构巢曲霉胞质分裂SIN途径反向调节基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞分裂(cell division)过程是真菌(fungi)进行无性繁殖的重要方式,对于真菌的形态建成是必需的。细胞分裂一旦失调将会导致真菌的生长受损甚至死亡。研究这个过程的发生机制,对于控制医学和农业上有害真菌的增殖或促进工业上有益真菌的生长都具有非常重要的意义。
     真菌的胞质分裂(cytokinesis)的发生是由母细胞通过收缩肌动蛋白环从而分裂其细胞质,最终产生两个子细胞的过程。胞质分裂是有丝分裂细胞核分裂之后的最后也是最关键的一步。无数的研究表明,该过程需要一个非常保守的信号网络的激活,这个信号网络在芽殖酵母中称为有丝分裂退出网络(Mitotic Exit Network, MEN),在裂殖酵母中称为隔膜形成网络(Septum Initiation Network SIN)。虽然不同的真菌会有不同的机制来完成胞质分裂的过程,但在哺乳动物及构巢曲霉(Aspergillus nidulans)等真菌中的研究已有越来越多证据表明这个网具有一定的保守性。‘
     与单细胞的酵母不同,丝状真菌构巢曲霉的菌丝是由隔膜所间隔的多核细胞。在构巢曲霉的孢子萌发过程中,分生孢子首先经过多轮的核分裂生成8到16个核,但是直到细胞达到一定的体积后才会产生隔膜,第一个隔膜通常在孢子头和芽管的分隔处生成。因此,菌丝中的胞质分裂和有丝分裂不是同步进行的。
     在构巢曲霉中SIN途径的SEPH蛋白是由温度敏感型菌株筛选实验发现的,是裂殖酵母SIN信号途径中的丝-苏氨酸激酶Cdc7p的同源蛋白,它是胞质分裂早期所必须的组分。但是目前关于SEPH的调节元件是否存在,以及它们是正向调控还是反向调控SEPH知道的很少。为了对这一机制进行研究,前期实验中我们通过紫外诱变获得了116株能够恢复sepH缺陷的突变菌。通过杂交分离、回交验证、互补实验(complementation test)并测序得到了反向调节基因(suppressor)磷酸核糖焦磷酸合成酶Anprs1(AN6711.4, Phosphoribosyl pyrophosphate, PRPP synthetase)。
     本课题首先对该基因单独设计引物扩增并连接入质粒Prg3-AMA1-Not I,再次进行互补实验转入菌株Sinl10仍旧得到了和前期相同的结果。这说明Sin110的病态表型确实是由Anprs1基因造成的。进一步通过反向遗传学验证Anprs1基因是sepH的反向调节子,我们构建了乙醇启动子控制的GFP标记的Anprs1同源整合菌株、透射电镜观察、Anprs1完全敲除和C端部分敲除等验证了Anprs1的功能,又通过PRS酶活测定、qRT-PCR技术、酵母双杂交技术验证了Anprs1,2,3家族蛋白的功能。结果显示AnPRS1蛋白弥散定位在胞质中,在正在形成的隔膜上有微弱的聚集信号,推测其在胞质近隔膜的位置参与隔膜形成。抑制表达情况下和Sin110菌株表型一致,电镜结果显示Anprs1基因受到抑制时隔膜呈弯曲状。Anprs1完全敲除菌表型和野生型一致,但是C端敲除菌表型和Sin110菌株一致。AnPRS酶活测定显示Sin110菌株中酶活最低,显示了正常的胞质分裂和PRS酶活相关。但Anprs1,2,3基因测序都没有突变,我们推测酶活的降低可能和这三个基因的转录有关,Sin110菌株的qRT-PCR的结果显示Anprs1,Anprs2和Anprs3都明显表达下调,把这三个基因全部克隆入载体Prg3-AMA1-Not Ⅰ,共转入Sin110菌株,结果其病态表型被完全弥补。进一步的酵母双杂交实验表明构巢曲霉中存在AnPRS家族形成三聚体发挥功能。
     另外根据酵母中对蛋白磷酸酶2A(protein phosphatases2A, PP2A)调节亚基能够反向调节SIN的发现及其和AnPRS家族都能转移磷酸基团的功能。我们找到并研究了构巢曲霉中PP2A的两个调节亚基parA和pabA,虽然不能反向调节sepH,但对于构巢曲霉的形态建成起重要作用。
     本课题对于构巢曲霉胞质分裂的研究,将为我们在实际应用中抑制或促进真菌的无性繁殖提供重要的理论基础,对医学上控制肿瘤治疗提供强有力的理论依据。
Cell divison is the main way of vegetative propagation for fungi and failure of cell division may be lethal for both, mother and daughter cells. Study on mechanism of this process has a very important significance for the control of medical and agricultural harmful fungi proliferation or promote industry beneficial fungi growth.
