冷铣刨机功率自适应控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合陕西省自然科学基金资助项目“连续行走作业机械功率自适应控制系统模型研究”(2007E221),针对目前一些冷铣刨机行走作业功率控制主要凭司机经验人工控制造成了铣刨机的发动机功率利用率低、生产率不高及能耗比较大的使用情况,提出了“冷铣刨机功率自适应控制系统研究”的课题。本文所研究的功率自适应控制系统主要由三个子系统组成,一是最大功率或者最大生产率自适应控制子系统,该功能主要满足发动机油门固定在最大位置,当外负荷的干扰超过控制器的设定值时对机器的作业速度进行控制,从而使发动机转速平稳并保持额定功率输出或者使机器能在最大生产率下工作;二是行走机构滑转功率自适应控制系统,当机器在大负荷的工况下作业时其行走机构的阻力非常大,此时一味的追求高生产率可能会使机器的滑转率迅速增加,虽然此时能够使发动机在额定工况下工作,但是这时机器的轮胎磨损严重,滑转功率损失增加,并且其作业速度并没有明显的增加,在此种工况下通过滑转功率自适应控制系统将铣刨机行走机构的滑转率控制在最佳滑转率上,以提高机器的生产率,降低机器的功率损失;三是发动机变功率自适应控制子系统,当冷铣刨机在小负荷下工作时,面临着即使把行走变量泵的排量加到最大,其发动机的功率仍然得不到充分利用的工况。此时还把发动机油门固定在最大位置势必会增加燃油的消耗,此种工况下由发动机变功率控制子系统完成发动机的油门开度控制,使发动机输出功率与机器实际消耗的功率相匹配,以减小油耗。由上述内容可以看出,“冷铣刨机功率自适应控制系统研究”课题旨在采用自适应控制的理论、方法和技术对铣刨机消耗的功率进行自动控制,充分发挥机器的装机功率,提高功率利用率,降低功率消耗和功率损失,充分发挥机器能力和提高生产率以及作业效率,提高机器的可靠性和寿命,降低机器的燃油消耗。本文以冷铣刨机功率自适应控制系统为研究对象,对系统进行了数学建模、硬件设计、软件设计、系统仿真和样机试验等研究工作,主要研究工作如下:
     1.通过查阅大量的国内外文献,总结了冷铣刨机的技术发展和机电一体化过程,分析了机器功率自适应的发展历程,介绍了目前国内外冷铣刨机的控制方式和相关产品,分析了国产小型冷铣刨机的功率控制技术研究与应用现状。进而提出了在冷铣刨机功率自适应控制的过程中,不仅要考虑发动机输出功率的控制,同时也要考虑机器作业过程中行走机构滑转率和发动机油门开度控制的研究方案。
     2.对冷铣刨机功率自适应控制理论及原理进行了系统地分析。详细阐述了本文所研究功率自适应的控制原理及理论依据,分析了冷铣刨机发动机、作业装置及行走机构所消耗功率的影响因素,提出了以铣刨机作业速度作为主控参数的结论;并分析了功率自适应控制对已有冷铣刨机功率使用的影响。在回顾传统性能参数匹配的基础上,对功率自适应控制系统对冷铣刨机传统性能参数匹配的影响进行阐述和理论证明。
     3.冷铣刨机功率自适应控制系统的设计和系统实时运行必须以一定的系统模型为基础,论文利用理论分析和参考相关试验数据相结合的方法,推导、建立了冷铣刨机整机系统的数学模型,主要包括发动机的模型、行走机构的模型、作业装置的模型、油门执行器模型等。根据对模型的仿真表明该模型有着良好的动静态性能,能够对铣刨机的作业过程进行相关仿真研究。
     4.系统研究了冷铣刨机功率自适应控制系统的各个功能模块,文中根据铣刨机的作业特性,分别阐述了各个功能模块的工作原理,重点阐述了功率控制、油门开度控制及行走机构滑转率控制的电路工作原理。并对相应功能模块的控制电路进行了设计,对各电路中的电器元件选择进行了介绍。室内调试的结果表明该设计能够满足功率自适应的功能要求。
     5.结合所建立的冷铣刨机整机数学模型,对传统的PID控制及其控制效果进行简单介绍,并对近年来流行的几种人工智能控制算法进行了比较,重点对模型参考模糊自适应控制与单神经元自适应控制进行了研究,并给出了这几种控制算法应用于本系统的仿真结果。根据对各种控制算法优缺点的比较及冷铣刨机控制的需要,选择了模型参考单神经元自适应控制算法。在研究控制算法的基础上,对冷铣刨机功率自适应控制主要模块的控制策略进行了研究,并给出了软件设计的流程图,提出了冷铣刨机作业过程中发动机油门开度、滑转率及功率自适应三者的联合控制策略。
     6.基于冷铣刨机的系统结构及参数配置,利用本文研究的控制策略及控制算法,设计开发了具有实际应用价值的功率自适应控制系统。
     7.对功率自适应控制系统进行了现场试验,试验结果表明:全功率自适应控制系统能够满足作业的需要,并对机器的生产率产生显著影响,试验结果与铣刨机功率自适应控制的原理相吻合。使用功率自适应控制前发动机要么出现轻载要么会出现过载的情况,这使发动机的功率很难充分发挥;使用功率自适应控制系统后,铣刨机完成起步后发动机大部分时间能够工作在额定工况附近;使用功率自适应控制系统后,铣刨机的作业速度亦即生产率得到提升。在铣深4cm时提升了4.1%,在铣深为8cm时提升13.3%,而在铣刨深度为12cm时提升了43.9%之多。这说明所研究的功率自适应控制系统能够用于提升机器的作业效率,与仿真中的负荷越大生产率提升越显著的结论一致。
According to the requirement of Natural Science Foundation of Shaanxi Province‘Research on the Model of the Adaptive Power Control about the Continuous Going and Working Machine’(2007E221) and many cold milling machines are operated by the driver through their experience which leads to the low using ratio of the engine power, the low productivity and a high consumption of the oil, the problem of‘Research on Adaptive Power Control System of a Cold Milling Machine’is put forward. The