小反刍兽疫及口蹄疫病毒抗原基因重组山羊痘病毒活载体疫苗的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口蹄疫(foot and mouth disease,FMD)、小反刍兽疫(peste des petits ruminants,PPR)和羊痘(capripox,CP)是危害山羊、绵羊等小型反刍动物的3种重大疫病,均为世界动物卫生组织(OIE)发布的A类烈性传染病。3种疫病的病原分别是口蹄疫病毒(foot and mouth disease virus,FMDV)、小反刍兽疫病毒(peste des petits ruminants virus,PPRV)和羊痘病毒(capripoxvirus,CPV)。目前这3类疫病的防控主要依靠灭活苗或弱毒苗,在实际应用中存在着免疫持续期短、热稳定性差、病毒毒力有返强风险等诸多缺陷。因此,需要研制更为安全高效的新型疫苗。
     病毒载体是现代生物科学研究的热点之一,诸多病毒载体已成功构建,并成为研制新型疫苗的候选工具。羊痘病毒活载体就是其中之一。在上述3种感染羊的病毒中,PPRV的H蛋白和F蛋白是刺激机体产生中和抗体的主要抗原;而FMDV的P1-2A在3C的作用下可以形成病毒的核衣壳,是中和抗体产生的主要诱导物,其中P1蛋白中的VP1片段是抗原决定簇最集中的区域,因此,PPRV的H和F基因、FMDV的VP1基因和P12A3C片段是研制亚单位疫苗和重组疫苗的主要候选基因。本研究利用DNA重组技术,构建用于羊痘病毒重组的基因工程转移载体,通过转移载体和病毒之间的同源重组,将PPRV和FMDV的抗原基因分别插入到羊痘病毒基因组中,形成重组羊痘病毒,作为转运外源蛋白的活载体,旨在研制一种能有效预防PPR、羊FMD、羊痘的高效疫苗。获得结果如下:
     1.构建了重组转移质粒ptkpp,并通过延长重组同源臂、插入报告基因GFP和压力筛选基因gpt、引入多克隆位点,优化了其功能,最后形成了可重复使用的转移质粒pftkpgigp和pftkpgigpi;验证了重组转移质粒启动子p7.5和p11的功能,为此系列质粒的正常使用奠定了基础。
     2.将PPRV和O型FMDV的抗原基因分别插入转移质粒pftkpgigp和pftkpgigpi的多克隆位点中,构建了6个重组质粒:pftkpgigp-H、pftkpgigp-F、pftkpgigp-VP1、pftkpgigp-P12A3C、pftkpgigp-H-i-P12A3C、pftkpgigp-F-i-P12A3C,以用于和羊痘病毒的同源重组。
     3.用脂质体转染法将6个重组转移质粒分别导入预先感染羊痘病毒的羔羊睾丸细胞中,经同源重组获得了6株重组羊痘病毒第一代混悬液。然后用选择培养液反复培养筛选纯化,通过GFP的表达、细胞病变效应以及PCR法检测,初步鉴定形成了4株重组GPV,分别命名为rGPV/FMDV-VP1(携带FMDV VP1基因)、rGPV/PPRV-F(携带PPRV F基因)、rGPV/PPRV-H(携带PPRV H基因)、rGPV/PPRVF-FMDVP12A3C(携带PPRV F基因和FMDV的P12A3C片段)。
     4.4株rGPV分别感染LT细胞,经RT-PCR检测mRNA的转录状况,后用间接免疫荧光技术检测外源基因的表达。结果显示,所有插入的外源基因得到了正常转录,其表达产物与特异性抗体之间产生了良好的免疫反应。
     5.4株rGPV按105TCID50剂量经皮内接种山羊,分别诱导产生了较高水平的抗GPV、FMDV和PPRV抗体;产生的抗GPV抗体效价和GPV疫苗差异不显著,抗FMDV抗体效价和疫苗组差异显著,抗PPRV效价在加强免疫后和疫苗组差异不显著。
Foot and mouth disease (FMD), peste des petits ruminants (PPR) and capripox (CP) are threehighly contagious and economically important diseases affecting goats, sheep and other smallruminants, caused by foot and mouth disease virus (FMDV), peste des petits ruminants virus (PPRV)and capripoxvirus (CPV) respectively. The three diseases are published as class A of infectiousdiseases by the world organization for animal health (OIE). At present, the prevention and control ofthese three diseases mainly rely on the inactivated vaccine and attenuated vaccine. The vaccines havethe deficiency of short immune duration, poor thermal stability and reversion of virulence in thepractical application. Therefore, it becomes the objective need to develop more effective and safer newgeneration vaccine.
     Virus vector is one of the hotspots in the field of modern biology research. A number of viralvectors have been successfully constructed, and become a new vaccine candidate. Capripoxvirusvector is one of these virus vectors. Among three viruses infected goat and sheep, fusion protein (F)and hemagglutinin (H) of PPRV are major antigen inducing organism to produce neutralizing antibody;P1-2A of FMDV can form viral nucleocapsid in the presence of3C, which is the main inducement toproduce neutralizing antibody, and the VP1fragment of P1protein occupies the most concentratedarea of antigenic determinants. Therefore, VP1gene or P12A3C fragment of FMDV and H gene or Fgene of PPRV is the main candidate antigen gene of recombinant vaccines and subunit vaccines. In thisstudy, according to DNA recombination technique, the transferring vectors containing antigen genes ofPPRV or/and FMDV were constructed to develop recombinant capripoxvirus. Finally, severalrecombinant capripoxviruses were generated by inserting the antigen genes of FMDV or/and PPRV tocapripoxvirus genome in the process of homologous recombination between the transferring vectorand the virus. As a live vector transporting exogenous protein, the target of recombinant capripoxvirusis to develop an efficient vaccine that can effectively prevent the PPR, FMD and CP. The results wereas following:
     1. A transferring plasmid named ptkpp was constructed to use in the recombination ofcapripoxvirus. Furthermore, its function was improved by lengthening homologous flanks, insertingreport gene (GFP) and pressure selection gene (gpt) and introducing multiple cloning site (MCS). Thetransferring plasmids named pftkpgigp and pftkpgigpi were constructed eventually and these plasmidscan be used repeatedly in the capripoxvirus recombination. Moreover, the function of promoter p11and p7.5in these plasmids were demonstrated to ensure their proper work in practice.
     2. The antigen genes of PPRV or/and FMDV were inserted into the transferring plasmid pftkpgigpor pftkpgigpi and the six recombinant plasmids were constructed and were named pftkpgigp-H,pftkpgigp-F, pftkpgigp-VP1, pftkpgigp-P12A3C, pftkpgigp-H-i-P12A3C and pftkpgigp-F-i-P12A3Crespectively according to the foreign gene. These plasmids can be used in the following experiments.