     Cytokinesis is the process by which a cell splits its cytoplasm, accomplished by the contraction of a contractile actin ring, to produce two daughter cells. Accordingly, cytokinesis is the final step in cell division after the nuclear division of mitosis. Numerous studies have identified that mitotic exit requires the activation of the conserved signalling network, termed the mitotic exit network (MEN), in budding yeast and the septation initiation network (SIN) in fission yeast. Although organisms of different kingdoms have developed unique mechanisms to execute cytokinesis, signals that trigger the onset of cytokinesis are evolutionarily conserved. Unlike yeast, the filamentous fungus Aspergillus nidulans contains a mycelium of multinucleate cells that are partitioned by septa. During the germination in A. nidulans, the conidiospores undergo multiple rounds of nuclear division to produce eight or16nuclei in germlings, but they do not undergo septation until the cell reaches an appropriate size/volume, and then forms the first septum near the neck between spore and germ tube. Therefore, as a whole, inter-compartment development and mitosis in the mycelium becomes asynchronous.
     The serine/threonine protein kinase SEPH in A. nidulans is a Cdc7p orthologue from fission yeast which was first cloned in a screen for temperature-sensitive cytokinesis mutants. It has been identified that SEPH plays a central part in the initiation of septation. However, little is known about how the SEPH kinase cascade is regulated by other components, or whether there exist any of the negative regulators that act antagonistically to others in the SIN. To gain insight into the regulatory mechanisms that underlie septation,116mutants that suppressed the defects of sepH in A. nidulans were isolated by UV mutation in previous study. By cross, backcross, complementation test and sequencing we identified a gene Anprs1(AN6711.4).
     In this thesis, we first coloned Anprsl using autonomous plasmid replication vector prg3-AMAl-Not I and transformed to strain Sin110. Results showed the same phenotype with previous study. This means phenotype of Sin110was caused by Anprsl. To further confirm how AnPRS1functions, we used a conditional strain in which the Anprsl gene was under the control of the inducible/repressible alcA promoter, TEM, deletion and C-deletion strains creation, and by qRT-PCR, AnPRS activity assay and Y2H to test AnPRS family function during cytokinesis in Aspergillus nidulans. GFP-AnPRS1appeared at the predicted septation site possibly prior to a detectable septum formation. AnPRS1may function in the cytosol and septation sites. When depressed, it displayed a number of phenotypic similarities to that of the Sinl10and transmission electron microscopy showed that, when the repression of AnPRS1showed the aberrant formation of delocalized septa. Anprsl full ORF deletion mutants display normal timing of cytokinesis while a C-terminal truncated displayed the same phenotype to Sinl10. Biochemical assays to test PRPP synthetase activity were performed and results indicated that measurable PRPP synthetase activities in extracts from Sinl10caused a mostly severe defect. Accordingly, normal cytokinesis seems to depend on a normal level of PRPP synthetase activity. While no mutation was found in Anprs genes in Sinl10, we wondered whether the decreased AnPRS activity in Sinl10was related to the transcription of the Anprs family. As expected, by real-time qPCR, three members of the Anprs family in A. nidulans were dramatically downregulated in Sinl10. In response to these results, we cloned ORFs of Anprsl, Anprs2and Anprs3into the AMA1vector to make the plasmids pAMA1-Anprs1, pAMA1-Anprs2and pAMAl-Anprs3respectively. The defects of Sinl10in growth and septation can be dramatically rescued.
     Lastly, based on the role of PP2A (protein phosphatases2A) negatively regulation SIN in yeast and transferring pi group, we searched its two regulatory subunits, par A and pabA. Though they can't surppress sepH mutation, they are essential for morphogenesis of Aspergillus nidulans.
     This study will provide an important theoretic foundation for us in practice promote or inhibit fungal asexual reproduction, the medicine control and provide a strong theoretical basis for treatment of tumor.
引文
1. Barr, F. A. and U. Gruneberg, Cytokinesis:placing and making the final cut. Cell,2007.131(5):p.847-60.
    2. Sagona, A.P. and H. Stenmark, Cytokinesis and cancer. FEBS Lett,2010. 584(12):p.2652-61.
    3. Baluska, F., D. Menzel, and P.W. Barlow, Cytokinesis in plant and animal cells: endosomes 'shut the door'. Dev Biol,2006.294(1):p.1-10.
    4. Bedhomme, M., et al., Plants, MEN and SIN. Plant Physiol Biochem,2008. 46(1):p.1-10.
    5. Kim, J.M., et al., Isolation of mutations that bypass the requirement of the septation initiation network for septum formation and conidiation in Aspergillus nidulans. Genetics,2006.173(2):p.685-96.
    6. McCollum, D. and K.L. Gould, Timing is everything:regulation of mitotic exit and cytokinesis by the MEN and SIN (vol 11, pg 89,2001). Trends in Cell Biology,2001.11(4):p.166-166.
    7. Cao, L.G. and Y.L. Wang, Signals from the spindle midzone are required for the stimulation of cytokinesis in cultured epithelial cells. Mol Biol Cell,1996. 7(2):p.225-32.
    8. Eckley, D.M., et al., Chromosomal proteins and cytokinesis:patterns of cleavage furrow formation and inner centromere protein positioning in mitotic heterokaryons and mid-anaphase cells. J Cell Biol,1997.136(6):p.1169-83.
    9. Bi, E., et al., Involvement of an actomyosin contractile ring in Saccharomyces cerevisiae cytokinesis. J Cell Biol,1998.142(5):p.1301-12.
    10. Teepe, A.G., et al., The protein kinase C orthologue PkcA plays a role in cell wall integrity and polarized growth in Aspergillus nidulans. Fungal Genetics and Biology,2007.44(6):p.554-562.
