抑制自噬增强卵巢癌耐药细胞放化疗敏感性的体外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上皮型卵巢癌(epithelial ovarian cancer,EOC)是恶性程度极高的妇科肿瘤。据估计,2011年在美国有21990新发病例,并且有15460例死亡。铂/紫杉醇为基础的化疗是EOC分期手术和切除术后的现行治疗标准。尽管化疗在EOC的治疗上取得一定的成效,但其预后很差,存在腹部或盆腔复发现象,并可进一步发展耐药性。而耐药性的产生,是导致卵巢癌死亡率居高不下的重要原因。因此,如何提高肿瘤细胞对化疗药物的敏感性,是当前临床治疗EOC亟待解决的问题之一。
     肿瘤细胞通常涉及到多基因和多通路的激活,从而获得对化疗和放疗诱导的细胞死亡的抵抗能力。已知的几种细胞死亡方式包括坏死、凋亡和自噬性细胞死亡等。细胞凋亡又称Ⅰ型程序性细胞死亡,是指生物体为维持其内环境稳定,在特定信号诱导下,由多个基因调控的细胞自主地进行程序性死亡的过程,是放射治疗和其他癌症治疗方式的最重要的死亡机制。自噬性细胞死亡是除凋亡外的另一重要的细胞死亡调控机制,在癌症的发展中扮演重要的角色。细胞自噬是一种进化上保守的代谢过程,其主要作用是将细胞内功能受损的蛋白质以及多余的或有缺陷的细胞器降解,并对蛋白质和氨基酸等回收和再利用。除了这个关键作用,还发现自噬在其他方面也有重要的职能,特别是在有应激压力或损伤的情况下会导致自噬显著增强。自噬在肿瘤发生发展及耐药中发挥着重要的作用,并且依据肿瘤类型和环境条件不同而呈现促进或抑制两种相反的调控结局,即双向调控作用。因此,阐明自噬在肿瘤的治疗中发挥的作用和机制有利于针对不同类型的肿瘤,尤其放化疗抵抗的肿瘤,采取个体化的治疗方案而能够获得良好的治疗效果。
     目的:以人卵巢癌细胞株SKOV3及其耐药表型SKVCR为研究对象,探讨自噬在化疗及电离辐射诱导的细胞死亡中的作用及其机制,为指导临床肿瘤综合治疗方案的优化以及新治疗靶点的探索提供理论依据。
     方法:①选用人卵巢癌细胞株SKOV3及其多药耐药表型细胞株SKVCR;②应用深部X射线治疗机进行细胞照射,照射条件:电压180kV,电流18.0mA,滤板为0.25mm Cu和1.0mmAl,靶皮距60cm,剂量率0.40Gy· min–1;③药物选取:VCR(长春新碱)、THP(吡柔比星)、VP-16(依托泊苷);④细胞存活检测采用CCK8(cell counting Kit-8)法和集落形成法;⑤细胞内mRNA的表达采用Real-Time PCR方法检测;⑥蛋白表达变化采用Western blot检测;⑦细胞自噬采用GFP-LC3转染和MDC染色;⑧细胞凋亡检测采用Hoechst33342染色检测;⑨细胞凋亡、自噬和细胞周期采用流式细胞术检测。
     结果:
     1.不同浓度VCR、VP-16、THP能够明显抑制SKOV3及SKVCR细胞的生长,相同药物浓度作用后,SKVCR细胞的存活率显著高于SKOV3细胞(P <0.05)。SKVCR中的P-gp蛋白表达量是SKOV3的50倍以上。MDC荧光染色、Real-time PCR及Western blot方法检测结果发现,两种细胞的基础凋亡水平接近,但耐药株SKVCR中自噬发生率明显高于SKOV3细胞(P <0.05)。
     2.不同浓度VCR作用4、8、24、48h可以明显抑制SKOV3及SKVCR细胞存活,且细胞毒性具有剂量依赖性和时间依赖性;选取0.02μg/ml VCR作用SKOV3细胞后,对细胞凋亡无明显影响,但细胞自噬率升高到2.63倍;选取10μg/ml VCR处理SKVCR细胞,能够诱导SKVCR细胞凋亡的发生(P <0.05),但对自噬无明显影响。
     3.分别取3MA、CQ、Rapamycin和ZVAD以最大无作用剂量处理两种细胞,发现3MA和CQ能够抑制自噬,Rapamycin可以诱导自噬,ZVAD对Caspase-3活化有明显抑制作用,并显著抑制凋亡(P <0.05)。
     4. VCR与3MA、CQ、Rapamycin、ZVAD单独或联合作用SKOV3细胞24h后发现:3MA和Rapamycin对VCR药物敏感性无影响;CQ与VCR联合作用能够增加低浓度VCR对SKOV3细胞的增值抑制率(P <0.05);ZVAD能够降低0.02~0.2μg/ml VCR对SKOV3细胞的增值抑制作用,细胞生存率高于VCR单独作用组(P <0.05)。MDC染色、流式细胞术及Western blot结果表明,VCR诱导SKOV3细胞发生自噬,但对凋亡无影响,而预先给予自噬抑制剂3MA和CQ可以降低VCR诱导的细胞自噬(P <0.05),同时增加VCR诱导的SKOV3细胞凋亡,而预先加入ZVAD能够抑制VCR诱导的细胞凋亡并促进细胞存活(P <0.05)。
     5. VCR与3MA、CQ、Rapamycin、ZVAD单独或联合作用于SKVCR细胞24h后,与VCR单独作用相比,3MA/CQ与VCR共同作用能明显降低细胞生存率,起到化疗增敏作用(P <0.05),而Rapamycin则无增敏作用(P>0.05);与VCR单独作用相比,ZVAD则提高VCR作用后SKVCR的生存率(P <0.05),降低SKVCR对VCR的药物敏感性。流式细胞术及Western blot结果表明,在VCR给药前加入自噬抑制剂3MA和CQ,能够降低VCR诱导的SKVCR细胞自噬(P <0.05),同时增加VCR诱导的SKVCR细胞凋亡,而预先加入ZVAD能够抑制VCR诱导的细胞凋亡和自噬(P <0.05)。
     6.辐射敏感性研究发现,电离辐射作用于SKOV3和SKVCR细胞可以显著降低细胞存活率,而且电离辐射对SKOV3及SKVCR的细胞毒性具有剂量依赖性,而在单次照射和分割照射之间没有差异;SKOV3细胞的辐射敏感性高于其耐药株(P <0.05)。
     7.电离辐射对细胞死亡影响的研究发现,辐射引起SKOV3细胞核固缩、碎裂、染色增强、浓缩,同时流式细胞术进一步证实不同辐射方式可以诱导SKOV3和SKVCR细胞的凋亡发生(P <0.05)。电离辐射作用后SKOV3细胞和SKVCR细胞MDC阳性百分率及MAPLC3II/I的比值明显增加(P <0.05),表明电离辐射能够诱导发生凋亡和自噬。
     8.调控剂对辐射敏感性的影响:凋亡抑制剂ZVAD对电离辐射诱导的SKOV3和SKVCR细胞死亡率没有影响,提示电离辐射诱导SKOV3和SKVCR细胞死亡可能是非凋亡依赖性的;而自噬抑制剂3MA使SKVCR细胞生存率显著下降(P <0.05),显示辐射增敏作用。
     9.调控剂对细胞死亡的影响:应用ZVAD后发现,与电离辐射单独作用相比,ZVAD抑制SKOV3和SKVCR细胞凋亡的同时伴随自噬抑制。应用3MA后发现,与单独电离辐射组相比,两种细胞MDC阳性百分率降低(P <0.05),3MA抑制了电离辐射诱导的自噬;3MA对电离辐射诱导的细胞凋亡作用不同,3MA抑制了辐射诱导的SKOV3细胞凋亡,却增加了SKVCR的凋亡率(P <0.05)。
     10.电离辐射对细胞周期的影响:辐射作用SKOV3和SKVCR细胞,可诱导G2/M期阻滞(P <0.05);在SKVCR细胞中,S期细胞占比例较高,而且电离辐射引起S期时相明显延迟,但是在3MA作用后,发现辐射最不敏感的S期细胞明显减少,而相对敏感的G1/M期细胞比例增加(P <0.05)。表明3MA能够调节细胞周期再分布,协同影响辐射的杀伤作用。
     结论:
     1. SKVCR细胞中的自噬高表达现象是产生化疗耐药的重要机制之一。
     2. VCR化疗过程中发现,抑制自噬显著增加VCR诱导SKVCR细胞凋亡的能力,增加SKVCR细胞对VCR的化疗敏感性。
     3.电离辐射作用能够诱导两种卵巢癌细胞发生凋亡和自噬,自噬增加SKVCR对电离辐射的抗性。通过3MA抑制SKVCR细胞的自噬,可抑制电离辐射诱导S期延迟并增加辐射诱导的细胞凋亡,而提高放疗敏感性。
     自噬抑制剂有望成为耐药型卵巢癌放化疗的增敏剂。
Epithelial ovarian cancer (EOC) is one of the highly malignant gynecologicaltumors. It is estimated that21,990newly diagnosed cases and15,460relationaldeaths established in the United States in2011. Currently, platinum/paclitaxel-basedchemotherapy is the standard strategy for EOC surgical staging and post-operationtreatment. Although chemotherapy achieved success on EOC treatment, theprognosis is still poor for the presence of abdominal or pelvic recurrence and furtherdeveloping drug resistance. The emergence of drug resistance is an essential causeof high mortality rate of ovarian cancer. Therefore, how to improve the sensitivity oftumor cells to chemotherapeutic agents is currently one of problems urgently to besolved for EOC treatment.