     3. The above six plasmids were transfected into the lamb testis (LT) cells infected capripoxvirus previously using Lipofectamine respectively. Consequently, six recombinant virus suspension of firstgeneration were obtained after homologous recombination. However, four recombinantcapripoxviruses were generated by gpt drug selection and GFP selection repeatedly and were identifiedby cytopathic effect (CPE) and PCR method. These recombinant viruses were namedrGPV/FMDV-VP1, rGPV/PPRV-F, rGPV/PPRV-H and rGPV/PPRVF-FMDVP12A3C respectivelyaccording to its exogenous gene contained.
     4. The transcription and expression of the exogenous genes in the rGPVs was demonstrated byRT-PCR method and immunofluorescence assay at the level of mRNA and protein. The results showedthat all foreign genes were transcribed successfully and their products could be reacted with thespecific antibody, demonstrating the immunogenic activity of the expressing products.
     5. The goats were inoculated to rGPV with a dose of105TCID50intradermally and high levels ofanti GPV, FMDV and PPRV antibody were induced respectively. There was no significant difference atthe titers of anti-GPV antibody between rGPV and GPV vaccine; however, there was significantdifference at the titers of anti-FMDV antibody between rGPV and FMDV vaccine. Furthermore, therewas no significant difference at the titers of anti-PPRV antibody between rGPV and PPRV vaccine afterbooster immunization.
引文
1. Abdelmagid O.Y., et al. Evaluation of the efficacy and duration of immunity of a caninecombination vaccine against virulent parvovirus, infectious canine hepatitis virus, anddistemper virus experimental challenges. Vet Ther,2004,5(3):173-186.
    2. Abrams C.C., et al. Assembly of foot-and-mouth disease virus empty capsids synthesized by avaccinia virus expression system. J Gen Virol,1995,76(Pt12):3089-3098.
    3. Acharya R., et al. The three-dimensional structure of foot-and-mouth disease virus at2.9Aresolution. Nature,1989,337(6209):709-716.
    4. Achour H.A., et al.[Comparative study of the immunizing ability of some attenuated strains ofsheep pox virus and of a sensitizing vaccine]. Rev Sci Tech,2000,19(3):773-783.
    5. Adebayo A.A., et al. Stability of17D yellow fever virus vaccine using different stabilizers.Biologicals,1998,26(4):309-316.
    6. Alcami A., et al. Viral mechanisms of immune evasion. Trends Microbiol,2000,8(9):410-418.
    7. Alcami A., et al. A soluble receptor for interleukin-1beta encoded by vaccinia virus: a novelmechanism of virus modulation of the host response to infection. Cell,1992,71(1):153-167.
    8. Amara R.R., et al. Long-lived poxvirus immunity, robust CD4help, and better persistence ofCD4than CD8T cells. J Virol,2004,78(8):3811-3816.
    9. Amfiteatrov F.Z., et al.[Inactivation of the foot-and-mouth disease virus by methylglyoxal].Veterinariia,1973,49(5):64-65.
    10. Andrew M.E., et al. Biological effects of recombinant vaccinia virus-expressed interleukin4.Cytokine,1992,4(4):281-286.
    11. Ashton T.M., et al. Pathways for Holliday junction processing during homologousrecombination in Saccharomyces cerevisiae. Mol Cell Biol,2011,31(9):1921-1933.
    12. Aspden K., et al. Immunogenicity of a recombinant lumpy skin disease virus (neethling vaccinestrain) expressing the rabies virus glycoprotein in cattle. Vaccine,2002,20(21-22):2693-2701.
    13. Babiuk S., et al. Capripoxviruses: an emerging worldwide threat to sheep, goats and cattle.Transbound Emerg Dis,2008,55(7):263-272.
    14. Bachrach H.L., et al. Immune and antibody responses to an isolated capsid protein offoot-and-mouth disease virus. J Immunol,1975,115(6):1636-1641.
    15. Bailey D., et al. Full genome sequence of peste des petits ruminants virus, a member of theMorbillivirus genus. Virus Res,2005,110(1-2):119-124.
    16. Balamurugan V., et al. Biotechnology in the production of recombinant vaccine or antigen foranimal health. Journal of Animal and Veterinary Advances,2006,5(6):487-495.
    17. Barasa M., et al. Foot-and-mouth disease vaccination in South Sudan: benefit-cost analysis andlivelihoods impact. Transbound Emerg Dis,2008,55(8):339-351.
    18. Barrett T. Morbilliviruses: dangers old and new. in SYMPOSIA-SOCIETY FOR GENERALMICROBIOLOGY.2001. Cambridge; Cambridge University Press;1999.
    19. Beattie E., et al. Host-range restriction of vaccinia virus E3L-specific deletion mutants. VirusGenes,1996,12(1):89-94.
    20. Beattie E., et al. Distinct patterns of IFN sensitivity observed in cells infected with vacciniaK3L-and E3L-mutant viruses. Virology,1995,210(2):254-263.
    21. Becker Y. Vaccinia virus pathogenicity in atopic dermatitis is caused by allergen-inducedimmune response that prevents the antiviral cellular and humoral immunity. Virus Genes,2003,27(3):269-282.
    22. Ben-Ishai Z., et al. Rifampicin and poxvirus replication. Nature,1969,224(5214):29-32.
    23. Benazet B.G.H., La peste des petits ruminants: etude experimentale de la vaccination.1984.
    24. Berhe G., et al. Development of a dual recombinant vaccine to protect small ruminants againstpeste-des-petits-ruminants virus and capripoxvirus infections. J Virol,2003,77(2):1571-1577.
    25. Berinstein A., et al. Protective immunity against foot-and-mouth disease virus induced by arecombinant vaccinia virus. Vaccine,2000,18(21):2231-2238.
    26. Bhanuprakash V., et al. A classical live attenuated vaccine for sheep pox. Trop Anim HealthProd,2004,36(4):307-320.
    27. Bhanuprakash V., et al. The current status of sheep pox disease. Comp Immunol MicrobiolInfect Dis,2006,29(1):27-60.
    28. Bhanuprakash V., et al. Pox outbreaks in sheep and goats at Makhdoom (Uttar Pradesh), India:evidence of sheeppox virus infection in goats. Transbound Emerg Dis,2010,57(5):375-382.
    29. Bittle J.L., et al. Protection against foot-and-mouth disease by immunization with a chemicallysynthesized peptide predicted from the viral nucleotide sequence. Nature,1982,298(5869):30-33.
    30. Black D.N., et al. Genomic relationship between capripoxviruses. Virus Res,1986,5(2-3):277-292.
    31. Boniwell M.A. The use of tissue culture rinderpest vaccine to protect sheep and goats againstpeste des petits ruminants in the Ashanti region of Ghana. Bull. Off. Int. Epiz,1980,92:1233-1238.
    32. Bourdin P. La peste des petits ruminants (PPR) et sa prophylaxie au Sénégal et en Afrique del'Ouest. Rev. Elev. Med. Vet. Pays Trop,1973,26(4):71A-74A.
    33. Brown C.C., et al. Pathogenesis of wild-type and leaderless foot-and-mouth disease virus incattle. J Virol,1996,70(8):5638-5641.