    11. Palevitz, B.A., Actin in the preprophase band ofAllium cepa. J Cell Biol,1987. 104(6):p.1515-9.
    12. Simanis, V., Events at the end of mitosis in the budding and fission yeasts. Journal of Cell Science,2003.116(21):p.4263-4275.
    13. Walther, A. and J. Wendland, Septation and cytokinesis in fungi. Fungal Genetics and Biology,2003.40(3):p.187-196.
    14. Surana, U., F.M. Yeong, and H.H. Lim, MEN, destruction and separation: mechanistic links between mitotic exit and cytokinesis in budding yeast (vol 24, pg 659,2002). Bioessays,2002.24(9):p.869-869.
    15. Brace, J., J. Hsu, and E.L. Weiss, Mitotic exit control of the Saccharomyces cerevisiae Ndr/LATS kinase Cbkl regulates daughter cell separation after cytokinesis. Mol Cell Biol,2011.31(4):p.721-35.
    16. Krapp, A., M.P. Gulli, and V. Simanis, SIN and the art of splitting the fission yeast cell. Curr Biol,2004.14(17):p. R722-30.
    17. Meitinger, F., et al., Phosphorylation-dependent regulation of the F-BAR protein Hofl during cytokinesis. Genes Dev,2011.25(8):p.875-88.
    18. Byers, B. and L. Goetsch, A highly ordered ring of membrane-associated filaments in budding yeast. J Cell Biol,1976.69(3):p.717-21.
    19. Neufeld, T.P. and G.M. Rubin, The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins. Cell,1994.77(3):p.371-9.
    20. Longtine, M.S., et al., The septins:roles in cytokinesis and other processes. Curr Opin Cell Biol,1996.8(1):p.106-19.
    21. Momany, M., et al., Characterization of the Aspergillus nidulans septin (asp) gene family. Genetics,2001.157(3):p.969-77.
    22. Casamayor, A. and M. Snyder, Molecular dissection of a yeast septin:distinct domains are required for septin interaction, localization, and function. Mol Cell Biol,2003.23(8):p.2762-77.
    23. Versele, M. and J. Thorner, Septin collar formation in budding yeast requires GTP binding and direct phosphorylation by the PAK, Cla4. J Cell Biol,2004. 164(5):p.701-15.
    24. Versele, M., et al., Protein-protein interactions governing septin heteropentamer assembly and septin filament organization in Saccharomyces cerevisiae. Mol Biol Cell,2004.15(10):p.4568-83.
    25. Gladfelter, A.S., et al., Septin ring assembly involves cycles of GTP loading and hydrolysis by Cdc42p. J Cell Biol,2002.156(2):p.315-26.
    26. Kadota, J., et al., Septin ring assembly requires concerted action of polarisome components, a PAK kinase Cla4p, and the actin cytoskeleton in Saccharomyces cerevisiae. Mol Biol Cell,2004.15(12):p.5329-45.
    27. Clutterbuck, A.J., Mutants of Aspergillus nidulans deficient in nuclear migration during hyphal growth and conidiation. Microbiology,1994.140 (Pt 5):p.1169-74.
    28. Suelmann, R., N. Sievers, and R. Fischer, Nuclear traffic in fungal hyphae:in vivo study of nuclear migration and positioning in Aspergillus nidulans. Mol Microbiol,1997.25(4):p.757-69.
    29. Veith, D., et al., Role of the spindle-pole-body protein ApsB and the cortex protein ApsA in microtubule organization and nuclear migration in Aspergillus nidulans. Journal of Cell Science,2005.118(16):p.3705-3716.
    30. Momany, M. and J.E. Hamer, The Aspergillus nidulans septin encoding gene, aspB, is essential for growth. Fungal Genetics and Biology,1997.21(1):p. 92-100.
    31. Wendland, J. and P. Philippsen, Cell polarity and hyphal morphogenesis are controlled by multiple rho-protein modules in the filamentous ascomycete Ashbya gossypii. Genetics,2001.157(2):p.601-10.
    32. Harris, S.D., et al., The Aspergillus nidulans sepA gene encodes an FH1/2 protein involved in cytokinesis and the maintenance of cellular polarity. EMBO J,1997.16(12):p.3474-83.
    33. Sharpless, K.E. and S.D. Harris, Functional characterization and localization of the Aspergillus nidulans formin SEPA. Molecular Biology of the Cell,2002. 13(2):p.469-479.
    34. Si, H., et al., Regulation of septum formation by the Bud3-Rho4 GTPase module in Aspergillus nidulans. Genetics,2010.185(1):p.165-76.
    35. Schmidt, M., et al., In budding yeast, contraction of the actomyosin ring and formation of the primary septum at cytokinesis depend on each other. J Cell Sci,2002.115(Pt 2):p.293-302.
    36. Roncero, C., The genetic complexity of chitin synthesis in fungi. Curr Genet, 2002.41(6):p.367-78.
    37. Ichinomiya, M., et al., Class I and class II chitin synthases are involved in septum formation in the filamentous fungus Aspergillus nidulans. Eukaryot Cell,2005.4(6):p.1125-36.
    38. Takeshita, N., et al., Aspergillus nidulans class V and VI chitin synthases CsmA and CsmB, each with a myosin motor-like domain, perform compensatory functions that are essential for hyphal tip growth. Mol Microbiol,2006.59(5):p.1380-94.