     The activations of multiple genes and pathways are normally involved in tumordevelopment consequently, to obtain the resistance to chemotherapy andradiotherapy-induced cell death occurr. Generally, cell death includes necrosis,apoptosis and autophagic cell death. Apoptosis, also called type I programmed celldeath, is the most important mechanism of radiotherapy and other therapy modalitiesto tumors. Autophagic cell death is another significant regulatory mechanism of celldeath in addition to apoptosis, which plays an important role in the development ofcancer. Autophagy is an evolutionarily conserved metabolic process, and its majorfunction is the degradation of impaired intracellular proteins, excess or defectiveorganelles and the reusing and recycling proteins and amino acids. Apart from this,autophagy is also found to enhance the response to stress or pressure. Autophagyplays a remarkable role in cancer development and drug resistance, and exhibits twoopposite outcomes, induce either adaptive response or cell death depending ontumor types and environmental conditions. Therefore, to clarify the function andmechanisms of autophagy in cancer treatment is beneficial for the individualized treatment of different types of cancers to acquire considerable therapeutic effect,especially the cancers resistant to radio-chemotherapy.
     Objective: In this study, we investigated the function and mechanism ofautophagy in chemotherapy and ionizing radiation-induced cell death in humanovarian cancer cell line SKOV3and its drug-resistant phenotype SKVCR in order tooptimize cancer treatment strategies and complement experimental theoretical basisof new therapeutic targets.
     Methods:(1) Human ovarian cancer cell line SKOV3and multi-drugresistance phenotype cell line SKVCR were used in this study;(2) X-irradiation wasused, irradiation conditions were as follows: voltage180kV, current18.0mA,filtration plate0.25mm Cu and1.0mm Al, distance between target and X source60cm, dose rate0.40Gy/min;(3) VCR (vincristine), THP (pirarubicin) and VP-16(etoposide) were used for chemotherapy resistance experiments;(4) CCK8(cellcounting Kit-8) method and colony formation assay were used for cell survivaldetection;(5) Real-time PCR method was used for mRNA detection;(6) Westernblot was used for protein expression;(7) GFP-LC3Cell transfection and MDCstaining was used for cell autophagy detetion;(8) Hoechst33342staining was usedfor apoptosis detection;(9) Flow cytometry was used for apoptosis, autophagy andcell cycle detection.
     Results:
     1. The different concentrations of VCR, VP-16and THP inhibited the growthof SKOV3and SKVCR cells, at the same concentration of drug, the survival rate ofSKVCR cells was higher than that of SKOV3cells (P <0.05). P-gp expression inSKVCR cells was50times higher than that in SKOV3cells. Based on the results ofMDC staining, real-time PCR and Western blot tests, the apoptosis level was foundto be the same in two cell lines, but autophagy in SKVCR cells was significanthigher than that in SKOV3cells (P <0.05).
     2. The different concentration of VCR can inhibit the survival rate of SKOV3and SKVCR cells in time-and-dose-dependent manner;0.02μg/ml VCR had no effect on apoptosis in SKOV3cells, but autophagy rate increased2.63times;10μg/ml VCR induced apoptosis in SKVCR cells without any effect on autophagy (P <0.05).
     3.3MA、CQ、Rapamycin and ZVAD at the maximal non-effect concentrationwere used in SKOV3and SKVCR cells,3MA and CQ inhibited but Rapamycininduced autophagy, and ZVAD had an effect on the activation of caspase-3andinduced apoptosis (P <0.05).
     4. SKOV3was treated with VCR alone or in combination with3MA, CQ,Rapamycin and ZVAD for24h:3MA and Rapamycin had no effect on the drugsensitivity to VCR; CQ combined with VCR enhanced VCR inhibition ofproliferation (P <0.05); ZVAD diminished the inhibition of0.02-0.2μg/ml VCR onSKOV3proliferation, and cell survival rate was higher than that in the VCR alonegroup (P <0.05). Based on the results of MDC staining, flow cytometry andWestern blot, VCR induced autophagy in SKOV3cells and had no effect onapoptosis, but treatment of3MA and CQ prior to VCR reduced the autophagy andincreased apoptosis induced by VCR (P <0.05), whereas pretreatment of ZVADinhibited apoptosis induced by VCR and promoted cell survival (P <0.05).
     5. SKVCR was treated with VCR alone or in combination with3MA, CQ,Rapamycin and ZVAD for24h:3MA/CQ combined with VCR significantlydecreased the cell survival rate and played a role in sensitizing chemotherapy, ascompared with VCR alone (P <0.05), but Rapamycin had no sensitizing effect (P>0.05);ZVAD significantly increased the cell survival rate and diminished the drugsensibility to VCR in SKVCR cells (P <0.05). Based on the results of flowcytometry and Western blot, pretreatment of3MA and CQ reducedautophagy andincreased apoptosis induced by VCR(P <0.05),whereas pretreatment of ZVADdecreased apoptosis and autophagy (P <0.05).
     6. Radiosensitivity testing showed that ionizing radiation significantly reducedthe survival of SKOV3and SKVCR cells in a dose-dependent manner, whereasthere was no difference between single irradiation and fractionated irradiation; SKOV3cells radiosensitivity was higher than that in its drug-resistant cell lines (P <0.05).
     7. Effects of ionizing radiation on cell death: Hoechst staining showed thatirradiation induced SKOV3cell nuclear karyopyknosis, fragmentation, stainingenhancement and enrichment; Meanwhile flow cytometry further confirmed thatirradiation induced apoptosis in SKOV3and SKVCR cells (P <0.05). After ionizingradiation, the percentage of MDC staining positive cells and MAPLC3II/I ratiosignificantly increased in SKOV3and SKVCR cells (P <0.05), suggesting thationizing radiation can induce apoptosis and autophagy.
     8. Influence of modulators on radiation sensitivity: Apoptosis inhibitor ZVADhad no effect on the ionizing radiation-induced cell death in SKVCR and SKOV3cells. This suggests that SKVCR and SKOV3cell death induced by ionizingradiation may be apoptosis-independent; But autophagy inhibitor3MA significantlydecreased SKVCR survival and showed radiosensitization effect (P <0.05).
     9. Effects of modulators on cell death: ZVAD inhibited SKVCR and SKOV3apoptosis accompanied by autophagy inhibition as compared with that of ionizingradiation alone, while3MA reduced the percentage of MDC staining positive inSKVCR and SKOV3cells as compared with that of ionizing radiation alone,confirming that3MA could inhibit ionizing radiation-induced autophagy (P <0.05).Simultaneously,3MA inhibits ionizing radiation-induced apoptosis in SKOV3cells,but increased SKVCR cells apoptotic rate (P <0.05).
     10. Effects of ionizing radiation on cell cycle: Ionizing radiation induced G2/Marrest in SKVCR and SKOV3cells (P <0.05); a higher percentage of S phase cellswas found in SKVCR cells, and ionizing radiation induced significantly S delay;3MA decreased the percentage of S phase in cells which have lower sensitive toionizing radiation), but increased that of G1/M phase in which cells have highersensitive to ionizing radiation (P <0.05). The result shows that3MA can regulatecell cycle redistribution and might have synergistic effect of ionizing radiation.
     Conclusion:
     1. The high autophagic level in SKVCR consists of one of the importantmechanism of chemotherapy resistance.
     2. The inhibition of autophagy can increase apoptosis induced by VCR andenhance the chemosensitivity to VCR in SKVCR cells.
     3. Ionizing radiation can induce apoptosis and autophagy in ovarian cancer celllines, and autophagy prompts the resistance of SKVCR cells to ionizing radiation;3MA inhibits S phase delay and apoptosis induced by ionizing radiation, andenhances radiosensitivity through the inhibition of autophagy of SKVCR cells.
     Autophagy inhibitors may become the chemotherapy sensitizer for drug-resistant ovarian cancer in future.
引文
[1] Balch C, Huang TH, Brown R, et al. The epigenetics of ovarian cancer drugresistance and resensitization [J]. Am J Obstet Gynecol,2004,191(5):1552-1572.
    [2] Jemal A, Siegel R, Ward E, et al. Cancer statistics,2008[J]. CA Cancer J Clin,2008,58(2):71-96.
    [3] Sorrentino A, Liu CG, Addario A, et al. Role of microRNAs in drug-resistantovarian cancer cells [J]. Gynecol Oncol,2008,111(3):478-486.
    [4] Gottesman MM. How cancer cells evade chemotherapy:Sixteenth Richardand Hinda Rosenthal Foundation Award Lecture [J]. Cancer Res,1993,53(4):747-754.