adaptive power control system in this research is composed by three subsystem, the first one is the engine rate power control subsystem. When the engine accelerograph is at its maximum position and the load of the machine exceeds the fixed value, this subsystem will control the machine to make the machine work at its rated power or at its maximum productivity. The second is the slip power control subsystem. The resistance of the drive system is very big when the machine worked at the high load, in this work condition ,the slip ratio will increase greatly if the work speed is increased to improve the productivity. This operation maybe make the machine work at its rated power, but it can also lead to the increase of the consumption of the slip power and the serious abrasion of the tyre while the work speed is hardly increased. So it is necessary to make the machine work at its optimum curve and make the machine productivity increase in a lower consumption of slip power. The third one is changing power control subsystem. When the machine work in little load and the work speed is the maximum, the engine power is also not in full use. In this work condition, that the accelerograph is at its maximum position will leads to higher oil consumption. Then the changing power control system is to match the power that the machine consumed to the engine output power and decrease the oil consumption. So the research on adaptive power control system of a cold milling machine is to realize the power control by the way of adaptive control theory and method to make full use of the engine power, increase the machine work productivity and work efficiency, increase the work life and dependability and decrease the oil consumption. The adaptive power control system of a cold milling machine is the research object, the mathematic model of the system is built up, the design of the hardware and software of the system is finished, the simulation of the model and experiment of the control system are also accomplished. From the research work , the conclusions is as follows:
     (1)After many literatures are consulted, the method and the developing process of the mechanical and electrical integration of the cold milling machine is summarized, the developing process of the machine adaptive power control is analyzed, some control methods and products of the cold milling machine are introduced, the utilization and research actuality of the power control of the minitype cold milling machine are analyzed. According to the analysis, the viewpoint that the engine output power is not only the control aim, but the slip ratio of the drive system and accelerograph are also the control aims is put forward.
