PeroxiredoxinⅠ对乳腺癌细胞放射敏感性的影响及其作用机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是女性最常见的恶性肿瘤,全世界每年约120万妇女发病,50万妇女死于乳腺癌。尽管目前在乳腺癌的综合治疗方面已取得了长足进步,但仍有20%~30%的乳腺癌患者治疗后局部复发和远处转移。因此探索新的治疗手段成为进一步提高乳腺癌治疗效果的突破口。
     放射治疗是恶性肿瘤治疗的主要手段之一,而肿瘤细胞的放射敏感性是决定放射治疗疗效的关键因素。近年来,随着对肿瘤放射生物学的深入研究,发现一些基因表达影响着肿瘤细胞的放射敏感性。基因治疗策略可将肿瘤细胞中特异或差异表达的基因敲除,实现特定基因在体内的可控性表达,逆转肿瘤细胞对放化疗的抗拒,从而增加其治疗的敏感性。
     Peroxiredoxins(Prxs)是新发现的一类过氧化物酶,在清除体内活性氧中发挥着重要作用,可保护细胞免受过氧化反应造成的损伤。PeroxiredoxinⅠ(PrxⅠ)是Prxs蛋白家族成员之一,在包括乳腺癌在内的多种恶性肿瘤细胞中存在过表达,其表达与肿瘤细胞的增殖、分化、转移、复发及放化疗敏感性密切相关,并可作为诊断肿瘤的分子标志。因此,PrxⅠ可能是肿瘤基因治疗的理想靶点。
     DNA双链断裂(Double strand break,DSB)是电离辐射治疗肿瘤的重要机制。DNA损伤后可激活机体内的损伤修复系统,使受损的DNA得以及时修复,以保证机体基因组的稳定。研究发现:DNA损伤感应分子γ-H2AX和DNA损伤修复的关键蛋白Rad51可能在其发挥重要作用。
     本研究将基因治疗和放射治疗结合起来,以PrxⅠ为靶点,构建针对PrxⅠ特异性的shRNA真核表达载体,下调乳腺癌MCF-7细胞中PrxⅠ的表达,观察其对放射线的敏感性变化,并探讨相关作用机制,阐明PrxⅠ基因在乳腺癌放射治疗中的作用,为乳腺癌基因治疗提供新的靶位。
     方法与结果
     第一部分:靶向PeroxiredoxinⅠ基因的shRNA真核表达载体构建及功能鉴定
     方法:根据RNA干扰设计原则,设计并合成四条靶向PrxⅠ基因的shRNA干扰序列及阴性对照序列(HK)。先用BbsⅠ及BamHⅠ限制性内切酶双酶切pGPU6/GFP/Neo质粒载体使之线性化,然后通过DNA连接酶将shRNA连接至质粒载体中,经转化、筛选、阳性克隆扩增、抽提重组质粒DNA后,行BamHⅠ、PstⅠ单酶切和DNA测序鉴定;将鉴定正确重组质粒通过脂质体转染入乳腺癌MCF-7细胞。荧光显微镜、流式细胞仪观察并检测转染48h时转染效率;采用RT-PCR及Western blot检测转染前后细胞中的PrxⅠmRNA和蛋白表达变化。
     结果:成功构建了四个靶向PrxⅠ基因的shRNA真核表达载体pGPU6-Prx1、pGPU6-Prx2、pGPU6-Prx3、pGPU6-Prx4及阴性表达载体pGPU6-HK,通过脂质体将上述五个重组质粒成功转染入乳腺癌MCF-7细胞中,48h后检测发现各组细胞转染效率均在80%左右。RT-PCR及Western blot检测发现:四个重组质粒均能明显下调乳腺癌细胞MCF-7中的PrxⅠ基因表达,其中pGPU6-Prx3重组质粒的抑制效果最明显,其mRNA及蛋白表达分别抑制了82.6%和80.5%,与对照组和pGPU6-HK组比较差异具有显著性(P<0.05)。成功筛选出抑制效果最佳的一条shRNA,为后续PrxⅠ基因的功能研究奠定了基础。
     第二部分:靶向沉默PeroxiredoxinⅠ基因对乳腺癌细胞放射敏感性的影响及其作用机制
     方法:将pGPU6-HK、pGPU6-Prx3重组质粒通过脂质体转染入乳腺癌细胞中,通过G418加压筛选建立稳定细胞株,采用RT-PCR、Western blot检测PrxⅠ基因的mRNA和蛋白表达水平。实验分四组:pGPU6-HK组、pGPU6-PrxⅠ组、pGPU6-HK+照射(IR)组、pGPU6-PrxⅠ+IR组。IR组给予单次剂量6Gy的X线照射,在照射48h时通过流式细胞仪检测细胞内活性氧水平、细胞周期、细胞凋亡的变化;MTT法检测细胞增殖能力;Hoechst法观察细胞核形态变化,间接判定细胞凋亡情况;克隆形成实验检测经0、2、4、6、8、10Gy剂量照射后细胞克隆形成率,绘制细胞存活曲线,计算放射生物学参数Do、N、Dq、SF2值,判断细胞的放射敏感性变化;采用Western blot检测DNA双链断裂的标志性蛋白γ-H2AX以及DNA损伤后修复的关键蛋白Rad51表达。
     结果:通过G418加压筛选4周后获取了2个稳定细胞株:pGPU6-PrxⅠ和pGPU6-HK。RT-PCR和Western bolt检测发现:与pGPU6-HK组相比,pGPU6-PrxⅠ组中PrxⅠmRNA和蛋白表达量明显减少,抑制率分别为84.8%和83.5%,差异具有显著性(P﹤0.05)。MTT、流式细胞及Hoechst检测结果显示:给予6Gy的X射线照射48h后,pGPU6-PrxⅠ组及联合IR组中细胞内活性氧水平明显升高、G1期增多、S期细胞减少、细胞凋亡显著增加、细胞增殖明显延迟、核浓缩、碎片化等凋亡典型形态改变的细胞增多,与pGPU6-HK比较,差异均具有显著性(P﹤0.05);其中以pGPU6-PrxⅠ+IR组上述变化最明显,与pGPU6-PrxⅠ及pGPU6-HK+IR比较,差异也具有显著性(P﹤0.05)。克隆形成实验结果显示:经不同放射剂量的X线照射后,pGPU6-PrxⅠ组及联合IR组中细胞克隆形成率降低,其中pGPU6-PrxⅠ+IR组细胞的放射生物学参数Do、N、Dq、SF2值分别为1.354、3.106、1.547、0.504,2Gy照射剂量时SER为1.353;Western blot检测结果显示:pGPU6-PrxⅠ组及联合IR组中Rad51蛋白表达明显降低,而γ-H2AX蛋白表达显著升高,与pGPU6-HK组相比,差异具有显著性(P﹤0.01),以pGPU6-PrxⅠ+IR组中更明显,其Rad51蛋白表达下降了79.3%,而γ-H2AX蛋白表达升高了3.7倍,与pGPU6-PrxⅠ组、pGPU6-HK+IR组相比,差异也具有显著性(P﹤0.05)。
     第三部分:靶向沉默PeroxiredoxinⅠ基因对乳腺癌裸鼠移植瘤放射敏感性的影响
     方法:将稳定筛选的pGPU6-HK、pGPU6-PrxⅠ两株细胞接种于BALB/c裸鼠皮下,以肿瘤长径达5mm作为判断乳腺癌移植瘤模型建立成功标准。实验分四组:pGPU6-HK组、pGPU6-PrxⅠ组、pGPU6-HK+照射(IR)组、pGPU6-PrxⅠ+IR组。IR组给予每次2Gy,隔日一次,总剂量为10Gy,观察移植瘤生长变化,照射第30d处死裸鼠,剥离肿瘤组织,称取瘤重,计算抑瘤率;免疫组化检测肿瘤组织中的PrxⅠ和促凋亡蛋白Caspase3表达;透射电镜观察肿瘤组织细胞的超微结构;Western blot检测肿瘤组织中DNA双链断裂的标志性蛋白γ-H2AX以及DNA损伤后修复的关键蛋白Rad51表达。
     结果:成功建立了裸鼠移植瘤模型,pGPU6-HK组及pGPU6-PrxⅠ组细胞成瘤时间分别为10d和14d,pGPU6-PrxⅠ组移植瘤生长相对较慢,肿瘤体积较小,重量较轻,其抑瘤率为37.8%,与pGPU6-HK组相比,差异具有显著性(P﹤0.01)。当给予10Gy的X线剂量照射后,联合IR组裸鼠移植瘤消退速度大于生长速度,肿瘤体积缩小,但在照射结束后第三天肿瘤出现正生长,其生长速度较pGPU6-HK、pGPU6-PrxⅠ组明显缓慢,以pGPU6-PrxⅠ+IR组更为明显,其抑瘤率达到了79.76%,与pGPU6-PrxⅠ(34.92%)、pGPU6-HK+IR(56.94%)比较差异具有显著性(P<0.05)。免疫组化结果及电镜结果显示:pGPU6-PrxⅠ及联合IR组肿瘤细胞中PrxⅠ蛋白表达明显下调,而促凋亡蛋白Caspase3表达显著提高,凋亡、坏死细胞增多。Western bolt结果显示:pGPU6-PrxⅠ及联合IR组肿瘤细胞中的Rad51蛋白表达降低,而γ-H2AX蛋白表达升高,与pGPU6-HK组相比,差异具有显著性(P<0.01)。上述变化pGPU6-PrxⅠ+IR组最为明显,其Rad51蛋白表达抑制了84.8%,γ-H2AX蛋白表达升高5.6倍,与pGPU6-PrxⅠ和pGPU6-HK+IR组相比,差异也具有显著性(P<0.05)。