    [5] Persidis A. Cancer multidrug resistance [J]. Nat Biotechnol,1999,17(1):94-95.
    [6] Akan I, Akan S, Akca H, et al. Multidrug resistance-associated protein1(MRP1) mediated vincristine resistance: effects ofN-acetylcysteine andButhionine sulfoximine [J]. Cancer Cell Int,2005,5(1):22.
    [7] Ambudkar SV, Dey S, Hrycyna CA, et al. Biochemical, cellular, andpharmacological aspects of the multidrug transporter [J]. Annu RevPharmacol Toxicol,1999,39:361-398.
    [8] Akan I, Akan S, Akca H, et al. N-acetylcysteine enhances multidrugresistance-associated protein mediated doxorubicin resistance [J]. Eur J ClinInvest,2004,34(10):683-689.
    [9] Liscovitch M, Lavie Y. Cancer multidrug resistance: a review of recent drugdiscovery research [J]. IDrugs,2002,5(4):349-355.
    [10] Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC)transporter superfamily [J]. Genome Res,2001,11(7):1156-1166.
    [11] Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role ofATP-dependent transporters [J]. Nat Rev Cancer,2002,2(1):48-58.
    [12] Efferth T. The human ATP-binding cassette transporter genes: from the benchto the bedside [J]. Curr Mol Med,2001,1(1):45-65.
    [13] Choi CH. ABC transporters as multidrug resistance mechanisms and thedevelopment of chemosensitizers for their reversal [J]. Cancer Cell Int,2005,5:30.
    [14] Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an updateon the clinical strategy of inhibiting p-glycoprotein [J]. Cancer Control,2003,10(2):159-165.
    [15] Leonard GD, Fojo T, Bates SE. The role of ABC transporters in clinicalpractice [J]. Oncologist,2003,8(5):411-424.
    [16] Juliano RL, Ling V. A surface glycoprotein modulating drug permeability inChinese hamster ovary cell mutants [J]. Biochim Biophys Acta,1976,455(1):152-162.
    [17] Ambudkar SV, Dey S, Hryeyna CA, et al. Biochemical, cellular, andpharmacological aspects of the multidrug transporter [J]. Annu RevPhannacol Toxicol,1999,39:361-398.
    [18] Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer. Meehanisms,reversal using modulators of MDR and the role of MDR modulators ininfluencing the pharmacokinetics of anticancer drugs [J]. Eur J pharm Sci,2000,11(4):265-283.
    [19] Buda G, Orciuolo E, Maggini V, et al. MDR1modulates apoptosis in CD34+leukemic cells [J]. Ann Hematol,2008,87(12):1017-1018.
    [20] Inoue Y, Gika M, Abiko T, et al. Bcl-2overexpression enhances in vitrosensitivity against docetaxel in non-small cell lung cancer [J]. Oncol Rep,2005,13(2):259-264.
    [21] Cole SP, Bhardwaj G, Gerlaeh JH, et al. Overexpression of atranspoter genein a multidrug resistant human lung cancer cell line [J]. Science,1992,258:1650-1654.
    [22] Seeling A, Blatter XL, Wohnsland F. Substrate recognition by P-glycoproteinand multidrug resistance-associated protein MRP1: a comparison [J]. Int JClin Pharmacol Ther,2000,38(3):111-121.
    [23] Evers R, Zaman GJ, van Deemter L, et al. Basolateral localization and exportactivity of the human multidrug resistance-associated protein in polarized pigkidney cells [J]. J Clin Invest,1996,97(5):1211-1218.
    [24] Boumendjel A, Baubiehon-Cortay H, Trompier D, et al. Anti cancermultidrug resistance mediated by MRP1:recent advances in the discovery ofreversal agents [J]. Med Res Rev,2005,25(4):453-472.
    [25] Chang XB. A molecular understanding of ATP-dependent solute transport bymultidrug resistance-associated proteinMRP1[J]. Cancer Metastasis Rev,2007,26(1):15-37.
    [26] Haimeur A, Conseil G, Deeley RG, et al. The MRP-related andBCRP/ABCG2multidrug resistance Proteins: biology, ubstrate sPeeifieityand regulation [J]. Curr Drug Metab,2004,5(1):21-53.
    [27] Seheffer GL, Wijngaard PL, Flens MJ, et al. The dlrug resistance-relatedprotein LRP is the human major vault protein [J]. Nat Med,1995,l(6):578-582.
    [28] Kawabata S, Oka M, Shiozawa K, et al. Breast cancer resistance proteindirectly confers SN-38resistance of lung cancer cells [J]. Biochem BiophysRes Commun,2001,280(5):1216-1223.
    [29] Meyer Zu Schwabedissen HE, Grube M, Heydrich B, et al. Expression,localization,and function of MRP5(AB-CC5), a transporter for cyclicnucleotides, in human placenta and cultured human trophoblasts: Effects ofgestational age and cellular differentiation [J]. Am J Pathol,2005,166(1):39.
    [30] Neubauer M, Stefamova M, Solomayer E, et al. Predicting resistance toplatinum-containing chemosensitivity assay in primary ovarian cancer [J].Anticancer Res,2008,28(2A):949-955.
    [31] Saleem A, Ibrahim N, Patel M, et al. Mechanisms of resistance in a humancell line exposed to sequential topoisomerase poisoning [J]. Cancer Res,1997,57(22):5100-5106.
    [32] Fox ME, Smith PJ. Subcelluar localization of the antitumor drug mitoxantroneand the induction of DNA damage in resistant and sensitive human coloncarcinoma cells [J]. Cancer chemother Pharmacol,1995,35(5):403-410.
    [33] Tsuruo T, Naito M, Tomida A, et al. Molecular targeting therapy ofcancer:drug resistance, apoptosis and survival signal [J]. Cancer Sci,2003,94(l):15-21.
    [34] White E. Life, death, and the pursuit of apoptosis [J].Genes De,1996,10(l):l-15.
    [35] Tsuruo T, Naito M, Tomida A, et al. Molecular targeting therapy ofcancer:drug resistance, apoptosis and survival signal [J]. Cancer Sci,2003,94(l):15-21.
    [36] Gariboldi MB, Ravizza R, Riganti L, et al. Molecular determinants of intrinsicResistance to doxorubicin in human cancer cell lines [J]. Int J Oncol,2003,22(5):1057-1064.
    [37] Wang JC. Cellular roles of DNA topoisomerases: a molecular perspective [J].Nat Rev Mol Cell Biol,2002,3(6):430-440.
    [38] Mattern J, Efferth T, Volm M, et al. Overexpression of P-glycoprotein inhuman lung carcinoma xenografts after fractionated irradiation in vivo [J].Radiat Res,1991,127(3):335-338.
    [39] Korystov YN, Shaposhnikova VV, Korystova AF, et al. Modification ofmultidrug resistance of tumor cells by ionizing radiation [J]. CancerChemother Pharmacol,2008,61(1):15-21.
    [40] Ana MS, John TB, Patrica VS et al. Fractioned ionizing radiation acceleratesloss of ammplified MDR1genes harbored by extrachromosomal DNA intumor cells [J]. Cancer Reseach,1998,58(17):3845-3854.
    [41] Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements[J]. Nat Rev Cancer,2004,4(9):737-747.
    [42] Tobias JS. Risk management and radiotherapy for cancer [J]. Clin Risk,1992,6:13-16.
    [43] De Ruysscher D, van Baardwijk A, Steevens J, et al. Individualised isotoxicaccelerated radiotherapy and chemotherapy are associated with improvedlong-term survival of patients with stage III NSCLC: a prospectivepopulation-based study [J]. Radiother. Oncol,2012102(2):228-233.
    [44] Palumbo S, Comincini S. Autophagy and ionizing radiation in tumors: the"survive or not survive" dilemma [J]. J Cell Physiol,2013,228(1):1-8.
    [45] Withers HR. The four R’s of radiotherapy [J]. Adv Radiat Biol,1975,5:241-247.
    [46] Steel GG, McMillan TJ, Peacock JH. The5Rs of radiobiology [J]. Int J RadiatBiol,1989,56(6):1045-1048.
    [47] Chatterjee S, Willis N, Locks SM,et al. Dosimetric and radiobiologicalcomparison of helical tomotherapy, forward-planned intensity-modulatedradiotherapy and two-phase conformal plans for radicalradiotherapytreatmentr of head and neck squamous cell carcinomas [J]. Br J Radiol,2011,84(1008):1083-1090.
    [48] Boomsma MJ, Bijl HP, Langendijk JA. Radiation-induced hypothyroidism inhead and neck cancer patients: a systematic review [J]. Radiother Oncol,2011,99(1):1-5.
    [49] Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy withtargeted drugs [J]. Nat Rev Cancer,2011,11(4):239-253.
    [50] Ma X, Yang L, Xiao L, et al. Down-regulation of EBV-LMP1radio-sensitizesnasal pharyngeal carcinoma cells via NF-κB regulated ATM expression [J].PLoS One,2011,6(11):e24647.
    [51] Veuger SJ, Durkacz BW. Persistence of unrepaired DNA double strand breakscaused by inhibition of ATM does not lead to radio-sensitisation in theabsence of NF-κB activation [J]. DNA Repair,2011,10(2):235-244.