     (2)The theory and elements of the adaptive power control of a cold milling machine are analyzed across-the-aboard. The influence on work equipment and drive system power consumption is analyzed in detail. According to the analysis the work speed is selected as the main control parameter. The influence on the power use of the existing cold milling machine is also analyzed. Based on the analysis of traditional matching of the performance parameters, the influence of the adaptive power control on the matching of the performance parameters of a cold milling machine is analyzed through theoretical verification.
     (3)The research of the adaptive power control of a cold milling machine can not leave its mathematic model. The mathematic model of the cold milling machine is built up by the way of consequence and experiments. The model is composed by four sub models which are the model of engine, the model of drive system, the model of work equipment and the model of the gun executor. The simulation of the mathematic model shows that the static and dynamic performance of the cold milling machine is represented well.
     (4)Every function module of the adaptive power control system is researched by the numbers. According to the work characteristic of the cold milling machine, the work principle of Every function module is expatiated in detail. The power control, the gun position and the slip ratio control are talked especially. Based on these analyses, the electro circuit of every function module are all designed, and how to choose the electronic component is also talked in detail. The experiment in the lab shows that the design can meet the control target.
     (5) According to the mathematic model, the traditional PID control arithmetic and its control effect is expatiate, the model reference fuzzy adaptive PID and the model reference single nerve cell PID adaptive control are introduced mainly. After the excellence and shortcomings of these three arithmetic is compared through simulation by the software of Matlab/Simulink, the model reference single nerve cell PID adaptive control is selected as the arithmetic of this adaptive power control system. Based on the research of arithmetic, the control strategy of the main control module is studied, and the flow chart of the software is designed. The combined control strategy of the engine gun control, the slip ratio control and the power control is put forward.
     (6)Based on the structure and parameters matching of a cold milling machine, a kind of adaptive controller which can be used on the cold milling machine is developed. (7)The adaptive power control system is used on a cold milling machine which works on the asphalt pavement road. The experimental result shows that the adaptive power controller can meet the requirement of the cold milling machine and has great effect on the machine productivity, the experiment is coherent to the theory. The machine is either in over load or light load without the adaptive power controller, which is hard to make full use of the engine power. The machine works at its rate power by the adjustment of the adaptive power controller. When the machine is equipped the adaptive power controller and the milling depth is 4cm, 8cm and 12cm, the machine work efficiency is improved more 4.1%, 13.3% and 43.9% than a machine without the controller. The adaptive power control system can be used to improve the machine productivity, and these experiment conclusions verify the simulation result that the higher the load is the control effective is more obvious.
引文
[1]周礼群,许武权,龙建国.路面铣刨机的发展历程与研究进展[J].建设机械与管理,2005(4):47-49
    [2]游张平,李自光,邓习树,何志勇.路面铣刨机及其发展趋势[J].建筑机械化,2003(9):9-11,42.
    [3]王黎宏.我国路面铣刨机的发展现状与机遇[J].筑路机械与施工机械化,2004(1),8-10.
    [4]徐文山,刘益民.国内外沥青路面铣刨机的发展概况[J].筑路机械与施工机械化, 2001(6):17-19.
    [5]焦生杰.沥青混凝土摊铺机液压驱动行驶与控制系统研究[D].长安大学博士论文,2002.
    [6]姚怀新.两类工程车辆的特点及其液压传动控制分析[J].筑路机械和施工机械化,2002(1):24-26.
    [7]焦生杰,张平,王欣.浅谈智化冷铣刨机控制技术[J].筑路机械与施工机械化,2006(3):29-32.
    [8]J.Y Wong, Theory of Ground Vehicles, Third Edition, John Wiley&Sons,Inc, 2001: 301-306,260-264
    [9]姚怀新.工程机械底盘及其液压传动理论[M].北京:人民交通出版社,2002:10-60.
    [10]彭天好,杨华勇等.工程机械中的泵与发动机匹配[J].工程机械,2001(8):37-40.