     结论:本研究成功构建了靶向PrxⅠ基因shRNA真核表达载体,从体外、体内证实了靶向沉默PrxⅠ基因后,可有效抑制细胞增殖、调控细胞周期再分布、促进细胞凋亡、降低细胞亚致死损伤修复能力,提高放射治疗增益比,从而增加了乳腺癌MCF-7细胞的放射敏感性,其作用机制可能与细胞内活性氧清除能力减弱、DNA双链断裂增加及DNA损伤后修复能力降低有关。PrxⅠ基因表达与乳腺癌细胞的放射敏感性呈负相关,可作为乳腺癌放射增敏的分子靶点。
Breast cancer is the most common malignancy of women. About 120 million new cases are diagnosed and 50 million women die of breast cancer each year around the world. Despite the comprehensive treatment of breast cancer has made great progress, there are still 20% to 30% of breast cancer patients occur local recurrence and distant metastasis after treatment Therefore, it is the breakthrough to explore new therapeutic tools for further improving the curative effect of breast cancer.
     Radiotherapy is one of the major means of treating malignant tumors, however, the radiosensitivity of tumor cells is a key factor to determine radiotherapy effect. In recent years, with thorough study in the radiation biology of the cancer, researchers have found that the expression of some genes at the molecular level affected the radiosensitivity of tumor cells. Gene therapy strategy enable us to knockout these genes that are specific or differential expression between tumor cells and normal cells, and achieve controlled expression of special gene in vivo so as to reverse resistance to the treatment of tumor cell and increase their therapeutic responsiveness.
     Peroxiredoxins (Prxs) are a newly discovered peroxidase that play an important role in scavenging reactive oxygen species of the body and protect cells from damaging by overoxidized. PeroxiredoxinⅠ(PrxⅠ),a member of the Prxs family, which is overexpressed in many cancers including breast cancer cells. PrxⅠhave been implicated in regulating many cellular processes such as cell proliferation, differentiation and apoptosis, moreover, the levels of its expression is closely related to the metastasis, recurrence, chemosensitivity and radiosensitivity of tumor cells,and can serve as a molecular marker for tumor diagnosis. Thus, PrxⅠmay be an ideal target for gene therapy.
     DNA strand break is an important mechanism which ionizing radiation treat tumor. DNA damage can activate the repair system of body and can be repaired in time to ensure the stability of organism genome. Researches have found thatγ-H2AX and Rad51 proteins may play an important role in DNA damage repair.
     We combine gene therapy with radiotherapy in this study: First, we construct specific shRNA eukaryotic expression vector targeting PrxⅠgene in order to down-regulate the expression of PrxⅠ, then we observe the radiosensitivity changes of breast cancer cells MCF-7 cells and investigate its related mechanisms. The purpose of this study is to clarity the role of PrxⅠgene in radiotherapy and provide a new target for gene therapy of breast cancer.
     Methods and results:
     Part one Construction and identification of shRNA eukaryotic expression vector targeting PrxⅠgene
     Methods:According to the principle of RNA interference construction, we designed and synthesized four shRNA sequences targeting PrxⅠand one sequence for negative control. First the shRNA connected to linear pGPU6/GFP/Neo plasmid vector which was digested by BbsⅠand BamHⅠrestriction enzyme. then the recombination plasmids were identified by BamHⅠor PstⅠdigestion and DNA sequencing after transformation, screening,amplifing and extracting,and transfected into breast carcinoma MCF-7 cells by lipofectamine respectively. Transfection efficiency was detected by Fluorescence microscopy and Flow Cytometry, the mRNA and protein expression levels of PrxⅠwere evaluated by RT-PCR and western blot.