    39. Motoyama, T., et al., Isolation of a chitin synthase gene (chsC) of Aspergillus nidulans. Biosci Biotechnol Biochem,1994.58(12):p.2254-7.
    40. Motoyama, T., et al., The Aspergillus nidulans genes chsA and chsD encode chitin synthases which have redundant functions in conidia formation [corrected and republished article originally appeared in Mol Gen Genet 1996 Jun; 251(4):442-50]. Mol Gen Genet,1997.253(4):p.520-8.
    41. Fujiwara, M., et al., A novel fungal gene encoding chitin synthase with a myosin motor-like domain. Biochem Biophys Res Commun,1997.236(1):p. 75-8.
    42. van Peer, A.F., et al., The septal pore cap is an organelle that functions in vegetative growth and mushroom formation of the wood-rot fungus Schizophyllum commune. Environmental Microbiology,2010.12(4):p. 833-844.
    43. van Driel, K.G.A., et al., Laser microdissection of fungal septa as visualised by scanning electron microscopy. Fungal Genetics and Biology,2007.44(6):p. 466-473.
    44. Maruyama, J., C.S. Escano, and K. Kitamoto, AoSO protein accumulates at the septal pore in response to various stresses in the filamentous fungus Aspergillus oryzae. Biochem Biophys Res Commun,2010.391(1):p. 868-873.
    45. Chant, J., et al., Yeast BUD5, encoding a putative GDP-GTP exchange factor, is necessary for bud site selection and interacts with bud formation gene BEM1. Cell,1991.65(7):p.1213-24.
    46. Roemer, T., et al., Selection of axial growth sites in yeast requires Axl2p, a novel plasma membrane glycoprotein. Genes Dev,1996.10(7):p.777-93.
    47. Kang, P.J., B. Lee, and H.O. Park, Specific residues of the GDP/GTP exchange factor Bud5p are involved in establishment of the cell type-specific budding pattern in yeast. J Biol Chem,2004.279(27):p.27980-5.
    48. Xu, S., et al., Phosphorylation and spindle pole body localization of the Cdcl5p mitotic regulatory protein kinase in budding yeast. Curr Biol,2000. 10(6):p.329-32.
    49. Menssen, R., A. Neutzner, and W. Seufert, Asymmetric spindle pole localization of yeast Cdcl5 kinase links mitotic exit and cytokinesis. Curr Biol, 2001.11(5):p.345-50.
    50. de Bettignies, G. and L.H. Johnston, The mitotic exit network. Curr Biol,2003. 13(8):p. R301.
    51. Bathe, M. and F. Chang, Cytokinesis and the contractile ring in fission yeast: towards a systems-level understanding. Trends Microbiol,2010.18(1):p. 38-45.
    52. Chang, F., A. Woollard, and P. Nurse, Isolation and characterization of fission yeast mutants defective in the assembly and placement of the contractile actin ring. J Cell Sci,1996.109 (Pt 1):p.131-42.
    53. Chang, F., Studies in fission yeast on mechanisms of cell division site placement. Cell Struct Funct,2001.26(6):p.539-44.
    54. Sohrmann, M., et al., Asymmetric segregation on spindle poles of the Schizosaccharomyces pombe septum-inducing protein kinase Cdc7p. Genes Dev,1998.12(1):p.84-94.
    55. Ohkura, H., I.M. Hagan, and D.M. Glover, The conserved Schizosaccharomyces pombe kinase plol, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G1 and G2 cells. Genes Dev,1995.9(9):p.1059-73.
    56. Bardin, A J. and A. Amon, Men and sin:what's the difference? Nat Rev Mol Cell Biol,2001.2(11):p.815-26.
    57. Hou, M.C., J. Salek, and D. McCollum, Moblp interacts with the Sid2p kinase and is required for cytokinesis in fission yeast. Curr Biol,2000.10(10):p. 619-22.
    58. Hou, M.C., D.A. Guertin, and D. McCollum, Initiation of cytokinesis is controlled through multiple modes of regulation of the Sid2p-Moblp kinase complex. Mol Cell Biol,2004.24(8):p.3262-3276.
    59. Wolfe, B.A. and K.L. Gould, Split decisions:coordinating cytokinesis in yeast. Trends in Cell Biology,2005.15(1):p.10-18.
    60. Le Goff, X., S. Utzig, and V. Simanis, Controlling septation in fission yeast: finding the middle, and timing it right. Curr Genet,1999.35(6):p.571-84.
    61. Krapp, A. and V. Simanis, An overview of the fission yeast septation initiation network (SIN). Biochemical Society Transactions,2008.36:p.411-415.
    62. Lattmann, E., A. Krapp, and V. Simanis, Cytokinesis:Closure resets your SIN. Curr Biol,2009.19(22):p. R1040-2.
    63. Furge, K.A., et al., Regions of Byr4, a regulator of septation in fission yeast, that bind Spgl or Cdc16 and form a two-component GTPase-activating protein with Cdc16. J Biol Chem,1999.274(16):p.11339-43.