    [11]郭晓方,李伟哲,黄宗益.液压挖掘机的发动机一泵的联合控制系统研究[J].同济大学学报, 1999(6): 333-336.
    [12]高峰,高宇,冯培恩.挖掘机载荷自适应节能控制策略[J].同济大学学报,2001,29(9):1036-1040.
    [13]赵丁选,尚涛,张红彦,国香恩.液压挖掘机模糊节能控制策略及试验研究[J].中国机械工程,2006, 17(2):177-179.
    [14]黄宗益.液压掘挖机分工况控制[J].建筑机械,1998(1):28-32.
    [15]陆青平,胡永彪.铣刨机整机功率自适应匹配的研究[J].筑路机械与施工机械化,2002(6):8-9
    [16]马鹏宇,胡永彪.轮式铣刨机自功率及数字调速系统研究[J].筑路机械与施工机械化, 2004 (11):26-28.
    [17]喻钢,尹苟保等.智能型路面冷铣刨机的发展方向及设计分析[J].建设机械技术与管理,2004(11):71-73.
    [18]Richard Hurley, Rochester Hills. Adaptive Power Control for Vehicle Engine. United States Patent 6895930B2. 2005.5
    [19]张平.2000型路面铣刨机控制系统研究[D].长安大学硕士论文,2005.
    [20]陈家丽.国内高等级公路养护机械现状及发展前景[J].工程机械与维修,2000(4):30-34。
    [21]王黎宏.小荷初露尖尖角-谈国内外路面铣刨机的发展[J] .工程机械与维修2003.2:52~53
    [22]李太杰.工程机械底盘理论与性能[M].北京:人民交通出版社,1989:114-122
    [23]宫永杰,姚怀新.工程机械内燃机原理与底盘理论[M].长安大学筑机系,2001:134-148.
    [24]姚怀新,陈波.工程机械底盘理论[M].北京:人民交通出版社,2002:55-66,98-100,119-125
    [25]许维达.发动机动力装置匹配[M].北京:机械工业出版社,2005:38-90.
    [26]毕小平,王普凯.坦克动力-传动装置性能匹配与优化[M].北京:国防工业出版社,2004:33-44.
    [27]杨连生.内燃机性能及其与传动装置的优化配置[M].北京:学术期刊出版社,1988
    [28]Yashiharn H.“Computer Simulation of Vehicle Fuel Economy and Performance.”SAE Paper 860304,1986
    [29]蒋德明.高等内燃机原理[M].西安:西安交通大学出版社,2002
    [30]Phillips A W, and Assanis D N.“Development and Use of a Vehicle Power-train Simulation for Fuel Economy and Performance Studies.”SAE paper 900619,1990
    [31]Lozia Z.“Vehicle Dynamics and Motion Simulation Versus Experiment.”SAE paper 980220.1998
    [32]华北水利水电学院.工程机械用内燃机[M].北京:电力工业出版社,1981.12
    [33]高峰.液压挖掘机节能控制技术的研究[D].杭州:浙江大学博士学位论文,2001.3
    [34]赵敏.沥青路面铣刨机作业阻力及牵引性能的研究[D].长安大学硕士论文,2003.
    [35]马鹏宇,胡永彪,张新荣.冷铣刨机功率自适应控制参数研究[J].郑州大学学报(工学版),2007,28(2):88-92.
    [36]马鹏宇,胡永彪,张新荣.基于AMEsim的铣刨机功率自适应控制参数选择及仿真[J].系统仿真学报,2007,19(16):3800-3803,3812
    [37]李彦强.发动机智能电子控制系统研究[D].海军工程大学博士论文,2001.
    [38]赵光宙,高军,杨志家.发动机模型参考自适应调速系统的研究[J].内燃机工程,1995,16(4):26-34.
    [39]陆青平.铣刨机自功率控制系统的研究[D].长安大学硕士论文,2002.
    [40]黎启柏.电液比例控制与数字控制系统[M].机械工业出版社,1997,pp:15-80.