     Results : we successfully constructed four eukaryotic expression vectors targeting PrxⅠgene:pGPU6-Prx1、pGPU6-Prx2、pGPU6-Prx3、pGPU6-Prx4 and negative expression vectors pGPU6-HK which were successfully transfected into MCF-7 cells by Lipofectamine. Transfection efficiencies were about 80%. The mRNA and protein expressions of PrxⅠin pGPU6-Prx1、pGPU6-Prx2、pGPU6-Prx3 and pGPU6-Prx4 were significantly inhibited compared with control group and pGPU6-HK group(P<0.05). The inhibition rate of pGPU6-Prx3 at mRNA and protein levels were 82.6% and 80.5% respectively. So we chose it for experimental study.
     Part two Effects and mechanisms of silencing PrxⅠgene by RNA interference on the radiosensitivity of breast carcinoma cell line MCF-7
     Methods:The pGPU6-HK and pGPU6-Prx3 recombinant plasmids were transfected into breast carcinoma cell line MCF-7 by Lipofectamine respectively. Two stable cell lines were establish by G418 screening which were named as pGPU6-HK and pGPU6-PrxⅠrespectively. The mRNA and protein expression of PrxⅠwere detected by RT-PCR and Western blot. Four groups were divided in the experiment: pGPU6-HK group, pGPU6-PrxⅠgroup, pGPU6-HK+IR group and pGPU6-PrxⅠ+IR group. IR groups were irradiated with a single dose 6Gy X-ray. Intracellular reactive oxygen species, cell cycle and cell apoptosis of each group at 48 hour after irradiation were detected by Flow Cytometry. Cell proliferation was disclosed MTT assay. Morphological changes of cell nucleus were observed by hoechst assay to indirectly measure cell apoptosis. Colony efficiency was discovered by colony formation assay after 0、2、4、6、8、10Gy irradiation,cell survival curves were drawn and the values of radiobiological parameters Do, N, Dq and SF2 were calculated to assess cellular radiosensitivity; A landmark proteinγ-H2AX of DNA double-strand breaks and a key protein Rad51 of DNA damage repair were evaluated by Western blot assay.
     Results:Two stable cell lines(pGPU6-PrxⅠand pGPU6-HK)were obtained by G418 pressure screening after four weeks. The mRNA and protein expression of pGPU6-PrxⅠwere distinctly decreased compared with pGPU6-HK group(P﹤0.05). The inhibition rates of the mRNA and protein expression were 84.8% and 83.5% respectively. These results of Flow Cytometry, MTT and Hoechst assays demonstrated that ROS levels markedly raised, the G1 phase cell increased,S phase cells decreased,cell apoptosis rate significantly increased,cell proliferation obviously delayed, apoptotic cell which appeared typical apoptotic morphological changes including nuclear condensed and fragmentation also enhanced at 48h after 6Gy irradiation in pGPU6-PrxⅠand combined with IR groups compared with pGPU6-HK group(P﹤0.05).These changes in pGPU6-PrxⅠ+IR group were more obvious compared with pGPU6-PrxⅠand pGPU6-HK+IR(P﹤0.05).Colony formation assay indicated that colony formation rate reduced after irradiation with different doses and the values of radiobiological parameters Do、N、Dq and SF2 of the pGPU-PrxⅠgroup,were 1.354、3.106、1.547 and 0.504 respectively, lower than the pGPU-HK group. The SER which derived from SF2 was 1.353. The protein expression of Rad51 was distinctly inhibited,while the protein expression ofγ-H2AX was markedly enhanced in pGPU6-PrxⅠand combined with IR groups compared with pGPU6-HK(P<0.01).These changes of pGPU-PrxⅠ+ IR group were more obvious in which the protein expression of Rad51 decreased 79.3% and the protein expression ofγ-H2AX increased 3.7 times compared with pGPU6-HK. The significant differences were also observed between pGPU-PrxⅠ+IR group and pGPU6-PrxⅠor pGPU6-HK+IR(P﹤0.05).
     Part three Effects of silencing PrxⅠgene by RNA interference on the radiosensitivity of nude mice xenografts of breast carcinoma cell line MCF-7
     Methods:Two stable cells of pGPU6-HK and pGPU6-PrxⅠwere implanted subcutaneously into BALB/c nude mice to establish xenograft model of breast cancer. It was judged as tumorigenesis when the diameter of tumor reached 5mm. Four groups were divided in the experiment: pGPU6-HK group, pGPU6-PrxⅠgroup, pGPU6-HK+IR group and pGPU6-PrxⅠ+IR group. IR groups were irradiated with a total dose 10Gy. Tumor growth was regularly monitored. All BALB/c nude mice were sacrificed at the thirty day after irradiation and and tumor tissues were stripped, weighted. The inhibitory rate of tumor weight was calculated. The protein expressions of PrxⅠand caspase3 were detected by immunohistochemistry. Ultramicrostructure of tumor cell was observed by electron microscopy. The expressions of a landmark proteinγ-H2AX of DNA double-strand breaks and a key protein Rad51 of DNA damage repair were analyzed by western blot.
     Results:Xenograft model in nude mice were successfully established. The time of tumor formation in pGPU6-HK group and pGPU6-PrxⅠgroup was ten days and fourteen days respectively Compared with pGPU6-HK group, tumor volume and weight were smaller and lighter in pGPU6-PrxⅠgroup and inhibition rate of tumor weight was 37.8%(P﹤0.01). Tumor volume of combined with IR emerged negative growth lessened after 10Gy irradiation while showed positive growth at the third day after irradiation end which were significantly slower than pGPU6-HK and pGPU6-PrxⅠ,especially pGPU6-PrxⅠ+IR group. The inhibition rate reached 79.76% that were significant differences compared with pGPU6-PrxⅠ(34.92%) and pGPU6-HK+IR(56.94%)(P<0.05). Immunohistochemistry and electron microscopy illustrated that the expression of PrxⅠprotein significantly down-regulated,whereas the expression of Caspase3 protein markedly up-regulated,cell apoptosis and necrosis increased,the protein expression of Rad51 distinctly decreased, while the protein expression ofγ-H2AX was markedly increased in pGPU6-PrxⅠand combined with IR groups compared with pGPU6-HK(P<0.01). These changes of pGPU-PrxⅠ+IR group were more obvious compared with pGPU6-PrxⅠgroup and pGPU6-HK+IR group(P < 0.01). The protein expression of Rad51 decreased 84.8% and the protein expression ofγ-H2AX increased 5.6 folds in pGPU-PrxⅠ+ IR group compared with pGPU6-HK.