    34. Brown F., et al. The Use of Acetylethyleneimine in the Production of InactivatedFoot-and-Mouth Disease Vaccines. J Hyg (Lond),1963,61:337-344.
    35. Broyles S.S. Vaccinia virus transcription. J Gen Virol,2003,84(Pt9):2293-2303.
    36. Brum L.M., et al. Microarray analysis of A549cells infected with rabbitpox virus (RPV): acomparison of wild-type RPV and RPV deleted for the host range gene, SPI-1. Virology,2003,315(2):322-334.
    37. Brutkiewicz R.R., et al. Window of vulnerability of vaccinia virus-infected cells to naturalkiller (NK) cell-mediated cytolysis correlates with enhanced NK cell triggering and isconcomitant with a decrease in H-2class I antigen expression. Nat Immun,1992,11(4):203-214.
    38. Bukowski J.F., et al. Natural killer cell depletion enhances virus synthesis and virus-inducedhepatitis in vivo. J Immunol,1983,131(3):1531-1538.
    39. Buller R.M., et al. Poxvirus pathogenesis. Microbiol Rev,1991,55(1):80-122.
    40. Buller R.M., et al. Decreased virulence of recombinant vaccinia virus expression vectors isassociated with a thymidine kinase-negative phenotype. Nature,1985,317(6040):813-815.
    41. Cao J.X., et al. Sequence analysis of HindIII Q2fragment of capripoxvirus reveals a putativegene encoding a G-protein-coupled chemokine receptor homologue. Virology,1995,209(1):207-212.
    42. Cao J.X., et al. gpt-gus fusion gene for selection and marker in recombinant poxviruses.Biotechniques,1997,22(2):276-278.
    43. Capstick P.B., et al. Growth of a cloned strain of hamster kidney cells in suspended culturesand their susceptibility to the virus of foot-and-mouth disease. Nature,1962,195:1163-1164.
    44. Carn V.M. Control of capripoxvirus infections. Vaccine,1993,11(13):1275-1279.
    45. Carn V.M., et al. Protection of goats against capripox using a subunit vaccine. Vet Rec,1994,135(18):434-436.
    46. Carroll M.W., et al. Poxviruses as expression vectors. Curr Opin Biotechnol,1997,8(5):573-577.
    47. Chakrabarti S., et al. Vaccinia virus expression vector: coexpression of beta-galactosidaseprovides visual screening of recombinant virus plaques. Mol Cell Biol,1985,5(12):3403-3409.
    48. Chandran D., et al. Development of a recombinant epsilon toxoid vaccine againstenterotoxemia and its use as a combination vaccine with live attenuated sheep pox virus againstenterotoxemia and sheep pox. Clin Vaccine Immunol,2010,17(6):1013-1016.
    49. Chang J.D., et al. Simultaneous application of live turkey herpesvirus and infectious bursaldisease vaccines against Marek's disease and infectious bursal disease. Poult Sci,1985,64(1):78-83.
    50. Chaudhary S.S., et al. A vero cell derived combined vaccine against sheep pox and Peste desPetits ruminants for sheep. Vaccine,2009,27(19):2548-2553.
    51. Chaudhri G., et al. Polarized type1cytokine response and cell-mediated immunity determinegenetic resistance to mousepox. Proc Natl Acad Sci U S A,2004,101(24):9057-9062.
    52. Chen W., et al. A goat poxvirus-vectored peste-des-petits-ruminants vaccine induceslong-lasting neutralization antibody to high levels in goats and sheep. Vaccine,2010,28(30):4742-4750.
    53. Chen W., et al.[Recombinant goat pox virus expressing PPRV H protein]. Sheng Wu GongCheng Xue Bao,2009,25(4):496-502.
    54. Chinsangaram J., et al. Antibody response in mice inoculated with DNA expressingfoot-and-mouth disease virus capsid proteins. J Virol,1998,72(5):4454-4457.
    55. Chinsangaram J., et al. Protection of swine by live and inactivated vaccines prepared from aleader proteinase-deficient serotype A12foot-and-mouth disease virus. Vaccine,1998,16(16):1516-1522.
    56. Couacy-Hymann E., et al. Protection of goats against rinderpest by vaccination with attenuatedpeste des petits ruminants virus. Res Vet Sci,1995,59(2):106-109.
    57. Couacy-Hymann E., et al. Rapid and sensitive detection of peste des petits ruminants virus by apolymerase chain reaction assay. J Virol Methods,2002,100(1-2):17-25.
    58. Crotty S., et al. Cutting edge: long-term B cell memory in humans after smallpox vaccination. JImmunol,2003,171(10):4969-4973.
    59. Cunliffe H.R. Inactivation of foot-and-mouth disease virus with ethylenimine. Appl Microbiol,1973,26(5):747-750.
    60. Das S.C., et al. Recovery and characterization of a chimeric rinderpest virus with theglycoproteins of peste-des-petits-ruminants virus: homologous F and H proteins are requiredfor virus viability. J Virol,2000,74(19):9039-9047.
    61. Davis B.P., et al, Microbiology.3rd Edition ed.1980, London, UK: Harper and RowPublishers.
    62. de Avila Botton S., et al. Immunopotentiation of a foot-and-mouth disease virus subunitvaccine by interferon alpha. Vaccine,2006,24(17):3446-3456.
    63. De Boer C.J. Studies with tissue culture-modified rinderpest virus as an immunizing agent. JImmunol,1962,89:170-176.
    64. de Los Santos T., et al. The leader proteinase of foot-and-mouth disease virus inhibits theinduction of beta interferon mRNA and blocks the host innate immune response. J Virol,2006,80(4):1906-1914.
    65. de Los Santos T., et al. Degradation of nuclear factor kappa B during foot-and-mouth diseasevirus infection. J Virol,2007,81(23):12803-12815.
    66. Demkowicz W.E., Jr., et al. Human cytotoxic T-cell memory: long-lived responses to vacciniavirus. J Virol,1996,70(4):2627-2631.
    67. Desmyter J., et al. Defectiveness of interferon production and of rubella virus interference in aline of African green monkey kidney cells (Vero). J Virol,1968,2(10):955-961.
    68. Devaney M.A., et al. Leader protein of foot-and-mouth disease virus is required for cleavage ofthe p220component of the cap-binding protein complex. J Virol,1988,62(11):4407-4409.
    69. Diallo A., et al. Differentiation of rinderpest and peste des petits ruminants viruses usingspecific cDNA clones. J Virol Methods,1989,23(2):127-136.
    70. Diallo A., et al. Goat immune response to capripox vaccine expressing the hemagglutininprotein of peste des petits ruminants. Ann N Y Acad Sci,2002,969:88-91.
    71. Diallo A., et al. The threat of peste des petits ruminants: progress in vaccine development fordisease control. Vaccine,2007,25(30):5591-5597.
    72. DiMarchi R., et al. Protection of cattle against foot-and-mouth disease by a synthetic peptide.Science,1986,232(4750):639-641.