    [41]郭初生,王向周,王渝.变转速轴向柱塞泵恒流量控制的建模与仿真[J].北京理工大学学,2004, 24(11): 961-965.
    [42]陈蝶,胡永彪.沥青混凝土摊铺机液压行驶驱动系统[J].长安大学学报(自然科学版),2005,6(25):86-89.
    [43]孙祖望,李太杰,陈达刚等.土壤稳定机械理论与计算[J].筑路机械与施工机械化,1990,7(29):31-37.
    [44]王卓.工程车辆自动变速系统的智能控制研究[D].长春:吉林大学博士学位论文,2003.3
    [45]金力生.液压挖掘机电子节能控制系统研究[D].长春:吉林大学博士学位论文,2003.3
    [46]路甬祥,胡大纮.电液比例控制技术[M].北京:机械工业出版社,1998
    [47]王春行.液压伺服控制系统[M].北京:机械工业出版社,1984
    [48]焦生杰等.工程机械机电液一体化[M].北京:人民交通出版社,2000
    [49]秦继荣.现代直流伺服控制技术及其系统设计[M].北京:机械工业出版社,1999
    [50]张深.直流无刷电动机与原理及应用[M].北京:机械工业出版社,2001
    [51]汤蕴缪,史乃.电机学[M].北京:机械工业出版社,1999
    [52]邓星钟.机电传动控制[M].武汉:华中科技大学出版社,2001
    [53]杭勇.柴油发动机控制模型及控制算法的设计与仿真研究[D].镇江:江苏大学博士论文,2002
    [54]孙建忠,白凤仙.特种电机及其控制.中国水利水电出版社2005,05: 15
    [55] WookJin Lee, SeungKi Sut. A New Starting Method of BLDC Motors without Position Sensor. IEEE IAS, Seoul Narional University, Seoul, Korea. 2004: 2397-2402
    [56] French C, Acarnley P. Control of Permanent Magnet Motor Drives Using a NewPosition Estimation Techniques. IEEE Trans an IA. 1996, 32(5): 10891097
    [57]Johnson JP, Ehsani M.Sensorless Brushless DC Control Using a Current Waveform Anomaly. IEEE-IAS, Annual Meeting. -Conference Record..1999: 151158
    [58]Tomita M, Yamaguchi H, Doki S, et al. A Sensorless Estimation of Rotor Position of Cylindrical Brushless DC Motors Using Eddy Current. IECON' 96, 22nd International Conference on Industrial Electronics Control and Instrumentation.1996: 17231728
    [59]Wang Limei, Guo Qinging. Principles and plementation of Permanent Magnet Synchronous Motor Zero-Speed orless Control. Advanced Motion Contro1.2002(7): 247250
    [60] YenShin Lai, FuSan Shyu, Shun Shau Tseng. New Initial Position Detection Technique for Three-Phase Brushless DC Motor Without Position and Current Sensors. IEEE Transactions on Industry Applications.2003, 39(2): 5491
    [61] Yoseph Buchnik, Rad Rabinovici. Speed and Position Estimation of Brushless DC Motor in Uery Low Speeds. IEEE, University of The Negev, Beer-Sheva, Israel. 2004: 317320
    [62]东风康明斯发动机性能参数表,东风康明斯发动机有限公司,2006年7月
    [63] Samsung Electronics.S3C44B0X User Manual
    [64]康华光等.电子技术基础[M].高等教育出版社.