    [52] Lee KM, Choi EJ, Kim IA. MicroRNA-7increases radiosensitivity of humancancer cells with activated EGFR-associated signaling [J]. Radiother Oncol,2011,101(1):171-176.
    [53] Kasten-Pisula U, Saker J, Eicheler W, et al. Cellular and tumorradiosensitivity is correlated to epidermal growth factor receptor proteinexpression level in tumors without EGFR amplification [J]. Int J Radiat OncolBiol Phys.2011,80(4):1181-1188.
    [54] Zeng KW, Wang XM, Ko H, et al. Hyperoside protects primary rat corticalneurons from neurotoxicity induced by amyloid-protein via thePI3K/Akt/Bad/Bcl(XL)-regulated mitochondrial apoptotic pathway [J]. Eur JPharmacol,2011,672(1-3):45-55.
    [55] Bharadwaj U, Marin-Muller C, Li M, et al. Mesothelin confers pancreaticcancer cell resistance to TNF-alpha-induced apoptosis throughAkt/PI3K/NF-κB activation and IL-6/Mcl-1overexpression [J]. Mol Cancer,2011,10:106.
    [56] Toulany M, Dittmann K, Fehrenbacher B, et al.PI3K-Akt signaling regulatesbasal, but MAP-kinase signaling regulates radiation-induced XRCC1expression in human tumor cells in vitro [J]. DNA Repair (Amst),2008,7(10):1746-1756.
    [57] Florczak U, Toulany M, Kehlbach R, et al.2-Methoxyestradiol-inducedradiosensitization is independent of SOD but depends on inhibition of Akt andDNA-PKcs activities [J]. Radiother Oncol,2009,92(3):334-338.
    [58] Minjgee M, Toulany M, Kehlbach R, et al. K-RAS(V12) induces autocrineproduction of EGFR ligands and mediates radioresistance throughEGFR-dependent Akt signaling and activation of DNA-PKcs [J]. Int J RadiatOncol Biol Phys,2011,81(5):1506-1514.
    [59] Liccardi G, Hartley JA, Hochhauser D. EGFR nuclear translocation modulatesDNA repair following cisplatin and ionizing radiation treatment [J]. CancerRes,2011,71(3):1103-1114.
    [60] Wang Y, Yu Y, Tsuyada A, et al. Transforming growth factor-regulates thesphere-initiating stem cell-like feature in breast cancer through miRNA-181and ATM [J]. Oncogene,2011,30(12):1470-1480.
    [61] Zhang Z, Yang Z, J maa S, et al. Differential epithelium DNA damageresponse to ATM and DNA-PK pathway inhibition in human prostate tissueculture [J]. Cell Cycle,2011,10(20):3545-3553.
    [62] Glazer PM, Le QT, Bristow R, et al. New translational possibilities formicroenvironmental modulation of radiosensitivity [J]. Radiat Res,2011,176(3):412-414.
    [63] Shinohara ET, Maity A. Increasing sensitivity to radiotherapy andchemotherapy by using novel biological agents that alter the tumormicroenvironment [J]. Curr Mol Med,2009,9(9):1034-1045.
    [64] Karar J, Maity A. Modulating the tumor microenvironment to increaseradiation responsiveness [J]. Cancer Biol Ther,2009,8(21):1994-2001.
    [65] Solberg TD, Nearman J, Mullins J, et al. Correlation between tumor growthdelay and expression of cancer and host VEGF, VEGFR2, and osteopontin inresponse to radiotherapy [J]. Int J Radiat Oncol Biol Phys,2008,72(3):918-926.
    [66] Rezvani HR, Ali N, Nissen LJ, et al. HIF-1a in epidermis: oxygen sensing,cutaneous angiogenesis, cancer, and non-cancer disorders [J]. J InvestDermatol,2011,131(9):1793-1805.
    [67] Cassavaugh J, Lounsbury KM. Hypoxia-mediated biological control [J]. J CellBiochem,2011,12(3):735-744.
    [68] Yang W, Sun T, Cao J, et al. Hypoxia-inducible factor-1a downregulation bysmall interfering RNA inhibits proliferation, induces apoptosis, and enhancesradiosensitivity in chemical hypoxic human hepatoma SMMC-7721cells [J].Cancer Biother Radiopharm,2011,26(5):565-571.
    [69] Harada H, Itasaka S, Zhu Y, et al. Treatment regimen determines whether anHIF-1inhibitor enhances or inhibits the effect of radiation therapy [J]. Br JCancer,2009,100(5):747-757.
    [70] Amini A, Masoumi Moghaddam S, Morris DL, et al. The critical role ofvascular endothelial growth factor in tumor angiogenesis [J]. Curr CancerDrug Targets,2012,12(1):23-43.
    [71] Wang R, Zhou S, Li S. Cancer therapeutic agents targeting hypoxia-induciblefactor-1[J]. Curr Med Chem,2011,18(21):3168-3189.
    [72] Kroemer G, Galluzzi L, Vandenabeele P, et al. Classification of cell death:Recommendations on the Nomenclature Committee on Cell Death2009[J].Cell Death Differ,2009,16(1):3-11.
    [73] Galluzzi L, Vitale I, Abrams JM, et al. Molecular definition of cell deathsubroutines: Recommendations on the Nomenclature Committee on CellDeath2012[J]. Cell Death Differ,2012,19(1):107-120.
    [74] Kerr JF, Wylie AH, Currie AR. Apoptosis: a basic biological phenomenonwith wide-ranging implications in tissue kinetics [J]. Br J Cancer,1972,26(4):239-257.
    [75] Klionsky DJ. Autophagy: from phenomenology to molecular understanding inless than a decade [J]. Nat Rev Mol Cell Biol,2007,8(11):931-937.
    [76] Gerwitz DA, Hilliker ML, Wilson EN. Promotion of autophagy as amechanism for radiosensitization of breast cancer cells [J]. Radiother Oncol,2009,92(3):323-328.
    [77] Long JS, Ryan KM. New frontiers in promoting tumor cell death: targetingapoptosis, necroptosis and autophagy [J]. Oncogene,2012,31(49):5045-5060.
    [78] Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenonwith wide-ranging implications in tissue kinetics [J]. Br J Cancer,1972,26(4):239-257.
    [79] Kerr JFR, Winterford CM, Harmon BV. Apoptosis. Its significance in cancerand cancer therapy [J]. Cancer,1994,73(8):2013-2026.
    [80] Vaux DL. A poptosis timeline [J]. Cell Death Differ,2002,9(4):349-354.
    [81] Ferrington DA, Tran TN, Kathleen L, et al. Different death stimuli evokeapoptosis via multiple pathways in retinal pigment epithelial cells [J]. ExpEye Res,2006,83(3):638-650.
    [82] Green DR, Reed JC. Mitochondria and apoptosis [J]. Science,1998,281(5381):1309-1312.
    [83] Kroemer G, Reed JC. Mitochondrial control of cell death [J]. Nat Med,2000,6(5):513-519.
    [84] Twiddy D, Brown DG, Adrain C, et al. Pro-apoptotic proteins released fromthe mitochondria regulate the protein composition and Caspase processingactivity of the native Apaf-1/Caspase-9apoptosome complex [J]. J BiolChem,2004,279(19):19665-19682.
    [85] Miramar MD, Costantini P, Ravagnan L, et al. NADH oxidase activity ofmitochondrial apoptosis-inducing factor [J]. J Biol Chem,2001,276(19):16391-163981.
    [86] Ashkenazi A. Targeting death and decoy receptors of the tumour necrosisfactor superfamily [J]. Nat Rev Cancer,2002,2(6):420-430.
    [87] Ashkenazi A, Dixit VM. Death receptor: Signaling and modulation [J].Science,1998,281(5381):1305-1308.
    [88] Pimente-l Muinos FX, Seed B. Regulated commitment of TNF receptorsignaling: a molecular switch for death or activation [J]. Immunity,1999,11(6):783-393.
    [89] De Maria R, Lentil L, Malisan F, et al. Requirement for GD3ganglioside inCD95and ceramide-induced apoptosis [J]. Science,1997,277(5332):1652-1655.
    [90] Luo X. Bid, a bcl-2interactingprotein, mediates cytochrome c re-lease frommitochondria in response to activation of cell surface death receptor [J]. Cell,1998,94(4):481-490.
    [91] Pellegrini M, Bath S, Marsden VS, et al. FADD and Caspase-8are requiredfor cytokine-induced proliferation of hemopoietic progenitor cells [J]. Blood,2005,106(5):1581-1589.
    [92] Savill J, Fadok V. Corpse clearance defines themeaning of cell death [J].Nature,2000,407(6805):784-788.
    [93] Galluzzi E, Morselli O, Kepp I, et al. Mitochondrial gateways to cancer[J].Mol Aspects Med,2010,31(1):1-20.
    [94] Hanahan D., Weinberg RA. The hallmarks of cancer [J]. Cell,2000,100(1):57-70.
    [95] Baines CP, Molkentin JD. STRESS signaling pathways that modulate cardiacmyocyte apoptosis [J]. J Mol Cell Cardiol,2005,38(1):47-62.