     Conclusion:The shRNA eukaryotic expression vector targeting PrxⅠgene were successfully constructed and xenograft model of breast cancer was successfully established. Silencing PrxⅠgene by RNA interference could significantly enhance the radiosensitivity of breast cancer MCF-7 cells in vitro and vivo through inhibiting cell proliferation,promoting cell apoptosis, regulating cell phase redistribution, improving sensitive enhancement ratio(SER) and its mechanisms might be related to reducing the capacity of scavenging ROS,increasing DNA double-strand breaks and decreasing DNA damage repair capacity. PrxⅠgene showed a negative correlation with the radiosensitivity of breast carcinoma cell line MCF-7 and might act as a molecular target for radionsensitization of breast carcinoma.
引文
[1] Jemal A,Siegel R,Xu J,et al. Cancer statistics,2010[J].CA Cancer J Clin.2010,60(5):277-300.
    [2]张嘉庆,王殊.乳腺癌的现状和远景[J].中华外科杂志.2002,40(3):161-163.
    [3] Rhee SG, Chae HZ, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling[J]. Free Radic Biol Med. 2005;38(12):1543-1552.
    [4] Cha MK, Suh KH, Kim IH. Overexpression of peroxiredoxin I and thioredoxin1 in human breast carcinoma[J]. J Exp Clin Cancer Res. 2009,28(3):93.
    [5] Kim JH, Bogner PN, Baek SH, et al. Up-regulation of peroxiredoxin 1 in lung cancer and its implication as a prognostic and therapeutic target[J]. Clin Cancer Res. 2008,14(8):2326-2333.
    [6] Wu XY, Fu ZX, Wang XH. Peroxiredoxins in colorectal neoplasms[J]. Histol Histopathol. 2010,25(10):1297-1303.
    [7] Chang JW, Jeon HB, Lee JH, et al. Augmented expression of peroxiredoxin I in lung cancer[J]. Biochem Biophys Res Commun. 2001,289(2):507-512.
    [8] Chen MF, Keng PC, Shau H, et al. Inhibition of lung tumor growth and augmentation of radiosensitivity by decreasing peroxiredoxin I expression[J]. Int J Radiat Oncol Biol Phys. 2006,64(2):581-591
    [9] Park JJ, Chang HW, Jeong EJ, et al. Peroxiredoxin IV protects cells from radiation-induced apoptosis in head-and-neck squamous cell carcinoma[J]. Int J Radiat Oncol Biol Phys. 2009;73(4):1196-1202.
    [10] Kropotov A, Gogvadze V, Shupliakov O, et al. Peroxiredoxin V is essential for protection against apoptosis in human lung carcinoma cells[J]. Exp Cell Res. 2006;12(15):2806-2815.
    [11] Kropotov AV, Grudinkin PS, Pleskach NM, et al. Downregulation of peroxiredoxin V stimulates formation of etoposide-induced double-strand DNA breaks[J]. FEBS Lett. 2004;572(1-3):75-79.
    [12] Kim YJ, Lee WS, Ip C, et al. Prx1 suppresses radiation-induced c-Jun NH2-terminal kinase signaling in lung cancer cells through interaction with the glutathione S-transferase Pi/c-Jun NH2-terminal kinase complex[J]. Cancer Res. 2006;66(14):7136-7142.
    [13] Kang SW, Chang TS, Lee TH, et al. Cytosolic peroxiredoxin attenuates the activation of Jnk and p38 but potentiates that of Erk in Hela cells stimulated with tumor necrosis factor-alpha[J]. J Biol Chem. 2004;279(4):2535-2543.
    [14] Rogakou EP, Pilch DR, Orr AH, et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139[J]. J Biol Chem. 1998, 273(10):5858-5868.
    [15] Skalka AM, Katz RA. Retroviral DNA integration and the DNA damage response[J]. Cell Death Differ. 2005,12 Suppl 1:971-978.
    [16] Yu T, MacPhail SH, Banáth JP,et al.Endogenous expression of phosphorylated histone H2AX in tumors in relation to DNA double-strand breaks and genomic instability[J]. DNA Repair (Amst). 2006,5(8):935-946.
    [17] Daboussi F, Dumay A, Delac?te F, et al.DNA double-strand break repair signalling: the case of RAD51 post-translational regulation[J]. Cell Signal. 2002,14(12):969-975.
    [18] Ward JD, Muzzini DM, Petalcorin MI, et al. Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair[J]. Mol Cell. 2010,37(2):259-272.
    [19] Sugiyama T, Kantake N. Dynamic regulatory interactions of rad51, rad52, and replication protein-a in recombination intermediates[J].J Mol Biol. 2009,390(1):45-55.
    [20] Sugiyama T, Kowalczykowski SC. Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation[J]. J Biol Chem. 2002,277(35):31663-31672.
    [21] Huang DD.The potential of RNA interference-based therapies for viral infections[J].Curr HIV/AIDS Rep,2008,5(1):33-39.
    [22] Martínez MA.Progress in the therapeutic applications of siRNAs against HIV-1[J].Methods Mol Biol,2009,487:343-368.
    [1] Manevich Y, Sweitzer T, Pak JH, et al. 1-Cys peroxiredoxin overexpression protects cells against phospholipid peroxidation-mediated membrane damage[J]. PANS.2002, 99(18): 11599-11604.
    [2] Cha MK, Suh KH, Kim IH. Overexpression of peroxiredoxin I and thioredoxin1 in human breast carcinoma [J]. J Exp Clin Cancer Res. 2009,28:93.
    [3] Park JH, Kim YS, Lee HL, et al. Expression of peroxiredoxin and thioredoxin in human lung cancer and paired normal lung [J]. Respirology. 2006,11(3):269-275.
    [4] Kim JH, Bogner PN, Baek SH, et al. Up-regulation of peroxiredoxin 1 in lung cancer and its implication as a prognostic and therapeutic target [J]. Clin Cancer Res. 2008 ,14(8):2326-2333.
    [5] Wu XY, Fu ZX, Wang XH. Peroxiredoxins in colorectal neoplasms[J]. Histol Histopathol. 2010,25(10):1297-1303.
    [6] Yanagawa T, Ishikawa T, Ishii T, et al.Peroxiredoxin I expression in human thyroid tumors [J]. Cancer Lett. 1999,145(1-2):127-132.
    [7] Cao J, Schulte J, Knight A, et al.Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity[J]. EMBO J. 2009,8(10):1505-1517.
    [8] Ma D, Warabi E, Yanagawa T, et al. Peroxiredoxin I plays a protective role against cisplatin cytotoxicity through mitogen activated kinase signals[J]. Oral Oncol. 2009,5(12):1037-1043.
    [9] Zhang B, Wang Y, Su Y. Peroxiredoxins, a novel target in cancer radiotherapy[J]. Cancer Lett. 2009,86(2):154-160.
