rs13124007、rs6850166、rs2331142多态性与汉族女性痛风相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的探讨rs13124007、rs6850166、rs2231142 3个SNP位点的基因多态性与中国汉族女性人群痛风易感性之间的相关性。
     方法采用Hardy-Weinberg平衡原则检测本实验随机选取的研究对象是否具备群体代表性。采用聚合酶链式反应(PCR技术),特异性扩增GLUT9基因和ABCG2基因中本实验所需要的目的片段。分别对目的片段进行测序后,比较痛风组和正常对照组的基因型频率及等位基因频率分布情况,并对女性痛风人群进行痛风易感基因的基因型-表型相关性分析。
     结果①痛风组年龄与正常对照组年龄相互匹配(P>0.05),痛风组的体重指数、腰臀比、收缩压、舒张压、血糖、血尿酸、甘油三酯、尿素氮和肌酐水平明显高于正常对照组(P<0.05),另外,女性痛风患者中15.45%合并有痛风石。②Rs13124007、rs6850166和rs2231142位点的基因多态性均与痛风的易感性相关。Rs6850166和rs2231142位点的基因型频率在两组间存在显著差异(P=0.011;P=0.001),且痛风组中这两个SNP位点的A等位基因频率均显著高于正常对照组(P=0.002,OR 2.31[95% CI 1.33—4.01];P<0.001,OR 1.88[95% CI 1.35—2.62])。Rs13124007位点的基因型频率在两组间无统计学差异(P>0.05),但痛风组中该位点的C等位基因频率高于正常对照组(P=0.034,OR 1.73[95% CI 1.04—2.89])。③Rs13124007位点携带GG基因型、GC基因型及CC基因型的个体间表型无显著差异(P>0.05)。Rs6850166位点GG基因型的个体与GA基因型和AA基因型的个体比较,痛风合并肥胖的风险更大(P=0.026,OR 0.21[95% CI0.04-0.93];P=0.041,OR 0.28[95%CI0.08-1.01])。Rs2231142位点携带AA基因型的个体较CC基因型的个体具有更高的腰臀比(P=0.047);携带AA基因型及CA基因型的个体与携带CC基因型的个体相比,具有更高的收缩压(P=0.021)、尿酸浓度(P=0.037)、甘油三酯水平(P=0.038)及总胆固醇水平(P=0.012);且携带AA基因型及CA基因型的个体与CC基因型的个体相比,合并高血压者及糖尿病者均较多(P=0.018,OR 0.26[95% CI1.17-6.08];P=0.041,OR 3.62[95% CI 0.99-13.18])。
     结论Rs13124007(G/C)、rs6850166(G/A)、rs2231142(C/A)位点的基因多态性与中国汉族女性痛风易感性密切相关,rs2231142位点的A等位基因可能还与中国汉族女性痛风人群的血压、血糖、血脂水平相关。
Objective:To investigate associations between gout and polymorphisms of rsl3124007, rs6850166, rs2231142 in Chinese Han females.
     Methods:Hardy-Weinberg was used to verify the representativeness of the sample. Specifically amplify the target fragments of GLUT9 gene and ABCG2 gene and genotyping was performed by polymerase chain reaction (PCR) technology. Forther more, the genotype-phenotype correlation analysis was performed bttween the gout patients.