    [65]王福瑞等.单片微机测控系统设计大全[M].北京航空航天大学出版社.2000
    [66]何希才等.传感器及其应用实例[M].机械工业出版社.2004
    [67]ARM Limited.ARM Development Guide 2000-2001
    [68]Steve Furber, ARM System-on-chip Architecture, Addison-Wesley 2000
    [69]马忠梅等.ARM嵌入式处理器结构与应用基础[M].北京航空航天大学出版社.2002
    [70]David Seal,ARM Architecture Reference Manual, Second Edition
    [71]黄贤武等.传感器实际应用电路设计.电子科技大学出版社.1997
    [72]张友汉等.电子线路设计应用手册.福建科学技术出版社.2000
    [73]史孝文.基于DSP的直流伺服电机控制系统研究开发.昆明:昆明理工大学硕士论文,2005
    [74]Eohg, Hong Cs, Yoo Jy, et al. Sensorless Drive for Interior Permanent Magnet Brushless DC Motor. IEEE International Electric Machine and Drives Conference Record.l997: 101113
    [75] Bolognani S, Oboe R, ZIGLIOTTO M. Sensorless Full-digital PMSM Drive with EKF Estimation of Speed and Rotor Position. IEEE Trans on IE. 1999, 46(1): 184--191
    [76] Uk-Youl Huh,Je-Hie Lee ,Tae-Gyoo Lee. A torque control strategy of brushless DC motor with low resolution encoder. Proceedings of 1995 International Conference on 1995, Vol.l: 496501.
    [77] S.P. Natarajan, C. Chellamuthu, B. Kumar Babu, C. Anandh Kumar. Implementation of a new digital controller for a permanent magnet brushless DC motor. Industrial Electronics 2000, vol.l: 145150.
    [78] Obraztsov K.V Microprocessor control system of the brushIess DC motor. Modern technique and technologies, 2000, 188190.
    [79] Yen-Shin Lai, Eu-San Shyu, Yung-Hsin Chang. Novel loss reduction pulsewidth modulation technique for brushless do motor drives fed by MOSEET inverter. IEEE transactions on power electronics, 2004,vo1.19: 16461652.
    [80]林辉,王辉.电力电子技术[M].武汉:武汉理工大学出版社,2002
    [81]胡海云等.TM8320F240在无刷直流电机控制中的应用[J].微处理机,2003, (3):48-49
    [82]何瑞金,吴庆彪.基于DSP的永磁方波无刷直流电动机数字控制系统[J].微计算机信息,2003,19(10): 34-35
    [83]杨兴瑶.电动机调速的原理及系统[M].水利电力出版社,1995
    [84]王宗培.直流电动机及其控制系统[M].哈尔滨:哈尔滨工业大学出版社,1989
    [85]张栋.基于功率匹配的挖掘机节能控制技术的研究[D].长春:吉林大学博士学位论文
    [86]邵惠鹤.工业过程高级控制(第二版)[M].上海:上海交通大学出版社,2003.
    [87]何克忠,李伟.计算机控制系统[M].北京:清华大学出版社,1998.
    [88]刘金锟.先进PID控制及其MATLAB仿真(第二版)[M].北京:电子工业出版社,2007.
    [89]谢剑英等.微型计算机控制技术[M].北京:国防工业出版社.2003.
    [90]曹承志.微型计算机控制新技术[M].北京:机械工业出版社,2001,6.
    [91]谢庆生,尹健,罗延科.机械工程中的神经网络方法[M].北京:机械工业出版,2003.
    [92]闻新,周露,李东江等. MATLAB模糊逻辑工具箱的分析与应用[M].北京:科学出版社,2001.4.
    [93]W. A. Kwong, and K. M. Passino.“Dynamically focused fuzzy learning control.”IEEETrans. on Systems, Man, and Cybernetics, 26(1):53-74, February 1996.
    [94] E.G Laukonen, and K. M. Passino.“Training fuzzy systems to perform estimationand identification.”Engineering Applications of Artificial Intelligence,8(5):499-514, 1995.
    [95] S.K.Sin,and R.J.P.Defigueiredo.”Fuzzy system design through fuzzy clustering and optimal predefuzzification.”In proc. of the 2nd IEEE conf. on Fuzzy Systems, pages 190-195, San Francisco, CA, March 1993.
    [96] J. M. Mendel.“Fuzzy logic systems for engineering: A tutorial.”Proc. of the IEEE,Special Issue on Fuzzy Logic in Engineering Applications, 83(3):345-377,March 1995.