    [96] Duronio V. The life of a cell: apoptosis regulation by the PI3K/PKB pathway[J]. Biochem J,2008,415(3):333-344.
    [97] Fulda S, Gorman AM, Hori O, et al. Cellular stress responses: cell survivaland cell death [J]. Int J Cell Biol,2010,2010:214074.
    [98] Geiger TR, Peeper DS.Metastasis mechanisms [J]. Biochim Biophys Acta,2009,1796(2):293-308.
    [99] Ziegler DS, Kung AL, Kieran MW.Anti-apoptosis mechanisms in malignantgliomas [J]. J Clin Oncol,2008,26(3):493-500.
    [100] de Bruin EC, Medema JP.Apoptosis and non-apoptotic deaths in cancerdevelopment and treatment response [J]. Cancer Treat Rev,2008,34(8):737-749.
    [101] Letai A. Bcl-2: found bound and drugged![J].Trends Mol Med,2005,11(10):442-444.
    [102] Chipuk JE, Green DR. How do bcl-2proteins induce mitochondrial outermembrane permeabilization [J]. Trends Cell Biol,2008,18(4):157-164.
    [103] Sakamoto S, Kyprianou N.Targeting anoikis resistance in prostate cancermetastasis [J]. Mol Aspects Med,2010,31(2):205-214.
    [104] Westhoff MA, Fulda S.Adhesion-mediated apoptosis resistance in cancer [J].Drug Resist Updat,2009,12(4-5):127-36.
    [105] Wang R, Lin F, Wang X, et al.Suppression of Bcl-xL expression by a noveltumor-specific RNA interference system inhibits proliferation and enhancesradiosensitivity in prostatic carcino-ma cells [J]. Cancer ChemotherPharmacol,2008,61(6):943-952.
    [106] Wei SH, Dong K, Lin F, et al. Inducing apoptosis and enhancingchemosensitivity to gemcitabine via RNA interference targeting Mcl-1gene inpancreatic carcinoma cell [J]. Cancer Chemother Pharmacol,2008,62(6):1055-1064.
    [107] Konishi I, Kuroda H, Mandai M. Review: gonadotropins and development ofovarian cancer.[J]. Oncology,1999,57:45-48.
    [108] Serrone L, Horsey P. The chemoresistance of human malignant melanoma:anupdate [J]. Melanoma Res,1999,9(1):51-58.
    [109] Decaudin D, Marzo I, Brenner C, et al. Mitochondria inchemotherapy-induced apoptosis: a prospective novel target of cancer therapy(review)[J]. Int J Oncol,1998,12(1):141-152.
    [110] Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy [J]. Nat CellBiol,2010,12(9):814-822.
    [111] Itakura E, Mizushima N. Characterization of autophagosome formation site bya hierarchical analysis of mammalian Atg proteins [J]. Autophagy,2010,6(6):764-776.
    [112] Mijaljica D, Prescott M, Devenish RJ. Microautophagy in mammalian cells:revisiting a40-year-old conundrum [J]. Autophagy,2011,7(7):673-682.
    [113] Kaushik S, Bandyopadhyay U, Sridhar S, et al. Chaperone-mediatedautophagy at a glance [J]. J Cell Sci,2011,124(Pt4):495-499.
    [114] Kourtis N, Tavernarakis N. Autophagy and cell death in model organisms [J].Cell Death Differ,2009,16(1):21-30.
    [115] Klinonsky DJ, Abdalla FC, Abeliovich H, et al. Guidelines for the use andinterpretation of assays for monitoring autophagy [J]. Autophagy,2012,8(4):445-544.
    [116] LEE JS, KIM YJ, KIM CL, et al. Differential induction of autophagy inCaspase-3/7down-regulating and bcl-2overexpressing recombinant CHOcells subjected to sodium butyrate treatment [J]. Journal of biotechnology,2012,161(1):34-41.
    [117] Suzuki K, Ohsumi Y. Molecular machinery of autophagosome formation inyeast, saccharomyces cerevisiae [J]. FEBS Lett,2007,581(11):2156-2161.
    [118] Liang XH, Kleeman LK, Jiang HH, et al. Levine Protection against fatalSindbis virus encephalitis by beclin, a novel bcl-2-interacting protein [J]. JVirol,1998,72(11):8586-8596.
    [119] Oberstein A, Jeffrey PD, Shi Y. Crystal structure of the Bcl-XL-Beclin1peptide complex: Beclin1is a novel BH3-only protein [J]. Biol Chem,2007,282(17):13123-13132.
    [120] Maiuri MC, Le Toumelin G, Criollo A, et al. Functional and physicalinteraction between Bcl-X(L) and a BH3-like domain in Beclin1[J]. EMBO,2007,26(10):2527-2539.
    [121] Erlich S, Mizrachy L, Segev O, et al. Differential interactions between Beclin1and bcl-2family members [J]. Autophagy,2007,3(6):561-568.
    [122] Feng W, Huang S, Wu H, et al. Molecular basis of Bcl-xL's target recognitionversatility revealed by the structure of Bcl-xL in complex with the BH3domain of Beclin1[J]. J Mol Biol,2007,372(1):223-235.
    [123] Maiuri MC, Criollo A, Tasdemir E, et al. BH3-only proteins and BH3mimetics induce autophagy by competitively disrupting the interactionbetween Beclin1and bcl-2/Bcl-X(L)[J]. Autophagy,2007,3(4):374-376.
    [124] Petiot A, Ogier-Denis E, Blommaart EF,et al. Distinct classes ofphosphatidylinositol3′-kinases are involved in signaling pathways that controlmacroautophagy in HT-29cells [J]. J Biol Chem,2000,275(2):992-998.
    [125] Furuya N, Yu J, Byfield M, et al. The evolutionarily conserved domain ofBeclin1is required for Vps34binding, autophagy and tumor suppressorfunction [J]. Autophagy,2005,1(1):46-52.
    [126] Liang C, Feng P, Ku B, et al. Autophagic and tumour suppressor activity of anovel Beclin1-binding protein UVRAG [J]. Nat Cell Biol,2006,8(7):688-699.
    [127] Liang C, Sir D, Lee S, et al. Beyond autophagy: the role of UVRAG inmembrane trafficking [J]. Autophagy,2008,4(6):817-820.
    [128] Pierrat B, Simonen M, Cueto M, et al. SH3GLB, a new endophilin-relatedprotein family featuring an SH3domain [J]. Genomics,2001,71(2):222-234.
    [129] Farsad K, Ringstad N, Takei K, et al. Generation of high curvaturemembranes mediated by direct endophilin bilayer interactions [J]. J Cell Biol,2001,155(2):193-200.
    [130] Yang JS, Zhang L, Lee SY, et al. Key components of the fission machineryare interchangeable [J]. Nat Cell Biol,2006,8(12):1376-1382.
    [131] Karbowski M, Jeong SY, Youle RJ. Endophilin B1is required for themaintenance of mitochondrial morphology [J]. J Cell Biol,2004,166(7):1027-1039.
    [132] Takahashi Y, Karbowski M, Yamaguchi H, et al. Loss of Bif-1suppressesBax/Bak conformational change and mitochondrial apoptosis [J]. Mol CellBiol,2005,25(21):9369-9382.
    [133] Wullschleger S, Loewith R, Hall MN. TOR signaling in growth andmetabolism [J]. Cell,2006,124(3):471-484.
    [134] Bhaskar PT, Hay N. The two TORCs and AKT [J]. Dev Cell,2007,12(4):487-502.
    [135] Hay N, Sonenberg N. Upstream and downstream of mTOR [J]. GenesDev,2004,18(16):1926-1945.
    [136] Scott RC, Juhasz G, Neufeld TP. Direct induction of autophagy by Atg1inhibits cell growth and induces apoptotic cell death [J]. Curr Biol,2007,17(1):1-11.
    [137] wullschleger S, Loewith R, Oppliger W, et al. Molecular organization oftarget of rapamycin complex2[J]. J Biol Chem,2005,280(35):30697-3070.
    [138] Tandem RE, Yuri MC,Gallus IL, et al. Regulation of autophagy bycytoplasmic p53[J]. Nat Cell Boil,2008,10(6):676-687.
    [139] Meijer AJ, Cologne P. Regulation and role of autophagy in mammalian [J].Into J Biochem Cell Biol,2004,36(12):2445-2462.
    [140] Crighton D, Wilkinson S, O'Prey J, et al. DRAM, a p53-induced modulator ofautophagy, is critical for apoptosis [J]. Cell,2006,126:121-134.
    [141] Feng Z, Zhang H, Levine AJ, et al. The coordinate regulation of the p53andmTOR pathways in cells [J]. Proc Natl Acad Sci U S A,2005,102(23):8204-8209.
    [142] Tasdemir E, Maiuri MC, Galluzzi L, et al. Regulation of autophagy bycytoplasmic p53[J]. Nat Cell Biol,2008,10(6):676-687.
    [143] Morselli E, Tasdemir E, Maiuri MC, et al. Mutant p53protein localized in thecytoplasm inhibits autophagy [J]. Cell Cycle,2008,7(19):3056-3061.