    [10] Chen MF, Keng PC, Shau H, et al. Inhibition of lung tumor growth and augmentation of radiosensitivity by decreasing peroxiredoxin I expression [J]. Int J Radiat Oncol Biol Phys. 2006,64(2):581-591.
    [11] Kim JH, Bogner PN, Ramnath N, et al. Elevated peroxiredoxin 1, but not NF-E2-related factor 2, is an independent prognostic factor for disease recurrence and reduced survival in stage I non-small cell lung cancer[J]. Clin Cancer Res.2007,13(13):3875-3882.
    [12] Rhee SG, Chae HZ, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling[J]. Free Radic Biol Med.2005,38(12):1543-1552.
    [13] Lee YM, Park SH, Shin DI, et al. Oxidative modification of peroxiredoxin is associated with drug-induced apoptotic signaling in experimental models of Parkinson disease[J]. J Biol Chem.2008,283(15):9986-9998.
    [14] Chang JW, Jeon HB, Lee JH, et al. Augmented expression of peroxiredoxin I in lung cancer[J]. Biochem Biophys Res Commun. 2001,289(2):507-512.
    [15]罗弋,庞华,李舒杰,等.人源噬菌体抗体对PeroxiredoxinⅠ高表达肺腺癌细胞增殖的抑制作用[J].癌症. 2009,28(10):1061-1066.
    [16] Luo Y, Pang H, Li S, et al. Production and radioimmunoimaging of novel fully human phage display recombinant antibodies and growth inhibition of lung adenocarcinoma cell line overexpressing Prx I[J]. Cancer Biol Ther. 2009,8(14):1369-1377.
    [17] Immenschuh S, Baumgart-Vogt E. Peroxiredoxins, oxidative stress, and cell proliferation[J].Antioxid Redox Signal. 2005,7(5-6):768-777.
    [18] Zhang B, Wang Y, Liu K, et al. Adenovirus-mediated transfer of siRNA against peroxiredoxin I enhances the radiosensitivity of human intestinal cancer[J]. Biochem Pharmacol. 2008,75(3):660-667.
    [19] Zhang B, Su Y, Ai G, et al. Involvement of peroxiredoxin I in protecting cells from radiation-induced death[J]. J Radiat Res (Tokyo). 2005,46(3):305-312.
    [20] Hannon GJ.RNA interference[J].Nature.2002,418(6894):244-251
    [21] MacManus MT, Sharp PA. Gene silencing in mammals by small interference RNAs[J].Nat Rev Genet. 2002,3:737-747
    [22] [22]Verma NK, Dey CS. RNA-mediated gene silencing: mechanisms and its therapeutic applications[J]. J Clin Pharm Ther. 2004,9(5):395-404.
    [23] Tavernarakis N, Wang SL, Dorovkov M,et al. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes[J]. Nat Genet. 2000,24(2):180-183.
    [24] Huang DD.The potential of RNA interference-based therapies for viral infections[J].Curr HIV/AIDS Rep. 2008,5(1):33-39.
    [25] Martínez MA.Progress in the therapeutic applications of siRNAs against HIV-1[J].Methods Mol Biol. 2009,487:343-368.
    [26] Tuschl T. Expanding small RNA interference[J].Nat Biotechnol. 2002,20(5):446-448.
    [1] Manevich Y, Sweitzer T, Pak JH, et al. 1-Cys peroxiredoxin overexpression protects cells against phospholipid peroxidation-mediated membrane damage[J]. PANS.2002, 99(18): 11599-11604.
    [2] Cha MK, Suh KH, Kim IH. Overexpression of peroxiredoxin I and thioredoxin1 in human breast carcinoma[J]. J Exp Clin Cancer Res. 2009,28(3):93.
    [3] Kim JH, Bogner PN, Baek SH, et al. Up-regulation of peroxiredoxin 1 in lung cancer and its implication as a prognostic and therapeutic target[J]. Clin Cancer Res. 2008,14(8):2326-2333.
    [4] Wu XY, Fu ZX, Wang XH. Peroxiredoxins in colorectal neoplasms[J]. Histol Histopathol. 2010,25(10):1297-1303.
    [5] Chen WC, McBride WH, Iwamoto KS, et al.. Induction of radioprotective peroxiredoxin-I by ionizing irradiation[J]. J Neurosci Res. 2002,70(6):794-798.
    [6] Chen MF, Keng PC, Shau H, et al. Inhibition of lung tumor growth and augmentation of radiosensitivity by decreasing peroxiredoxin I expression[J]. Int J Radiat Oncol Biol Phys. 2006,64(2):581-591
    [7] Zhang B, Wang Y, Liu K, et al.Adenovirus-mediated transfer of siRNA against peroxiredoxin I enhances the radiosensitivity of human intestinal cancer[J]. Biochem Pharmacol. 2008,75(3):660-667.
    [8] Zhang B, Wang Y, Su Y. Peroxiredoxins, a novel target in cancer radiotherapy[J]. Cancer Lett. 2009,286(2):154-160.
    [9]殷蔚伯,余子豪,徐国镇,等.肿瘤放射治疗学[M].中国协和医科大学出版社. 2007,4:234-237.
    [10] Rhee SG, Chae HZ, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling[J]. Free Radic Biol Med. 2005;38(12):1543-1552.
    [11] Yanagawa T, Ishikawa T, Ishii T, et al. Peroxiredoxin I expression in human thyroid tumors[J]. Cancer Lett. 1999;145(1-2):127-132.
    [12] Yanagawa T, Iwasa S, Ishii T, et al. Peroxiredoxin I expression in oral cancer: a potential new tumor marker[J]. Cancer Lett. 2000;156(1):27-35.
    [13] Yanagawa T, Omura K, Harada H, et al. Peroxiredoxin I expression in tongue squamous cell carcinomas as involved in tumor recurrence[J]. Int J Oral MaxillofacSurg. 2005;34(8):915-920.
    [14] Noh DY, Ahn SJ, Lee RA, et al. Overexpression of peroxiredoxin in human breast cancer[J]. Anticancer Res. 2001;21(3B):2085-2090.
    [15] Chang JW, Jeon HB, Lee JH, et al.Augmented expression of peroxiredoxin I in lung cancer[J]. Biochem Biophys Res Commun. 2001,289(2):507-512.
    [16] Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy[J]. Int J Radiat Oncol Biol Phys. 2004,59(4):928-942.
    [17] Redon C, Pilch D, Rogakou E, et al. Histone H2A variants H2AX and H2AZ[J]. Curr Opin Genet Dev. 2002, 12(2):162-169.
    [18] Wang H, Wang M, Wang H, et al. Complex H2AX phosphorylation patterns by multiple kinases including ATM and DNA-PK in human cells exposed to ionizing radiation and treated with kinase inhibitors[J]. J Cell Physiol. 2005 , 202(2):492-502.