    [97] W.Kickert,and H.Van Nauta Lemake.“Application of a fuzzy controller in a warm water plant.”Automatica, 12(4):301-308, April 1976.
    [98]张化光,何希勤等.模糊自适应控制理论及其应用[M].北京:北京航空航天大学出版社,2002.7.
    [99]李国勇.智能控制及其MATLAB实现[M].北京:电子工业出版社,2006.
    [100]薛定宇.控制系统计算机辅助设计(第二版)[M].北京:清华大学出版社,2006.
    [101]蔡自兴.智能控制(第二版)[M].北京:电子工业出版社,2004.
    [102] Arbib M A. Brains, Machines and Mathematics, McGraw-Hill, New York, 1964
    [103]Baldi B.”Gradient descent learning algorithm overview: a general dynamic system perspective.”IEEE Trans. Neural Networks,1995(6):182
    [104]Baldi P and Brunak S. Bioinformatics:The Machine Learning Approach.Cambridge, MA: MIT Press, 1998
    [105]Batur C.Adaptive expert control. Int. J. Control.1991(54):867-881
    [106]Bonissone P. A compiler for fuzzy logic controllers. Int. Fuzzy Engineering Symposium,Yokohama,Japan, 1991
    [107]Braae M, Rutherford D A.“Theoretical and linguistic aspects of the fuzzy logic controller.”Automatica, 1979(15):553-577
    [108]Brooks R A.“Building brains for bodies. Autonomous Robots.”1994(1):7-25
    [109]Brown A M, Harris C J,Lawrence A J, and Moore C J. Associative memory neural net- works: adaptive modelling theory, software implementations and graphical user .Eng.Applied. Artificial intelligence. 1994,7(1):1-21
    [110] Buckley J,Hayashi Y. Fuzzy neural network:A survey. Fuzzy Sets and Systems. 1994 (66):1-13
    [111]Burdzy K. The reproducibility property of fuzzy control systems. Fuzzy Sets and Sys terns,1983 (11):161-v177
    [112] Daley S, Gill K F. Comparison of a fuzzy logic controller with PID controller law. Trans. ASME, 1989(111):128-137
    [113]de Silva C W.Intelligent Control,Fuzzy Logic Application, CRC Press, 1995
    [114]Durrant-Whyte H F, et. Integration, Coordination and Control of multi-Sensor Robot Systems. Kluwer Academic Publishers F3oston, MA, 1990
    [115]Fairbrother N, Stacey B A, Sutton R. Fuzzy self-organizing controller of a ROV. Proc IEEE Control 91',Conf. Pub. 1991(332):499-504
    [116]Fei J,Isik C. Adaptive fuzzy control via modification of linguistic variables. Proc. IEEE Fuzzy’92,San Dicgo, CA, USA, 1992:399-406
    [117]Fogel L J. Evolutionary programming in perspective:The top-down view. In: Computational Intelligence Imitating Life, J M Zurada, et al (eds). New York, IEEE Press,1994
    [118]Gupta M M, et. al. Multivariable structure of fuzzy control systems. IEEE Trans. SMC 1986 (16):638-656
    [119] Gupta M M, and Qi J. On fuzzy neuron models. In: Proc. Int. Joint Conf. of neural Net-works, Seattle, WA, 1991(2):431-436
    [120]Isaka S, Sebald A V. An optimization for fuzzy controller design. IEEE Trans. SMC,1992(22):1469
    [121]Jia L M, Zhang L D.On fuzzy multiobjective predictive control and its adaptive alter- native. Proc. IFAC 12th world Congress, Sydney, 1993:895-899
    [122]Linkers D A, Abbod M F. Self-organizing fuzzy logic controllers for real-time processes.Proc. IEEE Control’91,1991:971-976