    [144] Jiang Q, Wang Y, Li T, et al. Heat shock protein90-mediated inactivation ofnuclear factor-kappaB switches autophagy to apoptosis through becn1transcriptional inhibition in selenite-induced NB4cells [J]. Mol Biol Cell,2011,22(8):1167-1180.
    [145] Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cellsurvival and restricts necrosis, inflammation, and tumorigenesis [J]. CancerCell,2006,10(1):51-64.
    [146] Qing G, Yan P, Qu Z, et al. Hsp90regulates processing of NF-kB2p100involving protection of NF-kB-inducing kinase (NIK) fromautophagy-mediated degradation [J]. Cell Res,2007,17(6):520-530.
    [147] Fu LL, Wen X, Bao JK, et al. MicroRNA-modulated autophagic signalingnetworks in cancer [J]. Int J Biochem Cell Biol,2012,44(5):733-736.
    [148] Kubli DA, Ycaza JE, Gustafsson AB.Bnip3mediates mitochondrialdysfunction and cell death through Bax and Bak [J]. Biochem J,2007,405(3):407-415.
    [149] Regula KM, Ens K, Kirshenbaum LA. Inducible expression of BNIP3provokes mitochondrial defects and hypoxia-mediated cell death ofventricular myocytes [J]. Circ Res,2002,91(3):226-231.
    [150] Zhang L, Li L, Liu H, et al. BNIP3mediates cell death by different pathwaysfollowing localization to endoplasmic reticulum and mitochondrion [J].FASEB J,2009,23(10):3405-3414.
    [151] Kubli DA, Quinsay MN, Huang C, et al. Bnip3functions as a mitochondrialsensor of oxidative stress during myocardial ischemia and reperfusion [J]. AmJ Physiol Heart Circ Physiol,2008,295(5):H2025-H2031.
    [152] Bellot G, Garcia-Medina R, Gounon P, et al. Hypoxia-induced autophagy ismediated through hypoxia-inducible factor induction of BNIP3and BNIP3Lvia their BH3domains [J]. Mol Cell Biol,2009,29(10):2570-2581.
    [153] Azad MB, Chen Y, Henson ES, et al. Hypoxia induces autophagic cell deathin apoptosis-competent cells through a mechanism involving BNIP3[J].Autophagy,2008,4(2):195-204.
    [154] Rikka S, Quinsay MN, Thomas RL, et al. Bnip3impairs mitochondrialbioenergetics and stimulates mitochondrial turnover [J]. Cell Death Differ,2011,18(4):721-31.
    [155] Schweers RL, Zhang J, Randall MS, et al. NIX is required for programmedmitochondrial clearance during reticulocyte maturation [J]. Proc Natl Acad SciU S A,2007,104(49):19500-19505.
    [156] Sun WL, Chen J, Wang YP, et al. Autophagy protects breast cancer cells fromepirubicin-induced apoptosis and facilitates epirubicin-resistance development[J]. Autophagy,2011,7(9):1035-1044.
    [157] Schoenlein PV, Periyasamy-Thandavan S, Samaddar JS, et al. Autophagyfacilitates the progression of ERalpha-positive breast cancer cells toantiestrogen resistance [J]. Autophagy,2009,5(3):400-403.
    [158] Yang PM, Liu YL, Lin YC, et al. Inhibition of autophagy enhances anticancereffects of atorvastatin in digestive malignancies [J]. Cancer Res,2010,70(19):7699-7709.
    [159] Paillas S, Causse A, Marzi L, et al. MAPK14/p38α confers irinotecanresistance to Tp53-defective cells by inducing survival autophagy [J].Autophagy,2012,8(7):1098-1112.
    [160] Liu D, Yang Y, Liu Q, et al. Inhibition of autophagy by3-MA potentiatescisplatin-induced apoptosis in esophageal squamous cell carcinoma cells [J].Med Oncol,2011,28(1):105-111.
    [161] Chen YS, Song HX, Lu Y, et al. Autophagy inhibition contributes to radiationsensitization of esophageal squamous carcinoma cells [J]. Dis Esophagus,2011,24(6):437-443.
    [162] Kaini RR, Sillerud LO, Zhaorigetu S, et al. Autophagy regulates lipolysis andcell survival through lipid droplet degradation in androgen-sensitive prostatecancer cells [J]. Prostate,2012,72(13):1412-1422.
    [163] Li H, Jin X, Zhang Z, et al. Inhibition of autophagy enhances apoptosisinduced by the PI3K/AKT/mTor inhibitor NVP-BEZ235in renal cellcarcinoma cells [J]. Cell Biochem Funct,2013,31(5):427-433.
    [164] Kumano M, Furukawa J, Shiota M, et al. Cotargeting stress-activated Hsp27and autophagy as a combinatorial strategy to amplify endoplasmic reticularstress in prostate cancer [J]. Mol Cancer Ther,2012,11(8):1661-1671.
    [165] Henson ES, Gibson SB. Surviving cell death through epidermal growthfactor (EGF) signal transduction pathway: implications for cancer therapy[J]. Cell Signal,2006,18(12):2089-2097.
    [166] Han W, Pan H, Chen Y, et al. EGFR tyrosine kinase inhibitors activateautophagy as a cytoprotective response in human lung cancer cells [J]. PLoSOne,2011,6:e18691.
    [167] Kohli L, Kaza N, Lavalley NJ, et al. The pan erbB inhibitor PD168393enhances lysosomal dysfunction-induced apoptotic death in malignantperipheral nerve sheath tumor cells [J]. Neuro Oncol,2012,14(3):266-277.
    [168] Ghadimi MP, Lopez G, Torres KE, et al. Targeting the PI3K/mTOR axis, aloneand in combination with autophagy blockade, for the treatment of malignantperipheral nerve sheath tumors [J]. Mol Cancer Ther,2012,11(8):1758-1769.
    [169] Chiarini F, Grimaldi C, Ricci F, et al. Activity of the novel dualphosphatidylinositol3-kinase/mammalian target of rapamycin inhibitorNVP-BEZ235against T-cell acute lymphoblastic leukemia [J]. Cancer Res,2010,70(20):8097-8107.
    [170] Lin JF, Tsai TF, Liao PC, et al. Benzyl isothiocyanate induces protectiveautophagy in human prostate cancer cells via inhibition of mTOR signaling [J].Carcinogenesis,2013,34(2):406-414.
    [171] Amaravadi RK, Yu D, Lum JJ, et al. Autophagy inhibition enhancestherapy-induced apoptosis in a Myc-induced model of lymphoma [J]. J ClinInvest,2007,117(2):326-336.
    [172] Stanton MJ, Dutta S, Zhang H, et al. Autophagy control by theVEGF-C/NRP-2axis in cancer and its implication for treatment resistance [J].Cancer Res,2013,73(1):160-171.
    [173] Paillas S, Causse A, Marzi L, et al. MAPK14/p38α confers irinotecanresistance to Tp53-defective cells by inducing survival autophagy [J].Autophagy,2012,8(7):1098-1112.
    [174] de la Cruz-Morcillo MA, Valero ML, Callejas-Valera JL, et al. P38MAPK is amajor determinant of the balance between apoptosis and autophagy triggeredby5-fluorouracil: implication in resistance [J]. Oncogene,2012,31(9):1073-1085.
    [175] Weidhaas JB, Babar I, Nallur SM, et al. MicroRNAs as potential agents toalter resistance to cytotoxic anticancer therapy [J]. Cancer Res,2007,67(23):11111-11116.
    [176] Chen G, Zhu W, Shi D, et al. MicroRNA-181a sensitizes human malignantglioma U87MG cells to radiation by targeting Bcl-2[J]. Oncol Rep,2010,23(4):997-1003.
    [177] Yu Y, Cao L, Yang L, et al. microRNA30A promotes autophagy in response tocancer therapy [J]. Autophagy,2012,8(5):853-855.
    [178] Yu Y, Yang L, Zhao M, et al. Targeting microRNA-30a-mediated autophagyenhances imatinib activity against human chronic myeloid leukemia cells [J].Leukemia,2012,26(8):1752-1760.
    [179] Zou Z, Wu L, Ding H, et al. MicroRNA-30a sensitizes tumor cells tocis-platinum via suppressing beclin1-mediated autophagy [J]. J Biol Chem,2012,287(6):4148-4156.
    [180] Xu N, Zhang J, Shen C, et al. Cisplatin-induced downregulation ofmiR-199a-5p increases drug resistance by activating autophagy in HCC cell[J]. Biochem Biophys Res Commun,2012,423(4):826-831.
    [181] Xiong HY, Guo XL, Bu XX, et al. Autophagic cell death induced by5-FU inBax or PUMA deficient human colon cancer cell [J]. Cancer Lett,2010,288(1):68-74.
    [182] Lee YJ, Won AJ, Lee J, et al. Molecular mechanism of SAHA on regulation ofautophagic cell death in tamoxifen-resistant MCF-7breast cancer cells [J]. IntJ Med Sci,2012,9(10):881-893.
    [183] Cloonan SM, Williams DC. The antidepressants maprotiline and fluoxetineinduce Type II autophagic cell death in drug-resistant Burkitt's lymphoma [J].Int J Cancer,2011,128(7):1712-1723.