    64. Cerutti, L. and V. Simanis, Controlling the end of the cell cycle. Curr Opin Genet Dev,2000.10(1):p.65-9.
    65. Jimenez, J. and J. Oballe, Ethanol-hypersensitive and ethanol-dependent cdc-mutants in Schizosaccharomyces pombe. Mol Gen Genet,1994.245(1):p. 86-95.
    66. Daga, R.R., et al., Etdlp is a novel protein that links the SIN cascade with cytokinesis. EMBO J,2005.24(13):p.2436-46.
    67. Garcia-Cortes, J.C. and D. McCollum, Proper timing of cytokinesis is regulated by Schizosaccharomyces pombe Etdl. J Cell Biol,2009.186(5):p. 739-53.
    68. Lahoz, A., et al., Antagonistic roles of PP2A-Pabl and Etdl in the control of cytokinesis in fission yeast. Genetics,2010.186(4):p.1261-70.
    69. Le Goff, X., et al., The protein phosphatase 2A B'-regulatory subunit parlp is implicated in regulation of the S. pombe septation initiation network. FEBS Lett,2001.508(1):p.136-42.
    70. Jiang, W. and R.L. Hallberg, Isolation and characterization of parl(+) and par2(+):two Schizosaccharomyces pombe genes encoding B'subunits of protein phosphatase 2A. Genetics,2000.154(3):p.1025-38.
    71. Sawin, K.E., Cytokinesis:Sid signals septation. Current Biology,2000.10(15): p. R547-R550.
    72. Takahashi, T.S. and J.C. Walter, Cdc7-Drfl is a developmentally regulated protein kinase required for the initiation of vertebrate DNA replication. Genes & Development,2005.19(19):p.2295-2300.
    73. Wendland, J., Analysis of the landmark protein Bud3 of Ashbya gossypii reveals a novel role in septum construction. EMBO Rep,2003.4(2):p.200-4.
    74. Wendland, J. and P. Philippsen, Determination of cell polarity in germinated spores and hyphal tips of the filamentous ascomycete Ashbya gossypii requires a rhoGAP homolog. Journal of Cell Science,2000.113 (Pt 9):p.1611-21.
    75. Walther, A. and J. Wendland, Septation and cytokinesis in fungi. Fungal Genetics and Biology,2003.40(3):p.187-96.
    76. Harris, S.D., Septum formation in Aspergillus nidulans. Curr Opin Microbiol, 2001.4(6):p.736-9.
    77. Bruno, K.S., et al., SEPH, a Cdc7p orthologue from Aspergillus nidulans, functions upstream of actin ring formation during cytokinesis. Mol Microbiol, 2001.42(1):p.3-12.
    78. Wolkow, T.D., S.D. Harris, and J.E. Hamer, Cytokinesis in Aspergillus nidulans is controlled by cell size, nuclear positioning and mitosis. Journal of Cell Science,1996.109 (Pt 8):p.2179-88.
    79. Harris, S.D. and P.R. Kraus, Regulation of septum formation in Aspergillus nidulans by a DNA damage checkpoint pathway. Genetics,1998.148(3):p. 1055-67.
    80. Kraus, P.R. and S.D. Harris, The Aspergillus nidulans snt genes are required for the regulation of septum formation and cell cycle checkpoints. Genetics, 2001.159(2):p.557-69.
    81. Momany, M. and J.E. Hamer, Relationship of actin, microtubules, and crosswall synthesis during septation in Aspergillus nidulans. Cell Motil Cytoskeleton,1997.38(4):p.373-84.
    82. Kosmidou, E., P. Lunness, and J.H. Doonan, A type 2A protein phosphatase gene from Aspergillus nidulans is involved in hyphal morphogenesis. Curr Genet,2001.39(1):p.25-34.
    83. Harris, S.D., J.L. Morrell, and J.E. Hamer, Identification and characterization of Aspergillus nidulans mutants defective in cytokinesis. Genetics,1994. 136(2):p.517-32.
    84. Westfall, P.J. and M. Momany, Aspergillus nidulans septin AspB plays pre-and postmitotic roles in septum, branch, and conidiophore development. Molecular Biology of the Cell,2002.13(1):p.110-118.
    85. Kim, J.M., et al., Timely septation requires SNAD-dependent spindle pole body localization of the septation initiation network components in the filamentous fungus Aspergillus nidulans. Mol Biol Cell,2009.20(12):p.2874-84.
    86. Pocsi, I., et al., Asexual sporulation signalling regulates autolysis of Aspergillus nidulans via modulating the chitinase ChiB production. J Appl Microbiol,2009.107(2):p.514-23.
    87. Etxebeste, O., et al., Aspergillus nidulans asexual development:making the most of cellular modules. Trends Microbiol,2010.18(12):p.569-76.
    88. Bailey-Shrode, L. and D.J. Ebbole, The fluffy gene of Neurospora crassa is necessary and sufficient to induce conidiophore development. Genetics,2004. 166(4):p.1741-9.
    89. Greenwald, C.J., et al., Temporal and spatial regulation of gene expression during asexual development of Neurospora crassa. Genetics,2010.186(4):p. 1217-30.
    90. Madi, L., et al., rco-3, a gene involved in glucose transport and conidiation in Neurospora crassa. Genetics,1997.146(2):p.499-508.
    91. Sun, X., et al., Involvement of a helix-loop-helix transcription factor CHC-1 in CO(2)-mediated conidiation suppression in Neurospora crassa. Fungal Genetics and Biology,2011.48(12):p.1077-86.
