens, J. Grooten, K. De Vos, et al. Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity[J]. Proc Natl Acad Sci U S A,1995,92(18): 8115-9
    [126]F. Y. Lee, Y. Li, H. Zhu, et al. Tumor necrosis factor increases mitochondrial oxidant production and induces expression of uncoupling protein-2 in the regenerating mice [correction of rat] liver[J]. Hepatology,1999, 29(3):677-87
    [127]S. Mahieu, N. Millen, M. Gonzalez, et al. Alterations of the renal function and oxidative stress in renal tissue from rats chronically treated with aluminium during the initial phase of hepatic regeneration[J]. J Inorg Biochem, 2005,99(9):1858-64
    [128]S. P. Anderson, L. Yoon, E. B. Richard, et al. Delayed liver regeneration in peroxisome proliferator-activated receptor-alpha-null mice[J]. Hepatology,2002,36(3):544-54
    [129]P. Vihko, A. Herrala, P. Harkonen, et al. Control of cell proliferation by steroids:The role of 17HSDs[J]. Molecular and Cellular Endocrinology, 2006,248(1-2):141-148
    [130]K. Motojima.17beta-hydroxysteroid dehydrogenase type 11 is a major peroxisome proliferator-activated receptor alpha-regulated gene in mouse intestine[J]. Eur J Biochem,2004,271(20):4141-6
    [131]Y. Yokoi, Y. Horiguchi, M. Araki, et al. Regulated expression by PPARalpha and unique localization of 17beta-hydroxysteroid dehydrogenase type 11 protein in mouse intestine and liver[J]. FEBS J,2007,274(18):4837-47
    [132]Y. Horiguchi, M. Araki and K. Motojima. Identification and characterization of the ER/lipid droplet-targeting sequence in 17beta-hydroxysteroid dehydrogenase type 11[J]. Arch Biochem Biophys, 2008,479(2):121-30
    [133]Y. Horiguchi, M. Araki and K. Motojima.17beta-Hydroxysteroid dehydrogenase type 13 is a liver-specific lipid droplet-associated protein[J]. Biochem Biophys Res Commun,2008,370(2):235-8
    [134]A. I. Su, T. Wiltshire, S. Batalov, et al. A gene atlas of the mouse and human protein-encoding transcriptomes[J]. Proc Natl Acad Sci U S A, 2004,101(16):6062-7
    [135]C. Wolfrum, C. M. Borrmann, T. Borchers, et al. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha-and gamma-mediated gene expression via liver fatty acid binding protein:a signaling path to the nucleus[J]. Proc Natl Acad Sci U S A,2001,98(5):2323-8
    [136]H. Huang, O. Starodub, A. McIntosh, et al. Liver fatty acid-binding protein targets fatty acids to the nucleus. Real time confocal and multiphoton fluorescence imaging in living cells[J]. J Biol Chem,2002,277(32):29139-51
    [137]H. Huang, O. Starodub, A. McIntosh, et al. Liver fatty acid-binding protein colocalizes with peroxisome proliferator activated receptor alpha and enhances ligand distribution to nuclei of living cells[J]. Biochemistry,2004, 43(9):2484-2500
    [138]C. Wolfrum. Cytoplasmic fatty acid binding protein sensing fatty acids for peroxisome proliferator activated receptor activation[J]. Cell Mol Life Sci,2007,64(19-20):2465-76
    [139]A. L. McIntosh, B. P. Atshaves, H. A. Hostetler, et al. Liver type fatty acid binding protein (L-FABP) gene ablation reduces nuclear ligand distribution and peroxisome proliferator-activated receptor-alpha activity in cultured primary hepatocytes[J]. Archives of Biochemistry and Biophysics, 2009,485(2):160-173
    [140]S. Sorof. Modulation of mitogenesis by liver fatty acid binding protein[J]. Cancer Metastasis Rev,1994,13(3-4):317-36
    [141]G. Wang, Q. M. Chen, G. Y. Minuk, et al. Enhanced expression of cytosolic fatty acid binding protein and fatty acid uptake during liver regeneration in rats[J]. Mol Cell Biochem,2004,262(1-2):41-9
    [142]P. Liu, Y. Ying, Y. Zhao, et al. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic[J]. J Biol Chem,2004,279(5):3787-92
    [143]R. A. Coleman, T. M. Lewin, C. G. Van Horn, et al. Do long-chain acyl-CoA synthetases regulate fatty acid entry into synthetic versus degradative pathways?[J]. J Nutr,2002,132(8):2123-6
    [144]Y. Fujimoto, J. Onoduka, K. J. Homma, et al. Long-chain fatty acids induce lipid droplet formation in a cultured human hepatocyte in a manner dependent of Acyl-CoA synthetase[J]. Biol Pharm Bull,2006,29(11):2174-80
    [145]L. O. Li, J. M. Ellis, H. A. Paich, et al. Liver-specific loss of long chain acyl-CoA synthetase-1 decreases triacylglycerol synthesis and beta-oxidation and alters phospholipid fatty acid composition[J]. J Biol Chem, 2009,284(41):27816-26
    [146]S. Lobo, B. M. Wiczer and D. A. Bernlohr. Functional analysis of long-chain acyl-CoA synthetase 1 in 3T3-L1 adipocytes[J]. J Biol Chem,2009, 284(27):18347-56
    [147]A. Konig, R. Happle, D. Bornholdt, et al. Mutations in the NSDHL gene, encoding a 3beta-hydroxysteroid dehydrogenase, cause CHILD syndrome[J]. Am J Med Genet,2000,90(4):339-46
    [148]G. P. Avgerinou, A. P. Asvesti, A. D. Katsambas, et al. CHILD syndrome:the NSDHL gene and its role in CHILD syndrome, a rare hereditary disorder[J]. J Eur Acad Dermatol Venereol,2009,
    [149]H. Caldas and G. E. Herman. NSDHL, an enzyme involved in cholesterol biosynthesis, traffics through the Golgi and accumulates on ER membranes and on the surface of lipid droplets[J]. Hum Mol Genet,2003, 12(22):2981-91
    [150]M. Ohashi, N. Mizushima, Y. Kabeya, et al. Localization of mammalian NAD(P)H steroid dehydrogenase-like protein on lipid droplets[J]. J Biol Chem,2003,278(38):36819-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700