    [123]Moore G, Harris C J. Indirect adaptive fuzzy control. Int. J. of Control,1992(56): 441
    [124]Negoita C V. Expert Systems and Fuzzy Systems. Benjamin/Cummings Publishing Company Inc,1985
    [125]Nguyen H T, Prasad N R, Walker C, et al. A First Course in Fuzzy and Neural Control.CRC Press, 2003
    [126]Zadeh I. A. A rationale for fuzzy control.Trans. ASME, J. Dynamic Systems Measurement and Control,1972(94):3-4
    [127]Zadeh I. A.Fuzzy algorithm.Information and Control,1965(12):94-102
    [128]Zadeh L A. Fuzzy sets. In formation and Control,1965(8):338-353
    [129]赵锡龄,焦云婷.单神经元自适应控制PSD在再热汽温控制中的应用.中国电机工程学报,2001,21(2):94-96
    [130]谷俊杰,李剑.内模自适应PSD控制器在主汽温控制中的应用.热力发电,2003, 32(5): 51~53 ,60
    [131]程启明,万得钧,黄林.船舶自动舵的单神经元自适应PID/PSD控制.东南大学学报,1997, 27 ( 6 ), 133-137
    [132] Marsik J, Strejc V. Application of Identification-free Algorithms for Adaptive Control. Automatic.1989, 25 (2):273-277
    [133]M arsik J. A new conception of digital PSD control. Problems of Control and Information Theory, 1983, 12(4):267-279
    [134]李燕.模糊单神经元自适应PSD控制在汽温控制中的应用[D].华北电力大学硕士论文,2006,12
    [135]Chen S S. Adaptive neural network control in CIMS. Proc.IEEE ISIC,1988:719-723
    [136]Grossberg S. Neural Networks and Neural Intelligence. Cambridge, Mass: MI Press.1988
    [137]Halgamuge S K,Glesner M. Neural networks in designing fuzzy systems for real world applications. Fuzzy Sets and Systems,1994(65):1-12
    [138]拾方治.沥青混凝土摊铺机行驶系统PLC控制技术研究.长安大学硕士论文.2002
    [139]Takayoshi MUTO,Hironao YAMADA and Yoshikazu SUEMATSU.Digital Control of Hydraulic Actuator System Operated by Differential Pulse Width Modulation.JSME International Journal,SeriesⅢ, Vol.33,No.4,1990(P641~P648)
    [140]Ming-Chang SHIH and Yih-Ran SHEU.The Adaptive Position Control of an Electro Hydraulic Servo Cylinder.JSME International Journal,SeriesⅢ,Vol.34,No.3,1991(P370~P376)
    [141]Ming-Chang SHIH and Ming-An MA.Position Control of a Pneumatic Rodless Cylinder Using Sliding Mode M-D-PWM Control High Speed Solenoid Valves.JSME International Journal,Series C,Vol.41, No.2, 1998(P236~P241)
    [142]Carlos Eduardo JERONYMO and Hironao YAMADA and Takayoshi MUTO.Application of Unified Predictive Control to On/Off Control of Hydraulic System Driven by Fast- Switching Solenoid Valves.JSME International Journal,Series C,Vol.39,No.3,1996(P515~P521)
    [143]Satoru SHIBATA , Mohamed Sahbi BEN-LAMINE, Kouhei TOYOHARA and SHIMIZU .Fuzzy Control of Vertical Pneumatic Servo Systems Using Virtual Reference. JSME International Journal,Series C,Vol.42,No.1,1999(P79~P83)
    [144]肖英金,尚涛,陈殿生.伺服系统实用技术.化学工业出版社,2004.2
    [145]章卫国,杨向忠.模糊控制理论与应用.西北工业大学出版社,2000.10
    [146]林逸,沈沉,王军.线控动力系统防抱死特性模糊控制方法的仿真研究[J].公路交通科技,2006,23(10):124-127.
    [147]李言俊,张科.自适应控制理论及应用[M].西安:西北工业大学出版社,2005.4.
    [148]李士勇.模糊控制?神经控制和智能控制[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [149]焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1995.
    [150]胡涛松.自动控制原理(第四版)[M].北京:科学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700