    73. DiPerna G., et al. Poxvirus protein N1L targets the I-kappaB kinase complex, inhibits signalingto NF-kappaB by the tumor necrosis factor superfamily of receptors, and inhibits NF-kappaBand IRF3signaling by toll-like receptors. J Biol Chem,2004,279(35):36570-36578.
    74. Doel T.R. FMD vaccines. Virus Res,2003,91(1):81-99.
    75. Domingo E., et al, Genetic variability and antigenic diversity of foot-and-mouth disease virus,in Virus variability, epidemiology and control, RGME., K., et al., Editors.1990, PlenumPublishing Corp: New York.233-266.
    76. Dominguez J., et al. Green fluorescent protein expressed by a recombinant vaccinia viruspermits early detection of infected cells by flow cytometry. J Immunol Methods,1998,220(1-2):115-121.
    77. Drake J.W. The length of the homologous pairing region for genetic recombination inbacteriophage T4. Proc Natl Acad Sci U S A,1967,58(3):962-966.
    78. Dubey S.C., et al. Live and inactivated tissue culture vaccines against goatpox. Indian Vet,1978,55:926-927.
    79. El Hag Ali B., et al. Isolation of peste des petits ruminants virus from the Sudan. Res Vet Sci,1984,36(1):1-4.
    80. Furley C.W., et al. An outbreak of peste des petits ruminants in a zoological collection. Vet Rec,1987,121(19):443-447.
    81. Gershon P.D., et al. A comparison of the genome organization of capripoxvirus with that of theorthopoxviruses. J Virol,1989,63(11):4703-4708.
    82. Gershon P.D., et al. A comparison of the genomes of capripoxvirus isolates of sheep, goats, andcattle. Virology,1988,164(2):341-349.
    83. Gershon P.D., et al. A capripoxvirus pseudogene whose only intact homologs are in otherpoxvirus genomes. Virology,1989,172(1):350-354.
    84. Gershon P.D., et al. The nucleotide sequence around the capripoxvirus thymidine kinase genereveals a gene shared specifically with leporipoxvirus. J Gen Virol,1989,70(Pt3):525-533.
    85. Gershon P.D., et al. Poxvirus genetic recombination during natural virus transmission. J GenVirol,1989,70(Pt2):485-489.
    86. Gibbs E.P., et al. Classification of peste des petits ruminants virus as the fourth member of thegenus Morbillivirus. Intervirology,1979,11(5):268-274.
    87. Gibbs P. The foot-and-mouth disease epidemic of2001in the UK: implications for the USAand the ""war on terror". J Vet Med Educ,2003,30(2):121-132.
    88. Gilbert Y., et al. Adaptation of the virus of peste des petits ruminants to tissu cultures. RevueElev-Med. Vet Pays Trop,1962,15(4):321-335.
    89. Grubman M.J. The5' end of foot-and-mouth disease virion RNA contains a protein covalentlylinked to the nucleotide pUp. Arch Virol,1980,63(3-4):311-315.
    90. Grubman M.J., et al. Foot-and-mouth disease. Clin Microbiol Rev,2004,17(2):465-493.
    91. Grubman M.J., et al. Protection of swine against foot-and-mouth disease with viral capsidproteins expressed in heterologous systems. Vaccine,1993,11(8):825-829.
    92. Guerra S., et al. Microarray analysis reveals characteristic changes of host cell gene expressionin response to attenuated modified vaccinia virus Ankara infection of human HeLa cells. J Virol,2004,78(11):5820-5834.
    93. Guerra S., et al. Host response to the attenuated poxvirus vector NYVAC: upregulation ofapoptotic genes and NF-kappaB-responsive genes in infected HeLa cells. J Virol,2006,80(2):985-998.
    94. Hammarlund E., et al. Duration of antiviral immunity after smallpox vaccination. Nat Med,2003,9(9):1131-1137.
    95. Han M.G., et al. Pathogenicity and vaccine efficacy of a thymidine kinase gene deletedinfectious laryngotracheitis virus expressing the green fluorescent protein gene. Arch Virol,2002,147(5):1017-1031.
    96. Heine H.G., et al. A capripoxvirus detection PCR and antibody ELISA based on the majorantigen P32, the homolog of the vaccinia virus H3L gene. J Immunol Methods,1999,227(1-2):187-196.
    97. Hoebe K., et al. Identification of Lps2as a key transducer of MyD88-independent TIRsignalling. Nature,2003,424(6950):743-748.
    98. Holowczak J.A., et al. Poxvirus DNA. II. Replication of vaccinia virus DNA in the cytoplasmof HeLa cells. Virology,1976,72(1):134-146.
    99. Hosamani M., et al. Differentiation of sheep pox and goat poxviruses by sequence analysis andPCR-RFLP of P32gene. Virus Genes,2004,29(1):73-80.
    100. Hosamani M., et al. A Vero cell-attenuated Goatpox virus provides protection against virulentvirus challenge. Acta Virol,2004,48(1):15-21.
    101. Hosamani M., et al. A bivalent vaccine against goat pox and Peste des Petits ruminants inducesprotective immune response in goats. Vaccine,2006,24(35-36):6058-6064.
    102. Howell M.D., et al. Cytokine milieu of atopic dermatitis skin subverts the innate immuneresponse to vaccinia virus. Immunity,2006,24(3):341-348.
    103. Howell M.D., et al. Selective killing of vaccinia virus by LL-37: implications for eczemavaccinatum. J Immunol,2004,172(3):1763-1767.
    104. Hussain M., et al. An outbreak of peste des petits ruminants in goats in Rawalpindi [Pakistan].Pakistan Veterinary Journal,1998,18.
    105. Ink B.S., et al. Transcription of a poxvirus early gene is regulated both by a short promoterelement and by a transcriptional termination signal controlling transcriptional interference. JVirol,1989,63(11):4632-4644.
    106. Ismail I.M., et al. Evidence of identification of peste des petits ruminants from goats in Egypt.Arch Exp Veterinarmed,1990,44(3):471-474.
    107. Jackson R.J., et al. Expression of mouse interleukin-4by a recombinant ectromelia virussuppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. JVirol,2001,75(3):1205-1210.
    108. Jackson T., et al. Structure and receptor binding. Virus Res,2003,91(1):33-46.
    109. Jahrling P.B., et al. Exploring the potential of variola virus infection of cynomolgus macaquesas a model for human smallpox. Proc Natl Acad Sci U S A,2004,101(42):15196-15200.
    110. Jones L., et al. Protection of goats against peste des petits ruminants with a vaccinia virusdouble recombinant expressing the F and H genes of rinderpest virus. Vaccine,1993,11(9):961-964.
    111. Jungwirth C., et al. Effect of poxvirus infection on host cell deoxyribonucleic acid synthesis. JVirol,1968,2(5):401-408.
    112. Kadymov R.A.[Combined vaccination of sheep against anthrax, pox and anaerobic infections].Veterinariia,1975(2):50-52.