     Results:①Gout cases and controls are matched by age(P>0.05), the body mass index, waist to hip ratio, systolic blood pressure, diastolic blood pressure, blood glucose, uric acid, triglycerides, blood urea nitrogen and creatinine of gout group are significantly higher than controls(P<0.05).15.45%of gout patients suffer from tophi.②There was a clear link between the gout and rs13124007, rs6850166, rs2231142 and the A allele of rs6850166 and rs2231142 appeared to be the risk allele for susceptibility to gout (p= 0.002, OR 2.31 [95%CI 1.33-4.01]; p< 0.001, OR 1.88 [95%CI 1.35-2.62]),theC allele of rs13124007 in the gout group were significantly higher than the controls(p= 0.034, OR 1.73 [95%CI 1.04-2.89]).②No significant differences of phenotype between individuals carrying the GG,GC and CC genotype in rs13124007 (P>0.05). There are more obesity risk who carrying GA and AA genotype in rs6850166 locus (P= 0.026, OR 0.21 [95%CI 0.04-0.93]; P= 0.041, OR 0.28 [95%CI 0.08-1.01]). There are greater waist-hip ratio in the individuals who carrying the AA genotype comparing CC genotype (P=0.047). Individuals who carrying the AA and CA genotype have higher systolic blood pressure (P= 0.021), uric acid concentration (P= 0.037), triglyceride levels (P= 0.038) and total cholesterol levels (P= 0.012), and comparing with CC genotype, more individuals carrying AA and CA genotype suffering hypertension and diabetes (P= 0.018, OR 0.26 [95%CI,1.17-6.08]; P= 0.041, OR 3.62 [95%CI 0.99-13.18]).
     Conclusion:The Polymorphisms of rs13124007(G/C), rs6850166(G?A) and rs2231142(C/A) are associated with susceptibility to gout in Chinese Han females and A allele in rs2231142 may be relate to the level of blood pressure, blood glucose and blood lipid between gout patients.
引文
1 Tausche AK, Manger B, MUller-Ladner U, et al.Gout as a systemic disease: Manifestations, complications and comorbidities of hyperuricaemia. Z Rheumatol,2012 Mar 15.
    2 Messerli FH, Makani H,Halpern D. Gout. N Engl J Med,2011,364(19):1876-7.
    3 Charles BA, Shriner D, Doumatey A, et al. A genome-wide association study of serum uric acid in African Americans. BMC Med Genomics.2011,4(4):17.
    4 Garcia M. G.,Torres, R. J., Prior, C.,et al. Normal HPRT coding region in complete and partial HPRT deficiency. Mol Genet Metab,2008,94 (2):167-172.
    5 Yamaoka T, Itakura M. Metabolism of purine nucleotides and the production of uric acid. Nihon Rinsho,1996,54(12):3188-94.
    6 Yang Q, Kottgen A, Dehghan A, et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet,2010,3:523-530.
    7 Kolz M, Johnson T, Sanna S, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet,2009,5:el000504.
    8 Vitart V, Rudan I, Hayward C, et al. SLC2A9 is a newly identified urate transporter Influencing serum urate concentration, urate excretion and gout. Nat Genet,2008, 40:437-442.
    9 Augustin R, Carayannopoulos MO, Dowd LO, et al. Identification and characterization of human glucose transporter-like protein-9 (GLUT9):alternative splicing alters trafficking. J Biol Chem,2004,279:16229-16236
    10 Caulfield M J, Munroe P B, O'Neill D, et al. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med 2008;5(10):el97.
    11 Richardson S, Neama G, Phillips T, et al. Molecular characterization and partial cDNA cloning of facilitative glucose transporters expressed in human articular chondrocytes; stimulation of 2-deoxyglucose uptake by IGF-I and elevated MMP-2 secretion by glucose deprivation. Osteoarthritis Cartilage 2003;11(2):92-101.
    12 Dehghan A, Kottgen A, Yang Q, et al. Association of three genetic loci with uric acid concentration and risk of gout:a genome-wide association study. Lancet,2008, 372:1953-1961.
    13 Doring A, Gieger C, Mehta D, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet,2008,40:430-436.
    14 Li C, Chu N, Wang B, et al. Polymorphisms in the Presumptive Promoter Region of the SLC2A9 Gene Are Associated with Gout in a Chinese Male Population. PLoS One. 2012;7(2):e24561.
    15 Woodward OM, Kottgen A, Coresh J, et al. Identification of a urate transporter,
    ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A,2009,106:10338-10342.
    16 Wang B, Miao Z, Liu S, et al. Genetic analysis of ABCG2 gene C421A polymorphism with gout disease in Chinese Han male population. Hum Genet,2010,127:245-246.