    [19] Rogakou EP, Pilch DR, Orr AH, et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139[J]. J Biol Chem. 1998, 273(10):5858-5868.
    [20] Skalka AM, Katz RA. Retroviral DNA integration and the DNA damage response[J]. Cell Death Differ. 2005,12 Suppl 1:971-978.
    [21] Yu T, MacPhail SH, Banáth JP,et al.Endogenous expression of phosphorylated histone H2AX in tumors in relation to DNA double-strand breaks and genomic instability[J]. DNA Repair (Amst). 2006,5(8):935-946.
    [22] Paull TT, Rogakou EP, Yamazaki V, et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage[J]. Curr Biol. 2000, 10(15):886-895.
    [23] MacPhail SH, Banáth JP, Yu TY, et al. Expression of phosphorylated histone H2AX in cultured cell lines following exposure to X-rays[J]. Int J Radiat Biol. 2003,79(5):351-358.
    [24] Banáth JP, Klokov D, MacPhail SH, et al. Residual gammaH2AX foci as an indication of lethal DNA lesions[J]. BMC Cancer. 2010,10:4.
    [25] Yoshida K, Morita T. Control of radiosensitivity of F9 mouse teratocarcinoma cells by regulation of histone H2AX gene expression using a tetracycline turn-off system[J]. Cancer Res. 2004,64(12):4131-4136.
    [26] Klokov D, MacPhail SM, Banáth JP, et al. Phosphorylated histone H2AX in relation to cell survival in tumor cells and xenografts exposed to single andfractionated doses of X-rays[J]. Radiother Oncol. 2006,80(2):223-229.
    [27] Vasireddy RS, Tang MM, Mah LJ, et al.Evaluation of the spatial distribution of gammaH2AX following ionizing radiation[J]. J Vis Exp. 2010,7(42):2203.
    [28] Daboussi F, Dumay A, Delac?te F, et al.DNA double-strand break repair signalling: the case of RAD51 post-translational regulation[J]. Cell Signal. 2002,14(12):969-975.
    [29] Ward JD, Muzzini DM, Petalcorin MI, et al. Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair[J]. Mol Cell. 2010,37(2):259-272.
    [30] Sugiyama T, Kantake N. Dynamic regulatory interactions of rad51, rad52, and replication protein-a in recombination intermediates[J].J Mol Biol. 2009,390(1):45-55.
    [31] Sugiyama T, Kowalczykowski SC. Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation[J]. J Biol Chem. 2002,277(35):31663-31672.
    [32] VispéS, Cazaux C, Lesca C, et al. Overexpression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation[J]. Nucleic Acids Res. 1998,26(12):2859-2864.
    [33] Valerie K, Povirk LF. Regulation and mechanisms of mammalian double-strand break repair[J]. Oncogene. 2003,22(37):5792-5812.
    [34] Brown ET, Holt JT. Rad51 overexpression rescues radiation resistance in BRCA2-defective cancer cells[J].Mol Carcinog. 200948(2):105-109.
    [35] Short SC, Giampieri S, Worku M, et al. Rad51 inhibition is an effective means of targeting DNA repair in glioma models and CD133+ tumor derived cells[J].Neuro Oncol. 2011.
    [36] Choudhury A, Zhao H, Jalali F, et al. Targeting homologous recombination using imatinib results in enhanced tumor cell chemosensitivity and radiosensitivity[J].Mol Cancer Ther. 2009, 8(1):203-213.
    [1] Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010[J].CA Cancer J Clin.2010,60(5):277-300.
    [2]张嘉庆,王殊.乳腺癌的现状和远景[J].中华外科杂志,2002,40(3):161-163.
    [3] Gupta VK, Park JO, Jaskowiak NT, et al Combined gene therapy and ionizing radiation is a novel approach to treat human esophageal adenocarcinoma[J]. Ann Surg Oncol. 2002;9(5):500-504.
    [4] Mezhir JJ, Smith KD, Posner MC, et al. Ionizing radiation: a genetic switch for cancer therapy[J].Cancer Gene Ther. 2006;13(1):1-6.
    [5] Powell TM, Marples B, et al. Gene therapy vectors containing CArG elements from the Egr1 gene are activated by neutron irradiation, cisplatin and doxorubicin[J]. Cancer Gene Ther. 2005;12(7):655-662.
    [6] Seung LP, Mauceri HJ, Beckett MA, et al. Genetic radiotherapy overcomes tumor resistance to cytotoxic agents[J]. Cancer Res. 1995;55(23):5561-5565.
    [7] Lu P, Yang X, Huang Y, et al. Antitumor Activity of a Combination of rAd2p53 Adenoviral Gene Therapy and Radiotherapy in Esophageal Carcinoma[J]. Cell Biochem Biophys. 2011;59(3):147-152.
    [8] Park JJ, Chang HW, Jeong EJ, et al. Peroxiredoxin IV protects cells from radiation-induced apoptosis in head-and-neck squamous cell carcinoma[J]. Int J Radiat Oncol Biol Phys. 2009;73(4):1196-1202.
    [9] She Y, Lee F, Chen J, et al.The epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 selectively potentiates radiation response of human tumors in nude mice, with a marked improvement in therapeutic index[J]. Clin Cancer Res. 2003;9(10 Pt 1):3773-3778.
    [10] Tanaka T, Munshi A, Brooks C, et al. Gefitinib radiosensitizes non-small cell lung cancer cells by suppressing cellular DNA repair capacity[J]. Clin Cancer Res. 2008;14(4):1266-1273.
    [11] Bonner J A, Harari P M, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck[J].. N Engl J Med. 2006 ,354(6):567-578
    [12] Curran D, Giralt J, Harari P M, et al. Quality of life in head and neck cancer patients after treatment with high-dose radiotherapy alone or in combination withcetuximab[J]. J Clin Oncol. 2007,25(16):2191-2197.
    [13]林远洪,吴永忠,李少林,等. RNAi沉默EGFR基因对卵巢癌放疗敏感性的影响[J].中国老年学杂志. 2009,29(20):2606-2609.
    [14] Fan TJ, Han LH, Cong RS, et al. Caspase family proteases and apoptosis[J]. Acta Biochim Biophys Sin. 2005 , 37(11):719-727.
    [15] Chen WC, McBride WH, Iwamoto KS, et al. Induction of radioprotective peroxiredoxin-I by ionizing irradiation[J]. J Neurosci Res. 2002;70(6):794-798.
    [16] Zhang B, Su Y, Ai G, et al. Involvement of peroxiredoxin I in protecting cells from radiation-induced death[J]. J Radiat Res (Tokyo). 2005;46(3):305-312.