    92. Calvo, A.M., The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genetics and Biology,2008.45(7):p. 1053-61.
    93. Rodriguez-Romero, J., et al., Fungi, hidden in soil or up in the air:light makes a difference. Annu Rev Microbiol,2010.64:p.585-610.
    94. Ruger-Herreros, C., et al., Regulation of conidiation by light in Aspergillus nidulans. Genetics,2011.188(4):p.809-22.
    95. Cortese, M.S., et al., Elucidation of functional markers from Aspergillus nidulans developmental regulator FlbB and their phylogenetic distribution. PLoS One,2011.6(3):p. e17505.
    96. Kwon, N.J., K.S. Shin, and J.H. Yu, Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans. Fungal Genetics and Biology,2010.47(12):p.981-93.
    97. Griffith, G.W., M.S. Stark, and A.J. Clutterbuck, Wild-type and mutant alleles of the Aspergillus nidulans developmental regulator gene brlA:correlation of variant sites with protein function. Mol Gen Genet,1999.262(4-5):p.892-7.
    98. Han, S. and T.H. Adams, Complex control of the developmental regulatory locus brlA in Aspergillus nidulans. Mol Genet Genomics,2001.266(2):p. 260-70.
    99. Wu, J. and B.L. Miller, Aspergillus asexual reproduction and sexual reproduction are differentially affected by transcriptional and translational mechanisms regulating stunted gene expression. Mol Cell Biol,1997.17(10): p.6191-201.
    100. Sheppard, D.C., et al., The Aspergillus fumigatus StuA protein governs the up-regulation of a discrete transcriptional program during the acquisition of developmental competence. Mol Biol Cell,2005.16(12):p.5866-79.
    101. Miller, K.Y., et al., Isolation and transcriptional characterization of a morphological modifier:the Aspergillus nidulans stunted (stuA) gene. Mol Gen Genet,1991.227(2):p.285-92.
    102. Adams, T.H., J.K. Wieser, and J.H. Yu, Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev,1998.62(1):p.35-54.
    103. Busby, T.M., K.Y. Miller, and B.L. Miller, Suppression and enhancement of the Aspergillus nidulans medusa mutation by altered dosage of the bristle and stunted genes. Genetics,1996.143(1):p.155-63.
    104. Wang, S., et al., Putative calcium channels CchA and MidA play the important roles in conidiation, hyphal polarity and cell wall components in Aspergillus nidulans. PLoS One,2012.7(10):p. e46564.
    105. Harris, S.D., The duplication cycle in Aspergillus nidulans. Fungal Genet Biol, 1997.22(1):p.1-12.
    106. Momany, M. and I. Taylor, Landmarks in the early duplication cycles of Aspergillus fumigatus and Aspergillus nidulans:polarity, germ tube emergence and septation. Microbiology,2000.146 Pt 12:p.3279-84.
    107. Pruyne, D. and A. Bretscher, Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J Cell Sci,2000,113 (Pt 3): p.365-75.
    108. Drees, B.L., et al., A protein interaction map for cell polarity development. J Cell Biol,2001.154(3):p.549-71.
    109. Evangelista, M., et al., Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat Cell Biol,2002.4(3):p.260-9.
    110. Sharpless, K.E. and S.D. Harris, Functional characterization and localization of the Aspergillus nidulans formin SEPA. Mol Biol Cell,2002.13(2):p. 469-79.
    111. Virag, A. and S.D. Harris, The Spitzenkorper:a molecular perspective. Mycol Res,2006.110(Pt 1):p.4-13.
    112. Fischer-Parton, S., et al., Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc,2000.198(Pt 3):p.246-59.
    113. Jackson, S.L. and I.B. Heath, Roles of calcium ions in hyphal tip growth. Microbiol Rev,1993.57(2):p.367-82.
    114. Fiddy, C. and A.P. Trinci, Mitosis, septation, branching and the duplication cycle in Aspergillus nidulans. J Gen Microbiol,1976.97(2):p.169-84.
    115. Kron, S.J. and N.A. Gow, Budding yeast morphogenesis:signalling, cytoskeleton and cell cycle. Curr Opin Cell Biol,1995.7(6):p.845-55.
    116. Soll, D.R., M.A. Herman, and M.A. Staebell, The involvement of cell wall expansion in the two modes of mycelium formation of Candida albicans. J Gen Microbiol,1985.131(9):p.2367-75.
    117. Gao, L., et al., Osmotic stabilizer-coupled suppression of NDR defects is dependent on the calcium-calcineurin signaling cascade in Aspergillus nidulans. Cell Signal,2011.23(11):p.1750-7.
    118. Kaufmann, A. and P. Philippsen, Of bars and rings:Hofl-dependent cytokinesis in multiseptated hyphae of Ashbya gossypii. Mol Cell Biol,2009. 29(3):p.771-83.
    119. Ray, S., et al., The mitosis-to-interphase transition is coordinated by cross talk between the SIN and MOR pathways in Schizosaccharomyces pombe. Journal of Cell Biology,2010.190(5):p.793-805.
    120. Liu, B. and N.R. Morris, A spindle pole body-associated protein, SNAD, affects septation and conidiation in Aspergillus nidulans. Mol Gen Genet, 2000.263(3):p.375-87.