    17 Wallace K, Riedel A, Joseph-Ridge N, et al. Increasing prevalence of gout and hyperuricemia over 10 years among older adults in a managed care population. J Rheumatol,2004,31:1582-1587.
    18 Kramer HM, Curhan G. The association between gout and nephrolithiasis:the National Health and Nutrition Examination Survey Ⅲ,1988-1994. Am J Kidney Dis 2002:40:37-42
    19 Arromdee E, Michet CJ, Crowson CS,0'Fallon WM, Gabriel SE. Epidemiology of gout: is the incidence rising? J Rheumatol,2002:29:2403-6.
    20 Smith EU, Diaz-Torne C, Perez-Ruiz F, et al. Epidemiology of gout:an update. Best Pract Res Clin Rheumatol,2010,24(6):811-27.
    21 Dalbeth N, Merriman T. Crystal ball gazing:new therapeutic targets for hyperuricaemia and gout. Rheumatology (Oxford) 2009;48 (3):222-6.
    22 Bardin T, Richette P. The epidemiology and genetic of gout. Presse Med,2011,40(9): 830-5.
    23 De Souza AWS, Fernandes V, Ferrari AJL. Female gout. J Rheumatol,2005,32:2186-2188
    24 Dirken-Heukensfeldt KJ, Teunissen TA, van de Lisdonk H, et al. "Clinical features of women with gout arthritis. " A systematic review. Clin Rheumatol,2010, 29(6):575-82.
    25 Yang Q, Kottgen A, Dehghan A, et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet,2010,3:523-530.
    26 Kolz M, Johnson T, Sanna S, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet,2009,5:e1000504.
    27 ChoiHK, Zhu Y, Mount DB. Genetics of gout. Curr Op in Rheumatol,2010,22 (2):144-51.
    28 Roddy E, Doherty . Epidemiology of gout. Arthritis Res Ther,2010,12:223.
    29 Anzai N, Ichida K, Jutabha P, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATvl (SLC2A9) in humans. J Biol Chem,2008,283:26834-26838.
    30 Dehghan A, Kottgen A, Yang Q, et al. Association of three genetic loci with uric acid concentration and risk of gout:a genome-wide association study. Lancet,2008, 372:1953-1961.
    31 Daring A, Gieger C, Mehta D, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet,2008,40:430-436.
    32 Woodward,0. M. et al., Identification of a urate transporter, ABCG2, with a common
    functional polymorphism causing gout. Proc Natl Acad Sci U S A,,2009,106 (25):10338-10342.
    33 Li C, Chu N, Wang B, et al. Polymorphisms in the Presumptive Promoter Region of the SLC2A9 Gene Are Associated with Gout in a Chinese Male Population. PLoS One,2012,7(2):e24561.
    34 Wang B, Miao Z, Liu S, et al. Genetic analysis of ABCG2 gene C421A polymorphism with gout disease in Chinese Han male population. Hum Genet,2010,127(2):245-6.
    35 Vitart V, Rudan I, Hayward C, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet 2008;40(4):437-42.
    36 CHEN S Y, CHEN C L, SHEN M L, et al. Clinical features of familial gout and effects of probable genetic association between gout and its related disorders. Metabolism, 2001,50(10):1203-1207.
    1 Yang, Q. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet,2008,3(6): 523-530.
    2 Stark.K, Hart.K. Common polymorphisms influencing serum uric acid levels contribute to susceptibility to gout,but not to coronary artery disease. PLoS One,2009,4 (11):e7729.
    3 Kolz, M. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet,2009,5(6):e1000504.
    4 Garcia, M. G., Torres, R. J., Prior, C.,et al. Normal HPRT coding region in complete and partial HPRT deficiency. Mol Genet Metab,2008,94(2):167-172.
    5 Ea, H.K. et al. Severe gouty arthritis and mild neurologic symptoms due to F199C, a newly identified variant of the hypoxanthine guanine phosphoribosyl transferase. Arthritis Rheum,2009,60(7):2201-2204.