    113. Karupiah G., et al. Different roles for CD4+and CD8+T lymphocytes and macrophage subsetsin the control of a generalized virus infection. J Virol,1996,70(12):8301-8309.
    114. Khandelwal A., et al. Oral immunization of cattle with hemagglutinin protein of rinderpestvirus expressed in transgenic peanut induces specific immune responses. Vaccine,2003,21(23):3282-3289.
    115. Kibler K.V., et al. Double-stranded RNA is a trigger for apoptosis in vaccinia virus-infectedcells. J Virol,1997,71(3):1992-2003.
    116. Kit M., et al. Bovine herpesvirus-1(infectious bovine rhinotracheitis virus)-based viral vectorwhich expresses foot-and-mouth disease epitopes. Vaccine,1991,9(8):564-572.
    117. Kitching R.P., et al. The characterization of African strains of capripoxvirus. Epidemiol Infect,1989,102(2):335-343.
    118. Kitching R.P., et al. Comparison of the external dimensions of capripoxvirus isolates. Res VetSci,1986,41(3):425-427.
    119. Kitson J.D., et al. Chimeric polioviruses that include sequences derived from two independentantigenic sites of foot-and-mouth disease virus (FMDV) induce neutralizing antibodies againstFMDV in guinea pigs. J Virol,1991,65(6):3068-3075.
    120. Kleid D.G., et al. Cloned viral protein vaccine for foot-and-mouth disease: responses in cattleand swine. Science,1981,214(4525):1125-1129.
    121. Kwiatek O., et al. Peste des petits ruminants (PPR) outbreak in Tajikistan. J Comp Pathol,2007,136(2-3):111-119.
    122. Laporte J. The structure of foot-and-mouth disease virus protein. J Gen Virol,1969,4(4):631-634.
    123. Laporte J., et al.[Neutralization of the infective power of the foot-and-mouth disease virus incell culture by using serums from pigs immunized with a purified viral protein]. C R Acad SciHebd Seances Acad Sci D,1973,276(25):3399-3401.
    124. Laurent A. Aspects biologiques de la multiplication du virus de la peste des petits ruminants surles cultures cellulaire. Rev. Elev. Méd. Vét. Pays Trop,1968,21:297-308.
    125. Lee S.B., et al. The interferon-induced double-stranded RNA-activated protein kinase inducesapoptosis. Virology,1994,199(2):491-496.
    126. Lewis S.A., et al. Expression, processing, and assembly of foot-and-mouth disease virus capsidstructures in heterologous systems: induction of a neutralizing antibody response in guinea pigs.J Virol,1991,65(12):6572-6580.
    127. Li S.H., et al.[Construction of recombinant plasmid using Neo/E Technology]. Sheng WuGong Cheng Xue Bao,2005,21(4):520-523.
    128. Li X., et al. Induction of protective immunity in swine by immunization with live attenuatedrecombinant pseudorabies virus expressing the capsid precursor encoding regions offoot-and-mouth disease virus. Vaccine,2008,26(22):2714-2722.
    129. Li Z., et al. Expression of foot-and-mouth disease virus capsid proteins insilkworm-baculovirus expression system and its utilization as a subunit vaccine. PLoS One,2008,3(5): e2273.
    130. Libeau G., et al. Rapid differential diagnosis of rinderpest and peste des petits ruminants usingan immunocapture ELISA. Vet Rec,1994,134(12):300-304.
    131. Libeau G., et al. Development of a competitive ELISA for detecting antibodies to the peste despetits ruminants virus using a recombinant nucleoprotein. Res Vet Sci,1995,58(1):50-55.
    132. Lombard M., et al. A brief history of vaccines and vaccination. Rev Sci Tech,2007,26(1):29-48.
    133. Lublin-Tennenbaum T., et al. Correlation between cutaneous reaction in vaccinees immunizedagainst smallpox and antibody titer determined by plaque neutralization test and ELISA. ViralImmunol,1990,3(1):19-25.
    134. Ma M., et al. Immune responses of swine inoculated with a recombinant fowlpox virusco-expressing P12A and3C of FMDV and swine IL-18. Vet Immunol Immunopathol,2008,121(1-2):1-7.
    135. Mackett M., et al. Vaccinia virus expression vectors. J Gen Virol,1986,67(Pt10):2067-2082.
    136. Mackett M., et al. Vaccinia virus: a selectable eukaryotic cloning and expression vector. ProcNatl Acad Sci U S A,1982,79(23):7415-7419.
    137. Mahapatra M., et al. Matrix protein and glycoproteins F and H of Peste-des-petits-ruminantsvirus function better as a homologous complex. J Gen Virol,2006,87(Pt7):2021-2029.
    138. Mariner J.C., et al. The use of thermostable Vero cell-adapted rinderpest vaccine as aheterologous vaccine against peste des petits ruminants. Res Vet Sci,1993,54(2):212-216.
    139. Mariner J.C., et al. The serological response to a thermostable Vero cell-adapted rinderpestvaccine under field conditions in Niger. Vet Microbiol,1990,22(2-3):119-127.
    140. Martin W.B., et al. A Field Trial in South Africa of an Attenuated Vaccine againstFoot-and-Mouth Disease. Res Vet Sci,1965,6:196-201.
    141. Martrenchar A., et al. Experimental study of a mixed vaccine against peste des petits ruminantsand capripox infection in goats in northern Cameroon. Small Ruminant Research,1997,26(1):39-44.
    142. Mason P.W., et al. Evaluation of a live-attenuated foot-and-mouth disease virus as a vaccinecandidate. Virology,1997,227(1):96-102.
    143. Mateo R., et al. Engineering viable foot-and-mouth disease viruses with increasedthermostability as a step in the development of improved vaccines. J Virol,2008,82(24):12232-12240.
    144. Mayr G.A., et al. Development of replication-defective adenovirus serotype5containing thecapsid and3C protease coding regions of foot-and-mouth disease virus as a vaccine candidate.Virology,1999,263(2):496-506.
    145. Mayr G.A., et al. Immune responses and protection against foot-and-mouth disease virus(FMDV) challenge in swine vaccinated with adenovirus-FMDV constructs. Vaccine,2001,19(15-16):2152-2162.
    146. McCurdy L.H., et al. Modified vaccinia virus Ankara immunization protects against lethalchallenge with recombinant vaccinia virus expressing murine interleukin-4. J Virol,2004,78(22):12471-12479.
    147. McKenna T.S., et al. Receptor binding site-deleted foot-and-mouth disease (FMD) virusprotects cattle from FMD. J Virol,1995,69(9):5787-5790.
    148. Mingxiao M., et al. Immunogenicity of plasmids encoding P12A and3C of FMDV and swineIL-18. Antiviral Res,2007,76(1):59-67.
    149. Moraes M.P., et al. Early protection against homologous challenge after a single dose ofreplication-defective human adenovirus type5expressing capsid proteins of foot-and-mouthdisease virus (FMDV) strain A24. Vaccine,2002,20(11-12):1631-1639.