    121. Liu, B., X. Xiang, and Y.R.J. Lee, The requirement of the LC8 dynein light chain for nuclear migration and septum positioning is temperature dependent in Aspergillus nidulans. Molecular Microbiology,2003.47(2):p.291-301.
    122. Gould, K.L. and V. Simanis, The control of septum formation in fission yeast. Genes Dev,1997.11(22):p.2939-51.
    123. Efimov, V.P., Roles of NUDE and NUDF proteins of Aspergillus nidulans: insights from intracellular localization and overexpression effects. Mol Biol Cell,2003.14(3):p.871-88.
    124. Rischitor, P.E., S. Konzack, and R. Fischer, The Kip3-like kinesin KipB moves along microtubules and determines spindle position during synchronized mitoses in Aspergillus nidulans hyphae. Eukaryot Cell,2004.3(3):p.632-45.
    125. Konzack, S., et al., The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans. Mol Biol Cell, 2005.16(2):p.497-506.
    126. Waring, R.B., G.S. May, and N.R. Morris, Characterization of an inducible expression system in Aspergillus nidulans using alcA and tubulin-coding genes. Gene,1989.79(1):p.119-30.
    127. Roncero, C. and A. Duran, Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis:in vivo activation of chitin polymerization. J Bacteriol,1985.163(3):p.1180-5.
    128. Sautter, R.L. and H.G. Kwee, Calcofluor white stain for fungi. Am J Clin Pathol,1987.87(2):p.295-6.
    129. Aleksenko, A. and A.J. Clutterbuck, Autonomous plasmid replication in Aspergillus nidulans:AMAl and MATE elements. Fungal Genet Biol,1997. 21(3):p.373-87.
    130. Osherov, N., J. Mathew, and G.S. May, Polarity-defective mutants of Aspergillus nidulans. Fungal Genetics and Biology,2000.31(3):p.181-188.
    131. Yelton, M.M., J.E. Hamer, and W.E. Timberlake, Transformation of Aspergillus-Nidulans by Using a Trpc Plasmid. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 1984.81(5):p.1470-1474.
    132. Kafer, E., Mitotic crossing over and nondisjunction in translocation heterozygotes of Aspergillus. Genetics,1976.82(4):p.605-27.
    133. Kafer, E., Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv Genet,1977.19:p.33-131.
    134. Wang, J.J., et al., The important role of actinin-like protein (AcnA) in cytokinesis and apical dominance of hyphal cells in Aspergillus nidulans. Microbiology-Sgm,2009.155:p.2714-2725.
    135. Todd, R.B., M.A. Davis, and M.J. Hynes, Genetic manipulation of Aspergillus nidulans:heterokaryons and diploids for dominance, complementation and haploidization analyses. Nat Protoc,2007.2(4):p.822-30.
    136. Hove-Jensen, B., Mutation in the phosphoribosylpyrophosphate synthetase gene (prs) that results in simultaneous requirements for purine and pyrimidine nucleosides, nicotinamide nucleotide, histidine, and tryptophan in Escherichia coli. J Bacteriol,1988.170(3):p.1148-52.
    137. Sakakibara, Y, dnaR function of the prs gene of Escherichia coli in initiation of chromosome replication. J Mol Biol,1992.226(4):p.989-96.
    138. Becker, M.A., et al., Neurodevelopmental impairment and deranged PRPP and purine nucleotide synthesis in inherited superactivity of PRPP synthetase. Adv Exp Med Biol,1989.253A:p.15-22.
    139. Becker, M.A., et al., The genetic and functional basis of purine nucleotide feedback-resistant phosphoribosylpyrophosphate synthetase superactivity. J Clin Invest,1995.96(5):p.2133-41.
    140. de Brouwer, A.P.M., et al., Arts syndrome is caused by loss-of-function mutations in PRPS1. Am J Hum Genet,2007.81(3):p.507-518.
    141. Kim, H.J., et al., Mutations in PRPS1, which encodes the phosphoribosyl pyrophosphate synthetase enzyme critical for nucleotide biosynthesis, cause hereditary peripheral neuropathy with hearing loss and optic neuropathy (CMTX5). Am J Hum Genet,2007.81(3):p.552-558.
    142. Vavassori, S., et al., In Saccharomyces cerevisiae, impaired PRPP synthesis is accompanied by valproate and Li+ sensitivity. Biochemical Society Transactions,2005.33:p.1154-1157.
    143. Kleineidam, A., et al., Valproic acid- and lithium-sensitivity in prs mutants of Saccharomyces cerevisiae. Biochem Soc Trans,2009.37(Pt 5):p.1115-20.
    144. Romero, B., et al., The Aspergillus nidulans alcA promoter drives tightly regulated conditional gene expression in Aspergillus fumigatus permitting validation of essential genes in this human pathogen. Fungal Genet Biol,2003. 40(2):p.103-14.
    145. May, G.S., The highly divergent beta-tubulins of Aspergillus nidulans are functionally interchangeable. J Cell Biol,1989.109(5):p.2267-74.
    146. Osmani, S.A., R.T. Pu, and N.R. Morris, Mitotic Induction and Maintenance by Overexpression of a G2-Specific Gene That Encodes a Potential Protein-Kinase. Cell,1988.53(2):p.237-244.