    [17] Zhang B, Su YP, Ai GP, et al. Differentially expressed proteins of gamma-ray irradiated mouse intestinal epithelial cells by two-dimensional electrophoresis and MALDI-TOF mass spectrometry[J]. World J Gastroenterol. 2003;9(12):2726-2731.
    [1] Rhee SG, Kang SW, Chang TS, et al. Peroxiredoxin, a novel family of peroxidases[J]. IUBMB Life. 2001;52(1-2):35-41.
    [2] Wang X, Phelan SA, Petros C, et al.. Peroxiredoxin 6 deficiency and atherosclerosis susceptibility in mice: significance of genetic background for assessing atherosclerosis[J]. Atherosclerosis. 2004;177(1):61-70.
    [3] Chang TS, Jeong W, Choi SY, et al. Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation[J]. J Biol Chem. 2002;277(28):25370-25376.
    [4] Dietz KJ. The dual function of plant peroxiredoxins in antioxidant defence and redox signaling[J]. Subcell Biochem. 2007;44:267-294.
    [5] Okado-Matsumoto A, Matsumoto A, Fujii J, et al. Peroxiredoxin IV is a secretable protein with heparin-binding properties under reduced conditions[J]. J Biochem. 2000;127(3):493-501.
    [6] Nguyên-Nhu NT, Berck J, Clippe A, et al. Human peroxiredoxin 5 gene organization, initial characterization of its promoter and identification of alternative forms of mRNA[J]. Biochim Biophys Acta. 2007;1769(7-8):472-483.
    [7] Chen JW, Dodia C, Feinstein SI, et al. 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities[J]. J Biol Chem. 2000;275(37):28421-28427.
    [8] Rhee SG, Chae HZ, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling[J]. Free Radic Biol Med. 2005;38(12):1543-1552.
    [9] Rhee SG. Cell signaling. H2O2, a necessary evil for cell signaling[J]. Science. 2006;312(5782):1882-1883.
    [10] Lee DH, Lim BS, Lee YK, et al. Effects of hydrogen peroxide (H2O2) on alkaline phosphatase activity and matrix mineralization of odontoblast and osteoblast cell lines[J]. Cell Biol Toxicol. 2006;22(1):39-46.
    [11] Chen MF, Lee KD, Yeh CH, et al. Role of peroxiredoxin I in rectal cancer and related to p53 status[J]. Int J Radiat Oncol Biol Phys. 2010;78(3):868-878.
    [12] Ho JN, Lee SB, Lee SS, et al. Phospholipase A2 activity of peroxiredoxin 6 promotes invasion and metastasis of lung cancer cells[J]. Mol Cancer Ther. 2010;9(4):825-832.
    [13] Chung KH, Lee DH, Kim Y, et al. Proteomic identification of overexpressed PRDX 1 and its clinical implications in ovarian carcinoma[J]. J Proteome Res. 2010;9(1):451-457.
    [14] Zhang XZ, Xiao ZF, Li C, et al. Triosephosphate isomerase and peroxiredoxin 6, two novel serum markers for human lung squamous cell carcinoma[J]. Cancer Sci. 2009;100(12):2396-2401.
    [15] Kim JH, Bogner PN, Baek SH, et al. Up-regulation of peroxiredoxin 1 in lung cancer and its implication as a prognostic and therapeutic target[J]. Clin Cancer Res. 2008;14(8):2326-2333.
    [16] Lee SU, Rhee M, Min YK, et al. Involvement of peroxiredoxin IV in the 16alpha-hydroxyestrone-induced proliferation of human MCF-7 breast cancer cells[J]. Cell Biol Int. 2008;32(4):401-405.
    [17] Hoshino I, Matsubara H, Akutsu Y, et al. Tumor suppressor Prdx1 is a prognostic factor in esophageal squamous cell carcinoma patients[J]. Oncol Rep. 2007;18(4):867-871.
    [18] Kikuta K, Tochigi N, Saito S, et al. Peroxiredoxin 2 as a chemotherapy responsiveness biomarker candidate in osteosarcoma revealed by proteomics[J]. Proteomics Clin Appl. 2010;4(5):560-567.
    [19] Quan C, Cha EJ, Lee HL, et al. Enhanced expression of peroxiredoxin I and VI correlates with development, recurrence and progression of human bladdercancer[J]. J Urol. 2006;175(4):1512-1516.
    [20] Cha MK, Suh KH, Kim IH. Overexpression of peroxiredoxin I and thioredoxin1 in human breast carcinoma [J]. J Exp Clin Cancer Res. 2009,28(3):93.
    [21] Kim JH, Bogner PN, Baek SH, et al. Up-regulation of peroxiredoxin 1 in lung cancer and its implication as a prognostic and therapeutic target [J]. Clin Cancer Res. 2008,14(8):2326-2333.
    [22] Wu XY, Fu ZX, Wang XH. Peroxiredoxins in colorectal neoplasms[J]. Histol Histopathol. 2010,25(10):1297-1303.
    [23] Yanagawa T, Ishikawa T, Ishii T, et al. Peroxiredoxin I expression in human thyroid tumors[J]. Cancer Lett. 1999;145(1-2):127-132.
    [24] Yanagawa T, Iwasa S, Ishii T, et al. Peroxiredoxin I expression in oral cancer: a potential new tumor marker[J]. Cancer Lett. 2000;156(1):27-35.
    [25] Yanagawa T, Omura K, Harada H, et al. Peroxiredoxin I expression in tongue squamous cell carcinomas as involved in tumor recurrence[J]. Int J Oral Maxillofac Surg. 2005;34(8):915-920.
    [26] Chen MF, Lee KD, Yeh CH, et al. Role of peroxiredoxin I in rectal cancer and related to p53 status[J]. Int J Radiat Oncol Biol Phys. 2010;78(3):868-878.
    [27] Noh DY, Ahn SJ, Lee RA, et al. Overexpression of peroxiredoxin in human breast cancer[J]. Anticancer Res. 2001;21(3B):2085-2090.
    [28] Nonn L, Berggren M, Powis G. Increased expression of mitochondrial peroxiredoxin-3 (thioredoxin peroxidase-2) protects cancer cells against hypoxia and drug-induced hydrogen peroxide-dependent apoptosis[J]. Mol Cancer Res. 2003;1(9):682-689.
    [29] Kim YJ, Ahn JY, Liang P, et al. Human prx1 gene is a target of Nrf2 and is up-regulated by hypoxia/reoxygenation: implication to tumor biology[J]. Cancer Res. 2007;67(2):546-554.
    [30] Li Y, Qin X, Cui J, et al. Proteome analysis of aflatoxin B1-induced hepatocarcinogenesis in tree shrew (Tupaia belangeri chinensis) and functional identification of candidate protein peroxiredoxin II[J]. Proteomics. 2008;8(7):1490-1501.