    6 Yamada, Y.Molecular analysis of hypoxanthine guanine phosphoribosyltransferase (HPRT) deficiencies:novel mutations and the spectrum of Japanese mutations. Nucleosides Nucleotides Nucleic Acids,2008,27(6):570-574.
    7 Yamada, Y. et al., Molecular analysis of two enzyme genes, HPRT1 and PRPS1, causing X-linked inborn errors of purine metabolism. Nucleosides Nucleotides Nucleic Acids,2004,29 (6):291-294.
    8 De Brouwer, A. P. et al. Arts syndrome is caused by loss-of-function mutations in PRPS1. Am J Hum Genet,2007,81 (3):507-518.
    9 Hart, T. C. et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J Med Genet,2002, 39(12):882-892.
    10 Lee, D.H.,Kim, J. K., Noh, J. W. et al. A case of familial juvenile hyperuricemic nephropathy with novel uromodulin gene mutation, a novel heterozygous missense mutation in Korea. J Korean Med Sci,2008,25(11):1680-1682.
    11 Turner, J. J. et al. UROMODULIN mutations cause familial juvenile hyperuricemic nephropathy. J Clin Endocrinol Metab,2003,88(3):1398-1401.
    12 Gersch, M. j. et al.Is salt-wasting the long awaited answer to the hyperuricaemia seen in uromodulin storage diseases? Nephrol Dial Transplant,2006,21 (7): 2028-2029.
    13 Wu, C. H. et al. Urinary UMOD excretion and chronic kidney disease in gout patients: cross-sectional case-control study. Ren Fail,2009,33(2):164-168.
    14 Vitart, V. et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet,2008,40(4):437-442
    15 Augustin,R.et al. Identification and characterization of human glucose
    transporter-like protein-9 (GLUT9):alternative splicing alters trafficking. JBiol Chem,2004,279(16):16229-16236.
    16 Richardson, S. et al., Molecular characterization and partial cDNA cloning of facilitative glucose transporters expressed in human articular chondrocytes; stimulation of 2-deoxyglucose uptake by IGF-I and elevated MMP-2 secretion by glucose deprivation. Osteoarthritis Cartilage,2003,11(2):92-101.
    17 Caulfield, M. J. et al. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med,2008,5(10):el97.
    18 Bibert, S. et al. Mouse GLUT9:evidences for a urate uniporter. Am J Physiol Renal Physiol,2009,297(3):F612-619.
    19 Anzai, N. et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATvl (SLC2A9) in humans. J Biol Chem,2008,283(40): 26834-26838.
    20 Dehghan, A. Dinour, D, et al., Association of three genetic loci with uric acid concentration and risk of gout:a genome-wide association study. Lancet,2008,372 (54):1953-1961.
    21 Doring, A. et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet,2008,40(4):430-436.
    22 Charles, B. A. et al.A genome-wide association study of serum uric acid in African Americans. BMC Med Genomics,2006,4:17.
    23 Preitner, F. et al.Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc Natl Acad,2009, 106(36):15501-15506.
    24 Dinour, D. et al., Homozygous SLC2A9 mutations cause severe renal hypouricemia. J Am Soc Nephrol,2009,21(1):64-72.
    25 Mao, Q. Unadkat, J. D.Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J,2005,7(1):E118-133.
    26 Woodward,0. M. et al. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad,2009,106(25):10338-10342.
    27 Kim, K. A.,Joo,H. J., Park, j. Y. Effect of ABCG2 genotypes on the pharmacokinetics of A771726, an active metabolite of prodrug leflunomide, and association of A771726 exposure with serum uric acid level. Eur J Clin Pharmacol,2009,67(2):129-134.
    28 Matsuo, H. et al.,Common defects of ABCG2, a high-capacity urate exporter, cause gout:a function-based genetic analysis in a Japanese population. Sci Transl Med, 2009,2 (5):5-7.
    29 Iharada, M. et al.Type 1 sodium-dependent phosphate transporter (SLC17A1 Protein) is a Cl(-)-dependent urate exporter. J Biol Chem,2004,285(34):26107-26113.