    147. Wang, G., et al., Calmodulin concentrates at the apex of growing hyphae and localizes to the Spitzenkorper in Aspergillus nidulans. Protoplasma,2006. 228(4):p.159-166.
    148. Chaveroche, M.K., J.M. Ghigo, and C. d'Enfert, A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res,2000.28(22):p. E97.
    149. Bird, D. and R. Bradshaw, Gene targeting is locus dependent in the filamentous fungus Aspergillus nidulans. Mol Gen Genet,1997.255(2):p. 219-25.
    150. Nayak, T., et al., A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics,2006.172(3):p.1557-66.
    151. Horiuchi, H., et al., Proliferation of intrahyphal hyphae caused by disruption of csmA, which encodes a class V chitin synthase with a myosin motor-like domain in Aspergillus nidulans. J Bacteriol,1999.181(12):p.3721-9.
    152. Yu, J.H., et al., Double-joint PCR:a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genetics and Biology,2004. 41(11):p.973-981.
    153. Hove-Jensen, B., Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae:combinatorial expression of the five PRS genes in Escherichia colil J Biol Chem,2004.279(39):p.40345-50.
    154. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,1976.72:p.248-54.
    155. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods,2001.25(4):p.402-408.
    156. Cozzone, A.J., Protein phosphorylation in prokaryotes. Annu Rev Microbiol, 1988.42:p.97-125.
    157. Stock, J.B., A.J. Ninfa, and A.M. Stock, Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev,1989.53(4):p. 450-90.
    158. Chang, C. and R.C. Stewart, The two-component system. Regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant Physiol,1998.117(3): p.723-31.
    159. Barford, D., A.K. Das, and M.P. Egloff, The structure and mechanism of protein phosphatases:insights into catalysis and regulation. Annu Rev Biophys Biomol Struct,1998.27:p.133-64.
    160. Wera, S. and B.A. Hemmings, Serine/threonine protein phosphatases. Biochem J,1995.311 (Pt 1):p.17-29.
    161. Virshup, D.M., Protein phosphatase 2A:a panoply of enzymes. Curr Opin Cell Biol,2000.12(2):p.180-5.
    162. Janssens, V. and J. Goris, Protein phosphatase 2A:a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J,2001.353(Pt 3):p.417-39.
    163. Shimanuki, M., et al., Isolation and characterization of the fission yeast protein phosphatase gene ppel+ involved in cell shape control and mitosis. Mol Biol Cell,1993.4(3):p.303-13.
    164. Lin, F.C. and K.T. Arndt, The role of Saccharomyces cerevisiae type 2A phosphatase in the actin cytoskeleton and in entry into mitosis. EMBO J,1995. 14(12):p.2745-59.
    165. Hombauer, H., et al., Generation of active protein phosphatase 2A is coupled to holoenzyme assembly. Plos Biology,2007.5(6):p.1355-1365.
    166. Schonthal, A.H., Role of serine/threonine protein phosphatase 2A in cancer. Cancer Letters,2001.170(1):p.1-13.
    167. Wang, S.S., et al., Alterations of the PPP2R1B gene in human lung and colon cancer. Science,1998.282(5387):p.284-7.
    168. Diwan, A.H., et al., Inhibition of serine-threonine protein phosphatases decreases barrier function of rat pulmonary microvascular endothelial cells. J Cell Physiol,1997.171(3):p.259-70.
    169. Knapp, J., et al., The protein phosphatase inhibitor cantharidin alters vascular endothelial cell permeability. J Pharmacol Exp Ther,1999.289(3):p.1480-6.
    170. Tar, K., et al., Phosphatase 2A is involved in endothelial cell microtubule remodeling and barrier regulation. J Cell Biochem,2004.92(3):p.534-546.
    171. Mochida, S., et al., Regulated activity of PP2A-B55 delta is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts. Embo Journal,2009.28(18):p.2777-2785.
    172. Tanabe, O., et al., Fission yeast homologues of the B'subunit of protein phosphatase 2A:multiple roles in mitotic cell division and functional interaction with calcineurin. Genes to Cells,2001.6(5):p.455-473.
    173. Choi, Y.E. and W.B. Shim, Functional characterization of Fusarium verticillioides CPP1, a gene encoding a putative protein phosphatase 2A catalytic subunit. Microbiology-Sgm,2008.154:p.326-336.
    174. Son, S. and S.A. Osmani, Analysis of All Protein Phosphatase Genes in Aspergillus nidulans Identifies a New Mitotic Regulator, Fcpl. Eukaryot Cell, 2009.8(4):p.573-585.
    175. Si, H.Y., et al., Morphogenetic and developmental functions of the Aspergillus nidulans homologues of the yeast bud site selection proteins Bud4 and Axl2. Mol Microbiol,2012.85(2):p.252-270.
    176. Ramamoorthy, V., et al., veA-dependent RNA-pol II transcription elongation factor-like protein, RtfA, is associated with secondary metabolism and morphological development in Aspergillus nidulans. Mol Microbiol,2012. 85(4):p.795-814.
    177. Bayram, O., et al., The Aspergillus nidulans MAPK Module AnStell-Ste50-Ste7-Fus3 Controls Development and Secondary Metabolism. PLoS Genet,2012.8(7).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700