    150. Mort M., et al. Psychosocial effects of the2001UK foot and mouth disease epidemic in a ruralpopulation: qualitative diary based study. BMJ,2005,331(7527):1234.
    151. Moss B. Regulation of vaccinia virus transcription. Annu Rev Biochem,1990,59:661-688.
    152. Moss B. Genetically engineered poxviruses for recombinant gene expression, vaccination, andsafety. Proc Natl Acad Sci U S A,1996,93(21):11341-11348.
    153. Moss B., et al. Cytoplasmic transcription system encoded by vaccinia virus. J Biol Chem,1991,266(3):1355-1358.
    154. Moss B., et al. Vaccinia virus expression vectors. Annu Rev Immunol,1987,5:305-324.
    155. Moss B., et al. Vaccinia virus expression vectors. Ann N Y Acad Sci,1989,569:86-103.
    156. Mowat G.N., et al. The development of an attenuated foot-and-mouth disease virus vaccine bymodification and cloning in tissue cultures of BHK21cells. Arch Gesamte Virusforsch,1969,26(4):341-354.
    157. Mowat G.N., et al. Use of BHK21cells in the preparation of mouse attenuated livefoot-and-mouth disease vaccines for the immunization of cattle. Nature,1962,196:655-656.
    158. Ngichabe C.K., et al. Trial of a capripoxvirus-rinderpest recombinant vaccine in African cattle.Epidemiol Infect,1997,118(1):63-70.
    159. Ngichabe C.K., et al. Long term immunity in African cattle vaccinated with a recombinantcapripox-rinderpest virus vaccine. Epidemiol Infect,2002,128(2):343-349.
    160. Nolan T., et al. Reactogenicity and immunogenicity of a live attenuated tetravalentmeasles-mumps-rubella-varicella (MMRV) vaccine. Vaccine,2002,21(3-4):281-289.
    161. Oie K.L., et al. Cowpox virus and other members of the orthopoxvirus genus interfere with theregulation of NF-kappaB activation. Virology,2001,288(1):175-187.
    162. Pacheco J.M., et al. Rapid protection of cattle from direct challenge with foot-and-mouthdisease virus (FMDV) by a single inoculation with an adenovirus-vectored FMDV subunitvaccine. Virology,2005,337(2):205-209.
    163. Palaniswami K.S., Peste des petits ruminants: strategies for control and eradication, in NationalSeminar on Pesticide, Antibiotic Residues and Other Toxins in Feed, Livestock and PoultryProducts and Strategies for Control and Eradication of Peste des Petits Ruminants.2005:Bangalore, India.
    164. Panchanathan V., et al. Interferon function is not required for recovery from a secondarypoxvirus infection. Proc Natl Acad Sci U S A,2005,102(36):12921-12926.
    165. Panicali D., et al. Vaccinia virus vectors utilizing the beta-galactosidase assay for rapidselection of recombinant viruses and measurement of gene expression. Gene,1986,47(2-3):193-199.
    166. Pansegrau W., et al. Nucleotide sequence of the kanamycin resistance determinant of plasmidRP4: homology to other aminoglycoside3'-phosphotransferases. Plasmid,1987,18(3):193-204.
    167. Parida S., et al. Rescue of a chimeric rinderpest virus with the nucleocapsid protein derivedfrom peste-des-petits-ruminants virus: use as a marker vaccine. J Gen Virol,2007,88(Pt7):2019-2027.
    168. Parks R.J., et al. The effect of transcription on genetic recombination in poxvirus-infected cells.Virus Res,1996,41(1):11-23.
    169. Pena L., et al. Delivery of a foot-and-mouth disease virus empty capsid subunit antigen withnonstructural protein2B improves protection of swine. Vaccine,2008,26(45):5689-5699.
    170. Piacente S., et al. Determinants of vaccinia virus early gene transcription termination. Virology,2008,376(1):211-224.
    171. Plowright W. Symposium: The smallest stowaways.3. Rinderpest. Vet Rec,1965,77(48):1431-1437.
    172. Plowright W., et al. Studies with rinderpest virus in tissue culture. I. Growth andcytopathogenicity. J Comp Pathol,1959,69(2):152-172.
    173. Plowright W., et al. Studies with rinderpest virus in tissue culture. II. Pathogenicity for cattle ofculture-passaged virus. J Comp Pathol,1959,69(2):173-184.
    174. PWaGMJ. M., Foot-and-mouth disease, in Vaccines, BADTaS, L.R., Editor.2008, New YorkAcademic Press.361-377.
    175. Radostits O.M., et al, Peste des petits ruminants, in Veterinary Medicine.2000: WB Saunders,London, UK.1077-1079.
    176. Rahman M.M., et al. Baculovirus display of fusion protein of Peste des petits ruminants virusand hemagglutination protein of Rinderpest virus and immunogenicity of the displayed proteinsin mouse model. Virology,2003,317(1):36-49.
    177. Rai A., et al. Immunogenicity of a virion polypeptide of sheep poxvirus in sheep. Indian J.Virol,1986,2(1):11-15.
    178. Rajak K.K., et al. Experimental studies on immunosuppressive effects of peste des petitsruminants (PPR) virus in goats. Comp Immunol Microbiol Infect Dis,2005,28(4):287-296.
    179. Ramshaw I.A., et al. Cytokines and immunity to viral infections. Immunol Rev,1997,159:119-135.
    180. Ramyar H., et al. Development of an attenuated live virus vaccine against sheep pox. ZentralblVeterinarmed B,1967,14(6):516-519.
    181. Ramyar H., et al. Studies on the duration of immunity conferred by a live-modified sheep poxtissue culture virus vaccine. Zentralbl Veterinarmed B,1970,17(8):869-874.
    182. Rao T.V., et al. A comprehensive review of goat pox and sheep pox and their diagnosis. AnimHealth Res Rev,2000,1(2):127-136.
    183. Rieder E., et al. Vaccines prepared from chimeras of foot-and-mouth disease virus (FMDV)induce neutralizing antibodies and protective immunity to multiple serotypes of FMDV. J Virol,1994,68(11):7092-7098.
    184. Rieder E., et al. Genetically engineered foot-and-mouth disease viruses with poly(C) tracts oftwo nucleotides are virulent in mice. J Virol,1993,67(9):5139-5145.
    185. Rieder E., et al. Analysis of a foot-and-mouth disease virus type A24isolate containing an SGDreceptor recognition site in vitro and its pathogenesis in cattle. J Virol,2005,79(20):12989-12998.
    186. Riyesh T. Evaluation of extrinsic stabilizers on the stability of thermoresistant PPR vaccines. inMVSc thesis. IVRI (Indian Veterinary Research Institute).2008. Izatnagar, Uttar Pradesh,India.
    187. Robertson B.H., et al. Nucleotide and amino acid sequence coding for polypeptides offoot-and-mouth disease virus type A12. J Virol,1985,54(3):651-660.