    30 Uchino, H. et al. p-aminohippuric acid transport at renal apical membrane mediated by human inorganic phosphate transporter NPT1. Biochem Biophys Res Commun,2000,
    270(1):254-259.
    31 Ichida, K., What lies behind serum urate concentration? Insights from genetic and genomic studies. Genome Med,2009,1(12):118.
    32 Jutabha, P. et al. Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate. J Biol Chem.2008,28(45):35123-35132.
    33 Urano, W. et al. Sodium-dependent phosphate cotransporter type 1 sequence polymorphisms in male patients with gout. Ann Rheum Dis,2009,69(6):1232-1234.
    34 Hosoyamada, M., Ichida, K., Enomoto, A., et al. Function and localization of urate transporter 1 in mouse kidney. J Am Soc Nephrol,2004,15(2):261-268.
    35 Doherty, M. New insights into the epidemiology of gout. Rheumatology,2009,48 (2):2-8.
    36 Graessler, J. et al. Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population. Arthritis Rheum,2006,54(1):292-300.
    37 Enomoto, A. et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature,2002,417 (6887):447-452.
    38 Ichida, K. et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol,2004,15(1):164-173.
    39 Ichida, K., Hosoyamada, M., Kamatani, N., et al. Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese. Clin. Genet,2008,74:243-251,
    40 Taniguchi, A. et al. A common mutation in an organic anion transporter gene, SLC22A12, is a suppressing factor for the development of gout. Arthritis Rheum,2005, 52(8):2576-2577.
    41 Dinour, D. et al. URAT1 mutations cause renal hypouricemia type 1 in Iraqi Jews. Nephrol Dial Transplant.2009,3(6):52-55.
    42 Ekaratanawong, S. et al. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J Pharmacol,2004, 94(3):297-304.
    43 Hagos, Y., Stein, D., Ugele, B., et (?) Human renal organic anion transporter operates as an asymmetric urate transporter. J Am Soc Nephrol,2007,18(2):430-439.
    44 Hashimoto, et al. Characterization of the renal tubular transport of zonampanel, a novel alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist, by human organic anion transporters. Drug Metab Dispos,2004,32(10): 1096-1102.
    45 Kocher,O., Comella, N., Tognazzi, K.,et al. Identification and partial characterization of PDZK1:a novel protein containing PDZ interaction domains. Lab Invest,1998,78 (1):117-125.
    46 Tachibana, K. et al. Regulation of the human PDZK1 expression by peroxisome
    proliferator-activated receptor alpha. FEBS Lett,2008,582(28):3884-3888.
    47 Anzai, N. et al. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URATl via its C terminus. J Biol Chem,2004,279(44):45942-45950.
    48 Miyazaki, H. et al., Modulation of renal apical organic anion transporter 4 function by two PDZ domain-containing proteins. J Am Soc Nephrol,2005,16(12):3498-3506.
    49 Anzai, N., Kanai, Y., Endou, H.,et al. New insights into renal transport of urate. Curr Opin Rheumatol,2007,19(2):151-157.
    50 Reaven, G. Human glucokinase regulatory protein (GCKR):cDNA and genomic cloning, complete primary structure, and chromosomal localization. Nat Genet,2007, 5(9):234-235
    51 Sparso, T. et al. The GCKR rs780094 polymorphism is associated with elevated fasting serum triacylglycerol, reduced fasting and OGTT-related insulinaemia, and reduced risk of type 2 diabetes. Diabetologia,2008,51(1):70-75.
    52 Beer, N. L et al. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum Mol Genet,2009,18(21):4081-4088.
    53 Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet,2009,42(2):105-116.
    54 Facchini, F., Chen, Y. D., Hollenbeck, et al. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA,1991,266(21):3008-3011.
    55 Wagner, L. Cloning and expression of secretagogin, a novel neuroendocrine and pancreatic islet of Langerhans-specific Ca2+binding protein. J Biol Chem,2000, 275(32):24740-24751.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700