    [184] Salazar M, Carracedo A, Salanueva IJ, et al. Cannabinoid action inducesautophagy-mediated cell death through stimulation of ER stress in humanglioma cells [J]. J Clin Invest,2009,119(5):1359-1372.
    [185] Donadelli M, Dando I, Zaniboni T, et al. Gemcitabine/cannabinoidcombination triggers autophagy in pancreatic cancer cells through aROS-mediated mechanism [J]. Cell Death Dis,2011,2:e152.
    [186] Dando I, Donadelli M, Costanzo C, et al. Cannabinoids inhibit energeticmetabolism and induce AMPK-dependent autophagy in pancreatic cancercells [J]. Cell Death Dis,2013,4:e664.
    [187] Torres S, Lorente M, Rodríguez-Fornés F, et al. A combined preclinicaltherapy of cannabinoids and temozolomide against glioma [J]. Mol CancerTher,2011,10(1):90-103.
    [188] Yun SM, Jung JH, Jeong SJ, et al. Tanshinone IIA induces autophagic celldeath via activation of AMPK and ERK and inhibition of mTOR and p70S6Kin KBM-5leukemia cells [J]. Phytother Res,2014,28(3):458-464.
    [189] Kohli L, Kaza N, Coric T, et al.4-Hydroxytamoxifen induces autophagicdeath through K-Ras degradation [J]. Cancer Res,2013,73(14):4395-4405.
    [190] Cai Y, Wan Z, Sun T, et al. Diarylquinoline compounds induceautophagy-associated cell death by inhibiting the AKT pathway and increasingreactive oxygen species in human nasopharyngeal carcinoma cells [J]. OncolRep,2013,29(3):983-992.
    [191] Chang HW, Lee YS, Nam HY, et al. Knockdown of β-catenin controls bothapoptotic and autophagic cell death through LKB1/AMPK signaling in headand neck squamous cell carcinoma cell lines [J]. Cell Signal,2013,25(4):839-847.
    [192] Abe A, Yamada H, Moriya S, et al. The β-carboline alkaloid harmol inducescell death via autophagy but not apoptosis in human non-small cell lungcancer A549cells [J]. Biol Pharm Bull,2011,34(8):1264-1272.
    [193] Yahiro K, Satoh M, Nakano M, et al. Low-density lipoprotein receptor-relatedprotein-1(LRP1) mediates autophagy and apoptosis caused by Helicobacterpylori VacA [J]. J Biol Chem,2012,287(37):31104-31115.
    [194] Francisco R, Pérez-Perarnau A, Cortés C, et al. Histone deacetylase inhibitioninduces apoptosis and autophagy in human neuroblastoma cells [J]. CancerLett,2012,318(1):42-52.
    [195] Eum KH, Lee M. Crosstalk between autophagy and apoptosis in theregulation of paclitaxel-induced cell death in v-Ha-ras-transformed fibroblasts[J]. Mol Cell Biochem,2011,348(1-2):61-68.
    [196] Maiuri MC, Zalckvar E, Kimchi A,et al. Self-eating and self-killing: crosstalkbetween autophagy and apoptosis [J]. Nat Rev Mol Cell Biol,2007,8(9):741-752.
    [197] Platini F, Perez-Tomas R, Ambrosio S, et al. Understanding autophagy in celldeath control [J]. Curr Pharm Des,2010,16:101-113.
    [198] Djavaheri-Mergny M, Amelotti M, Mathieu J, et al. NF-kappaB activationrepresses tumor necrosis factor-alpha-induced autophagy [J]. J Biol Chem,2006,281(41):30373-30382.
    [199] Franzetti E, Huang ZJ, Shi YX, et al. Autophagy precedes apoptosis during theremodeling of silkworm larval midgut [J]. Apoptosis,2012,17(3):305-324.
    [200] Zhang N, Chen Y, Jiang R, et al. PARP and RIP1are required for autophagyinduced by11'-deoxyverticillin A, which precedes Caspase-dependentapoptosis [J]. Autophagy,2011,7(6):598-612.
    [201] Francisco R, Pérez-Perarnau A, Cortés C, et al. Histone deacetylase inhibitioninduces apoptosis and autophagy in human neuroblastoma cells [J]. CancerLett,2012,318(1):42-52.
    [202] Eisenberg-Lerner A, Kimchi A. The paradox of autophagy and its implicationin cancer etiology and therapy [J]. Apoptosis,2009,14(4):376-391.
    [203] Eisenberg-Lemer A, Bialik S, Simon HU, et al. Life and deathpartners:apoptosis, autophagy and theeross-talk between them [J]. Cell DeathDiffer,2009,16(7):966-975.
    [204] Mehrpour M, Eselatine A, Beau l, et al. Overview of macroautophagyregulation in mammalian cells [J]. Cell Res,2010,20(7):748-762.
    [205] Pattingre S, Bauvy C, Carpentier S, et al. Role of JNK1-dependent bcl-2phosphorylation ineeramide induced macroautophagy [J]. J Biol Chem,2009,284(5):2719-2728.
    [206] Qian W, LiuJ, Jin J, et al. Arsenic trioxide induces not only apoptosis but alsoAutophagic cell death inleukemia cell lines via up-regulation of Beclin1[J].Leuk Res,2007,31(3):329-339.
    [207] Baseiani S,Vona R, Matarrese P, et al. Imatinib interferes with survival ofmulti drug resistant Kaposi, s sarcoma cells [J]. FEBS Lett,2007,581(30):5897-5903.
    [208] Komatsu M, Waguri S, Ueno T, et al. Impairment of starvation-induced andconstitutive autophagy in Atg7-deficient mice [J]. J Cell Biol,2005,169(3):425-434.
    [209] Kouroku Y, Fujita E, Tanida I, et al. ER stress (PERK/eIF2alphaphosphorylation) mediates the polyglutamine-induced LC3conversion, anessential step for autophagy formation [J].Cell Death Differ,2007,14(2):230-239.
    [210] Ding WX, Ni HM, Gao W, et al. Differential effects of endoplasmic reticulumStress-induced autophagy on cell survival [J]. J Biol Chem,2007,282(7):4702-4710.
    [211] Qu X, Zou Z, Sun Q, et al. Autophagy gene-dependent clearance of apoptoticcells during embryonic development.[J]. Cell,2007,128(5):931-946.
    [212] Cui Q, Tashiro S, Onodera S, et al. Autophagy preceded apoptosis inoridonin-treated human breast cancer MCF-7cells [J]. Biol Pharm Bull,2007,30(5):859-864.
    [213] Criollo A, Dessen P, Kroemer G. DRAM: a phylogenetically ancient regulatorof autophagy [J]. Cell Cycle,2009,8(15):2319-2320.
    [214] Bristol ML1, Emery SM, Maycotte P, et al. Autophagy inhibition forchemosensitization and radiosensitization in cancer: do the preclinical datasupport this therapeutic strategy [J]? J Pharmacol Exp Ther,2013,344(3):544-552.
    [215] Ajabnoor GM1, Crook T, Coley HM. Paclitaxel resistance is associated withswitch from apoptotic to autophagic cell death in MCF-7breast cancer cells[J]. Cell Death Dis,2012,3:e260.
    [216] Vazquez-Martin A1, Oliveras-Ferraros C, Menendez JA. Autophagy facilitatesthe development of breast cancer resistance to the anti-HER2monoclonalantibody trastuzumab [J]. PLoS One,2009,4(7): e6251.
    [217] Jemal A, Thomas A, Murray T, et al. Cancer statistics [J]. CA Cancer J Clin,2002,52(1):23-47.
    [218] Firat S, Erickson B. Selective irradiation for the treatment of recurrent ovariancarcinoma involving the vagina or rectum [J]. Gynecol Oncol,2001,80(2):213-220.
    [219] Tinger A, Waldron T, Peluso N, et al. Effective palliative radiation therapy inadvanced and recurrent ovarian carcinoma [J]. Int J Radiat Oncol Biol Phys,2001,51(5):1256-1263.
    [220] May LF, Belinson JL, Roland TA. Palliative benefit of radiation therapy inadvanced ovarian cancer [J]. Gynecol Oncol,1990,37(3):408-411.
    [221] R Mathew, V Karantza-Wadsworth, E White. Role of autophagy in cancer [J].Nature Review Cancer,2007,7(12):961-967.
    [222] N Mizushima, YToshimori, B Levine. Methods in mammalian autophagyresearch [J]. Cell,2010,140(3):313-326.
    [223] Sofie Claerhout, Lien Verschooten, Sofie Van Kelst, et al. Concomitantinhibition of AKT and autophagy is required for efficient cisplatin-inducedapoptosis of metastatic skin carcinoma [J]. International Journal of Cancer,2010,127(12):2790-2803.
    [224] Min Sung Kim, Eun Goo Jeong, Chang Hyeok Ahn, et al. Frameshift mutationof UVRAG, an autophagy related gene, in gastric carcinomas with microsatellite instability [J]. Human Pathology,2008,39(7):1059-1063.