    188. Rodriguez L.L., et al. A synthetic peptide containing the consensus sequence of the G-H loopregion of foot-and-mouth disease virus type-O VP1and a promiscuous T-helper epitopeinduces peptide-specific antibodies but fails to protect cattle against viral challenge. Vaccine,2003,21(25-26):3751-3756.
    189. Rohrmann G., et al. Transcription of vaccinia virus early genes by enzymes isolated fromvaccinia virions terminates downstream of a regulatory sequence. Cell,1986,46(7):1029-1035.
    190. Romero C.H., et al. Recombinant capripoxvirus expressing the hemagglutinin protein gene ofrinderpest virus: protection of cattle against rinderpest and lumpy skin disease viruses. Virology,1994,204(1):425-429.
    191. Romero C.H., et al. Single capripoxvirus recombinant vaccine for the protection of cattleagainst rinderpest and lumpy skin disease. Vaccine,1993,11(7):737-742.
    192. Romero C.H., et al. Protection of goats against peste des petits ruminants with recombinantcapripoxviruses expressing the fusion and haemagglutinin protein genes of rinderpest virus.Vaccine,1995,13(1):36-40.
    193. Romero C.H., et al. Protection of cattle against rinderpest and lumpy skin disease with arecombinant capripoxvirus expressing the fusion protein gene of rinderpest virus. Vet Rec,1994,135(7):152-154.
    194. Roosien J., et al. Synthesis of foot-and-mouth disease virus capsid proteins in insect cells usingbaculovirus expression vectors. J Gen Virol,1990,71(Pt8):1703-1711.
    195. Rowland A.C., et al. The histological relationship between "peste des petits ruminants" andkata in West Africa. Rev Elev Med Vet Pays Trop,1970,23(3):301-307.
    196. Rowland A.C., et al. The pathology of an erosive stomatitis and enteritis in West-African dwarfgoats. J Pathol,1969,98(1):83-87.
    197. Rowlands D.J., et al. Relationship of the antigenic structure of foot-and-mouth disease virus tothe process of infection. J Gen Virol,1971,13(1):85-93.
    198. Rowlands D.J., et al. A comparative chemical and serological study of the full and emptyparticles of foot-and mouth disease virus. J Gen Virol,1975,26(3):227-238.
    199. Rubins K.H., et al. The host response to smallpox: analysis of the gene expression program inperipheral blood cells in a nonhuman primate model. Proc Natl Acad Sci U S A,2004,101(42):15190-15195.
    200. Rufael T., et al. Foot and mouth disease in the Borana pastoral system, southern Ethiopia andimplications for livelihoods and international trade. Trop Anim Health Prod,2008,40(1):29-38.
    201. Rweyemamu M.M., et al. Stability and immunogenicity of empty particles of foot-and-mouthdisease virus. Arch Virol,1979,59(1-2):69-79.
    202. Sa-Carvalho D., et al. Tissue culture adaptation of foot-and-mouth disease virus selects virusesthat bind to heparin and are attenuated in cattle. J Virol,1997,71(7):5115-5123.
    203. Sabin A.B., et al. History of Sabin attenuated poliovirus oral live vaccine strains. J. Biol. Stand,1973,1(2):115-118.
    204. Saiz J.C., et al. Unprocessed foot-and-mouth disease virus capsid precursor displaysdiscontinuous epitopes involved in viral neutralization. J Virol,1994,68(7):4557-4564.
    205. Sanz-Parra A., et al. Analysis of the B and T cell response in guinea pigs induced withrecombinant vaccinia expressing foot-and-mouth disease virus structural proteins. Arch Virol,1998,143(2):389-398.
    206. Sanz-Parra A., et al. Evidence of partial protection against foot-and-mouth disease in cattleimmunized with a recombinant adenovirus vector expressing the precursor polypeptide (P1) offoot-and-mouth disease virus capsid proteins. J Gen Virol,1999,80(Pt3):671-679.
    207. Saravanan P., et al. Mixed infection of peste des petits ruminants and orf on a goat farm inShahjahanpur, India. Vet Rec,2007,160(12):410-412.
    208. Saravanan P., et al. Comparative efficacy of peste des petits ruminants (PPR) vaccines.Biologicals,2010,38(4):479-485.
    209. Sarkar J., et al. Comparative efficacy of various chemical stabilizers on the thermostability of alive-attenuated peste des petits ruminants (PPR) vaccine. Vaccine,2003,21(32):4728-4735.
    210. Sen A. Development and evaluation of a thermostable peste des petits ruminants (PPR) vaccineusing heavy water (D2O). in PhD thesis. IVRI (Indian Veterinary Research Institute).2009.Izatnagar, Uttar Pradesh, India.
    211. Sen A., et al. Role of heavy water in biological sciences with an emphasis onthermostabilization of vaccines. Expert Rev Vaccines,2009,8(11):1587-1602.
    212. Sen A., et al, Application of deuterium in stabilisation of a live attenuated veterinary viralvaccine against peste des petits ruminants (PPR) in goats, in NAHDW-2010.2010: Mumbai,India.
    213. Sen A., et al. Vaccines against peste des petits ruminants virus. Expert Rev Vaccines,2010,9(7):785-796.
    214. Serruto D., et al. Biotechnology and vaccines: application of functional genomics to Neisseriameningitidis and other bacterial pathogens. J Biotechnol,2004,113(1-3):15-32.
    215. Seth S., et al. The hemagglutinin-neuraminidase protein of peste des petits ruminants virus isbiologically active when transiently expressed in mammalian cells. Virus Res,2001,75(2):169-177.
    216. Shaila M.S., et al. Geographic distribution and epidemiology of peste des petits ruminants virus.Virus Res,1996,43(2):149-153.
    217. Sharma D.P., et al. Interleukin-4mediates down regulation of antiviral cytokine expression andcytotoxic T-lymphocyte responses and exacerbates vaccinia virus infection in vivo. J Virol,1996,70(10):7103-7107.
    218. Shinagawa H., et al. Processing the holliday junction in homologous recombination. TrendsBiochem Sci,1996,21(3):107-111.
    219. Shisler J.L., et al. The vaccinia virus K1L gene product inhibits host NF-kappaB activation bypreventing IkappaBalpha degradation. J Virol,2004,78(7):3553-3560.
    220. Sigal N., et al. Genetic recombination: the nature of a crossed strand-exchange between twohomologous DNA molecules. J Mol Biol,1972,71(3):789-793.
    221. Singh R.K., et al, Non-nuclear applications of heavy water, in NAHDW-2010.2010: Mumbai,India.
    222. Singh R.P., et al. Virological and antigenic characterization of two Peste des Petits Ruminants(PPR) vaccine viruses of Indian origin. Comp Immunol Microbiol Infect Dis,2010,33(4):343-353.
    223. Singh R.P., et al. Development of a monoclonal antibody based competitive-ELISA fordetection and titration of antibodies to peste des petits ruminants (PPR) virus. Vet Microbiol,2004,98(1):3-15.