    [31] Bae JY, Ahn SJ, Han W, et al. Peroxiredoxin I and II inhibit H2O2-induced cell death in MCF-7 cell lines[J]. J Cell Biochem. 2007;101(4):1038-1045.
    [32] Kikuta K, Tochigi N, Saito S, et al. Peroxiredoxin 2 as a chemotherapyresponsiveness biomarker candidate in osteosarcoma revealed by proteomics[J]. Proteomics Clin Appl. 2010;4(5):560-567.
    [33] Memon AA, Chang JW, Oh BR, et al. Identification of differentially expressed proteins during human urinary bladder cancer progression[J]. Cancer Detect Prev. 2005;29(3):249-255.
    [34] Carta F, Demuro PP, Zanini C, et al. Analysis of candidate genes through a proteomics-based approach in primary cell lines from malignant melanomas and their metastases[J]. Melanoma Res. 2005;15(4):235-244.
    [35] Furuta J, Nobeyama Y, Umebayashi Y, et al. Silencing of Peroxiredoxin 2 and aberrant methylation of 33 CpG islands in putative promoter regions in human malignant melanomas[J]. Cancer Res. 2006;66(12):6080-6086.
    [36] Karihtala P, M?ntyniemi A, Kang SW, et al. Peroxiredoxins in breast carcinoma[J]. Clin Cancer Res. 2003;9(9):3418-3424.
    [37] Chua PJ, Lee EH, Yu Y, et al. Silencing the Peroxiredoxin III gene inhibits cell proliferation in breast cancer[J]. Int J Oncol. 2010;36(2):359-364.
    [38] Park JH, Kim YS, Lee HL, et al. Expression of peroxiredoxin and thioredoxin in human lung cancer and paired normal lung[J]. Respirology. 2006;11(3):269-275.
    [39] Kinnula VL, Lehtonen S, Sormunen R, et al. Overexpression of peroxiredoxins I, II, III, V, and VI in malignant mesothelioma[J]. J Pathol. 2002;196(3):316-323.
    [40] Basu A, Banerjee H, Rojas H, et al. Differential expression of peroxiredoxins in prostate cancer: Consistent upregulation of PRDX3 and PRDX4[J]. Prostate. 2010.
    [41] Smith L, Welham KJ, Watson MB, et al. The proteomic analysis of cisplatin resistance in breast cancer cells[J]. Oncol Res. 2007;16(11):497-506.
    [42] Lee SU, Rhee M, Min YK, et al. Involvement of peroxiredoxin IV in the 16alpha-hydroxyestrone-induced proliferation of human MCF-7 breast cancer cells[J]. Cell Biol Int. 2008;32(4):401-405.
    [43] Lin JF, Xu J, Tian HY, et al. Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis[J]. Int J Cancer. 2007;121(12):2596-2605.
    [44] Chung JC, Oh MJ, Choi SH, et al. Proteomic analysis to identify biomarker proteins in pancreatic ductal adenocarcinoma[J]. ANZ J Surg. 2008;78(4):245-251.
    [45] Khalil AA. Biomarker discovery: a proteomic approach for brain cancer profiling[J]. Cancer Sci. 2007;8(2):201-213.
    [46] Chang XZ, Li DQ, Hou YF, et al. Identification of the functional role of peroxiredoxin 6 in the progression of breast cancer. Breast[J] Cancer Res. 2007;9(6):R76.
    [47] Pak JH, Choi WH, Lee HM, et al. Peroxiredoxin 6 overexpression attenuates cisplatin-induced apoptosis in human ovarian cancer cells[J]. Cancer Invest. 2011;29(1):21-28.
    [48] Zhang XZ, Xiao ZF, Li C, et al. Triosephosphate isomerase and peroxiredoxin 6, two novel serum markers for human lung squamous cell carcinoma[J]. Cancer Sci. 2009;100(12):2396-2401.
    [49] Chen WC, McBride WH, Iwamoto KS, et al. Induction of radioprotective peroxiredoxin-I by ionizing irradiation[J]. J Neurosci Res. 2002;70(6):794-798.
    [50] Zhang B, Su Y, Ai G, et al. Involvement of peroxiredoxin I in protecting cells from radiation-induced death[J]. J Radiat Res (Tokyo). 2005;46(3):305-312.
    [51] Zhang B, Su YP, Ai GP, et al. Differentially expressed proteins of gamma-ray irradiated mouse intestinal epithelial cells by two-dimensional electrophoresis and MALDI-TOF mass spectrometry[J].World JGastroenterol. 2003;9(12):2726-2731.
    [52] Wang T, Tamae D, LeBon T, et al. The role of peroxiredoxin II in radiation-resistant MCF-7 breast cancer cells[J]. Cancer Res. 2005;65(22):10338-10346.
    [53] Park JJ, Chang HW, Jeong EJ, et al. Peroxiredoxin IV protects cells from radiation-induced apoptosis in head-and-neck squamous cell carcinoma[J]. Int J Radiat Oncol Biol Phys. 2009;73(4):1196-1202.
    [54] Kropotov A, Gogvadze V, Shupliakov O, et al. Peroxiredoxin V is essential for protection against apoptosis in human lung carcinoma cells[J]. Exp Cell Res. 2006;12(15):2806-2815.
    [55] Kropotov AV, Grudinkin PS, Pleskach NM, et al. Downregulation of peroxiredoxin V stimulates formation of etoposide-induced double-strand DNA breaks[J]. FEBS Lett. 2004;572(1-3):75-79.
    [56] Kim YJ, Lee WS, Ip C, et al. Prx1 suppresses radiation-induced c-Jun NH2-terminal kinase signaling in lung cancer cells through interaction with the glutathione S-transferase Pi/c-Jun NH2-terminal kinase complex[J]. Cancer Res. 2006;66(14):7136-7142.
    [57] Kang SW, Chang TS, Lee TH, et al. Cytosolic peroxiredoxin attenuates the activation of Jnk and p38 but potentiates that of Erk in Hela cells stimulated withtumor necrosis factor-alpha[J]. J Biol Chem. 2004;279(4):2535-2543.
    [58] Yo YD, Chung YM, Park JK, et al. Synergistic effect of peroxiredoxin II antisense on cisplatin-induced cell death[J]. Exp Mol Med. 2002;34(4):273-277.
    [59] Chen MF, Keng PC, Shau H, et al Inhibition of lung tumor growth and augmentation of radiosensitivity by decreasing peroxiredoxin I expression[J]. Int J Radiat Oncol Biol Phys. 2006;64(2):581-591
    [60] Zhang B, Wang Y, Liu K, et al. Adenovirus-mediated transfer of siRNA against peroxiredoxin I enhances the radiosensitivity of human intestinal cancer[J]. Biochem Pharmacol. 2008;75(3):660-667.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700