    [225] Claerhout S, Verschooten L, Van Kelst S, et al. Concomitant inhibition of AKTand autophagy is required for efficient cisplatin-induced apoptosis ofmetastatic skin carcinoma [J]. Int J Cancer,2010,127(12):2790-2803.
    [226] Yang ZJ, Chee CE, Huang S, et al. The role of autophagy in cancer:therapeutic implications [J]. Mol Cancer Ther,2011,10(9):1533-1541.
    [227] Juliano RL, Ling V. A surface glycoprotein modulating drug permeability inChinese hamster ovary cell mutants [J]. Biochim Biophys Acta,1976,455(1):152-162.
    [228] Fan M, Goodwin ME, Birrer MJ, et al. The c-Jun NH2-terminal proteinkinase/AP-1pathway is required for efficient apoptosis induced by vinblastine[J]. Cance Res,2001,61(11):4450-4458.
    [229]彭心昭,陈英,朴英杰.自噬的抑制影响长春新碱诱导的肝癌细胞自噬性凋亡[J].肿瘤,2004,1(25):32-34.
    [230] Robert K, Xiao WH, Edmond YW, et al. Microtubules facilitateautophagosome formation and fusion of autophagosomes with endosomes [J].Traffic,2006,7(2):129-145.
    [231] Bj rk y G, Lamark T, Brech A, et al. p62/SQSTM1forms protein aggregatesdegraded by autophagy and has a protective effect on huntingtin-induced celldeath [J]. J Cell Biol,2005,171(4):603-614.
    [232] Xiao D, Bommareddy A, Kim SH, et al. Benzyl isothiocyanate causesFoxO1-mediated autophagic death in human breast cancer cells [J]. PLoS One,2012,7(3):1-12.
    [233] Groninger E1, de Graaf SS, Meeuwsen-de Boer GJ, et al. Vincristine-inducedapoptosis in vivo in peripheral blood mono nuclear cells of children with acutelymphoblastic leukaemia (ALL)[J]. Br J Haematol,2000,111(3):875.
    [234] Petiot A, Ogier Denis E, Blommaart EFC, et al. Distinct classes ofphosphatidylinositol3-kinases are involved in signaling pathways that controlmacroautophagy in HT-29cells [J]. J Biol Chem,2000,275(2):992-998.
    [235] Cui Q, Tashiro S, Onodera S, et al. Oridonin induced autophagy in humancervical carcinoma HeLa cells through Ras, JNK, and P38regulation [J]. JPharmacol Sci,2007,105(4):317-325.
    [236] Fujiwara M, Izuishi K, Sano T, et al. Modulating effect of the PI3-kinaseinhibitor LY294002on cisplatin in human pancreatic cancer cells [J]. J ExpClin Cancer Res,2008,27:76.
    [237] Wang XN, Wu Q, Zhang LS, et al. Wortmannin induced apoptosis ofleukemia cells by reducing PI3K/Akt [J]. Chinese-German J Clin Oncol,2010,9(12):734-738.
    [238] Amaravadi RK, Yu D, Lum JJ, et al. Autophagy inhibition enhancestherapy-indueed apoptosis in a Myc-induced model of lymphoma [J]. J ClinInvest,2007,117(2):326-336.
    [239] Maclean KH, Dorsey FC, Cleveland JL, et al. Targeting lysosomal degradationinduces P53-dependent cell death and prevents cancer in mouse models oflymphomagenesis [J]. J Clin Invest,2008,118(l):79-88.
    [240] Xian-ling Guo, Ding Li, Fei Hu, et al. Targeting autophagy potentiateschemotherapy-induced apoptosis and proliferation inhibition inhepatocarcinoma cells [J]. Cancer Letters,2012,320(2):171-179.
    [241] Shi YH, Ding ZB, Zhou J, et al. Targeting autophagy enhances sorafeniblethality for hepatocellular carcinoma via ER stress-related apoptosis [J].Autophagy,2011,7(10):1159-1172.
    [242] Maycotte P, Aryal S, Cummings CT, et al. Chloroquine sensitizes breastcancer cells to chemotherapy independent of autophagy [J]. Autophagy,2012,8(2):200-212.
    [243] Katayama M, Kawaguchi T, Berger MS, et al.DNA damaging agent-inducedautophagy produces a cytoprotective adenosine triphosphate surge inmalignant glioma cells [J]. Cell Death Differ,2007,14(3):548-558.
    [244] Campone M, Levy V, Bourbouloux E, et al. Safety and pharmacokinetics ofpaclitaxel and the oral mTOR inhibitor everolimus in advanced solid tumours[J]. Br J Cancer,2009,100(2):315-321.
    [245] Levy JM, Thorburn A. Targeting autophagy during cancer therapy to improveclinical outcomes [J]. Pharmacol Ther,2011,131(1):130-141.
    [246] Steeves MA, Dorsey FC, Cleveland JL. Targeting the autophagy pathway forcancer chemoprevention [J]. Curr Opin Cell Biol,2010,22(2):218-225.
    [247] Ren JH, He WS, Nong L, et al. Acquired cisplatin resistance in human lungadenocarcinoma cells is associated with enhanced autophagy [J]. CancerBiother Radiopharm,2010,25(1):75-80.
    [248] Song J, Qu Z, Guo X, et al. Hypoxia-induced autophagy contributes to thechemoresistance of hepatocellular carcinoma cells [J]. Autophagy,2009,5(8):1131-1144.
    [249] Liu Q, Kaneko S, Yang L, et al. Aurora-A abrogation of p53DNA binding andtransactivation activity by phosphorylation of serine215[J]. Biol Chem,2004,279(50):52175-52182.
    [250] Choi JH, Yoon JS, Won YW, et al. Chloroquine enhances thechemotherapeutic activity of5-fluorouracil in a colon cancer cell line via cellcycle alteration [J]. APMIS,2012,120(7):597-604.
    [251] White E, DiPaola RS. The double-edged sword of autophagy modulation incancer [J]. Clinical Cancer Research,2009,15(17):5308-5316.
    [252] Dubois JB. Intraoperative radiotherapy: back to the future [J]? CancerRadiother,2009,13(5):423-427.
    [253] Dubois JB. Intra-operative radiation therapy in tumors of the digestive tract [J].Bull Cancer,2001,88(2):155-162.
    [254] Fujiwara K, Suzuki S, Yoden E, et al. Local radiation therapy for localizedrelapsed or refractory ovarian cancer patients with or without symptoms afterchemotherapy [J]. Int J Gynecol Cancer,2002,12(3):250-256.
    [255] Corn BW, Lanciano RM, Boente M, et al. Recurrent ovarian cancer. Effectiveradiotherapeutic palliation after chemotherapy failure [J]. Cancer,1994,74(11):2979-2983.
    [256] Kong D, Ma S, Liang B, et al. The different regulatory effects of p53status onmultidrug resistance are determined by autophagy in ovarian cancer cells [J].Biomed Pharmacother,2012,66(4):271-278.
    [257] Zubova SG, Danilov AO, Myshkov AI, et al. The MDR gene and cellularsensitivity to various effects [J]. Vopr Onkol,2000,46(2):199-201.
    [258] Meyn RE, Milas L, Ang KK. The role of apoptosis in radiation oncology [J].Int J Radiat Biol,2009,85(2):107-115.
    [259] Sen S, D'Incalci M. Apoptosis. Biochemical events and relevance to cancerchemotherapy [J]. FEBS Lett,1992,307(1):122-127.
    [260] Fujiwara K, Iwado E, Mills GB, et al. Akt inhibitor shows anticancer andradiosensitizing effects in malignant glioma cells by inducing autophagy [J].Int J Oncol,2007,31(4):753-760.
    [261] Moretti L, Cha YI, Niermann KJ, et al. Switch between apoptosis andautophagy: radiation-induced endoplasmic reticulum stress [J]? Cell Cycle,2007,6(7):793-798.
    [262] Cui Q, Tashiro S, Onodera S, et al. Autophagy preceded apoptosis inoridonin-treated human breast cancer MCF-7cells [J]. Biol Pharm Bull,2007,30(5):859-864.
    [263] Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressormechanism [J]. Oncogene,2004,23(16):2891-2906.
    [264] Wu YT, Tan HL, Huang Q, et al. Autophagy plays a protective role duringzVAD-induced necrotic cell death [J]. Autophagy,2008,4(4):457-466.
    [265] Li J, Hou N, Faried A, et al. Inhibition of autophagy by3-MA enhances theeffect of5-FU-induced apoptosis in colon cancer cells [J]. Ann Surg Oncol,2009,16(3):761-771.
    [266] Bergonie J, Tribondeau L. Interpretation of some results of radiotherapy andan attempt at determining a logical technique of treatment [J]. Radiat Res,1959,11:587-588.
    [267] Ge JN, Huang D, Xiao T, et al. Effect of starvation-induced autophagy on cellcycle of tumor cells [J]. Ai Zheng,2008,27(8):788-794.
    [268] Wei R, Zhang Y, Shen L, et al. Comparative proteomic and radiobiologicalanalyses in human lung adenocarcinoma cells [J]. Mol Cell Biochem,2012,359(1-2):151-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700