    224. Sinnathamby G., et al. Recombinant hemagglutinin protein of rinderpest virus expressed ininsect cells induces humoral and cell mediated immune responses in cattle. Vaccine,2001,19(28-29):3870-3876.
    225. Smith G.L. Vaccinia virus vectors for gene expression. Curr Opin Biotechnol,1991,2(5):713-717.
    226. Smith G.L., New challenges to health: the threat of virus infection. Vol.60.2001: CambridgeUniversity Press.
    227. Smith G.L., et al. Infectious poxvirus vectors have capacity for at least25000base pairs offoreign DNA. Gene,1983,25(1):21-28.
    228. Solyom F., et al. A live attenuated virus vaccine against sheep pox. Acta Vet Acad Sci Hung,1981,28(4):389-398.
    229. Spriggs M.K., et al. Vaccinia and cowpox viruses encode a novel secreted interleukin-1-bindingprotein. Cell,1992,71(1):145-152.
    230. Sreenivasa B.P., et al, Development of peste des petits ruminants (PPR) challenge virus from afield isolate, in XIV Annual Conference and National Seminar on Management of ViralDiseases with Emphasis on Global Trade and WTO Regime of Indian Virological Society.2002:Hebbal, Bangalore, India.
    231. Stack J., et al. Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1receptoradaptors and contributes to virulence. J Exp Med,2005,201(6):1007-1018.
    232. Strebel K., et al. A second protease of foot-and-mouth disease virus. J Virol,1986,58(3):893-899.
    233. Sumption K., et al. Incidence and distribution of foot-and-mouth disease in Asia, Africa andSouth America; combining expert opinion, official disease information and livestockpopulations to assist risk assessment. Transbound Emerg Dis,2008,55(1):5-13.
    234. Swartz T.A., et al. Combined trivalent and bivalent measles, mumps and rubella virusvaccination. A controlled trial. Infection,1974,2(3):115-117.
    235. Taboga O., et al. A large-scale evaluation of peptide vaccines against foot-and-mouth disease:lack of solid protection in cattle and isolation of escape mutants. J Virol,1997,71(4):2606-2614.
    236. Taylor W.P., et al. The isolation of peste des petits ruminants virus from Nigerian sheep andgoats. Res Vet Sci,1979,26(1):94-96.
    237. Thompson C.J., et al. Nucleotide sequence of a streptomycete aminoglycosidephosphotransferase gene and its relationship to phosphotransferases encoded by resistanceplasmids. Proc Natl Acad Sci U S A,1983,80(17):5190-5194.
    238. Traktman P. The enzymology of poxvirus DNA replication. Curr Top Microbiol Immunol,1990,163:93-123.
    239. Tscharke D.C., et al. Dermal infection with vaccinia virus reveals roles for virus proteins notseen using other inoculation routes. J Gen Virol,2002,83(Pt8):1977-1986.
    240. Tulman E.R., et al. Genome of lumpy skin disease virus. J Virol,2001,75(15):7122-7130.
    241. Tulman E.R., et al. The genomes of sheeppox and goatpox viruses. J Virol,2002,76(12):6054-6061.
    242. Vakharia V.N., et al. Proteolytic processing of foot-and-mouth disease virus polyproteinsexpressed in a cell-free system from clone-derived transcripts. J Virol,1987,61(10):3199-3207.
    243. Varich N.L., et al. Transcription of both DNA strands of vaccinia virus genome in vivo.Virology,1979,96(2):412-430.
    244. Wade-Evans A.M., et al. Expression of the major core structural protein (VP7) of bluetonguevirus, by a recombinant capripox virus, provides partial protection of sheep against a virulentheterotypic bluetongue virus challenge. Virology,1996,220(1):227-231.
    245. Waldmann O., et al.[Preparation of foot and mouth disease vaccine according to Waldmannand Kobe using calves as the antigen source]. Zentralbl Bakteriol Orig,1955,163(4):239-244.
    246. Warren R.D., et al. Reverse genetics analysis of poxvirus intermediate transcription factors. JVirol,2012,86(17):9514-9519.
    247. Wasilenko S.T., et al. The vaccinia virus F1L protein interacts with the proapoptotic proteinBak and inhibits Bak activation. J Virol,2005,79(22):14031-14043.
    248. Wasilenko S.T., et al. Vaccinia virus encodes a previously uncharacterizedmitochondrial-associated inhibitor of apoptosis. Proc Natl Acad Sci U S A,2003,100(24):14345-14350.
    249. West S.C. Formation, translocation and resolution of Holliday junctions during homologousgenetic recombination. Philos Trans R Soc Lond B Biol Sci,1995,347(1319):21-25.
    250. Wherry E.J., et al. Memory CD8T-cell differentiation during viral infection. J Virol,2004,78(11):5535-5545.
    251. Wigdorovitz A., et al. Induction of a protective antibody response to foot and mouth diseasevirus in mice following oral or parenteral immunization with alfalfa transgenic plantsexpressing the viral structural protein VP1. Virology,1999,255(2):347-353.
    252. Wigdorovitz A., et al. Protection of mice against challenge with foot and mouth disease virus(FMDV) by immunization with foliar extracts from plants infected with recombinant tobaccomosaic virus expressing the FMDV structural protein VP1. Virology,1999,264(1):85-91.
    253. Wong H.T., et al. Plasmids encoding foot-and-mouth disease virus VP1epitopes elicitedimmune responses in mice and swine and protected swine against viral infection. Virology,2000,278(1):27-35.
    254. Worrall E.E., et al. Xerovac: an ultra rapid method for the dehydration and preservation of liveattenuated Rinderpest and Peste des Petits ruminants vaccines. Vaccine,2000,19(7-8):834-839.
    255. Wu R., et al. Thermostabilization of live virus vaccines by heavy water (D2O). Vaccine,1995,13(12):1058-1063.
    256. Yadav M., et al. Studies on inactivated goat pox vaccine. Indian Journal of Virology,1986,2(2):207-221.
    257. Yamanouchi K., et al. Progress in the development of a heat-stable recombinant rinderpestvaccine using an attenuated vaccinia virus vector. Rev Sci Tech,1994,13(3):721-735.
    258. Yamanouchi K., et al. Immunisation of cattle with a recombinant vaccinia vector expressing thehaemagglutinin gene of rinderpest virus. Vet Rec,1993,132(7):152-156.
    259. Yogisharadhya R., et al. Comparative efficacy of live replicating sheeppox vaccine strains inOvines. Biologicals,2011,39(6):417-423.
    260. Zheng M., et al. Immunogenicity and protective efficacy of Semliki forest virus replicon-basedDNA vaccines encoding goatpox virus structural proteins. Virology,2009,391(1):33-43.
    261. Zhidkov S.A., et al.[A study of the properties of attenuated cold variant of type Ofoot-and-mouth disease virus]. Veterinariia,1969,10:29-31.
    262. Zhou Q., et al. Target protease specificity of the viral serpin CrmA. Analysis of five caspases. JBiol Chem,1997,272(12):7797-7800.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700