相位场的莫尔层析重建理论与算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学计算层析技术是计算机层析技术的一个分支,是一种不干扰待测场分布的测量诊断技术,在流动显示、热物理量测试等众多领域显示出了强大的优越性。莫尔层析技术是以偏折角为投影数据的一种光学层析技术,具有装置简单,抗干扰能力强,适合于在有强震动的恶劣环境下的测试的特点,对于复杂流场的定性显示和定量测试都具有很高的实用价值。本文针对目前对莫尔层析的理论体系和重建算法还缺少系统研究的情况,重点研究了复杂流场中的莫尔层析重建问题,主要工作内容和研究成果简述如下:
     1)莫尔层析的理论研究
     研究了偏折层析投影与传统层析投影间的数学关系,从不同的角度给出两者之间明确的关系表达式。从而在为偏折层析在整个层析理论体系中进行明确定位的同时,又为将传统层析中的重建算法应用到偏折层析中提供的理论依据。
     2)偏折层析的变换类算法研究
     由两类层析投影间的关系出发,推导出了基于偏折层析的滤波反投影算法,并对其数值实现进行了探讨,给出了相应的在空域用卷积反投影重建的算法。重点分析了噪声对重建的影响,并提出了相应的改进算法。
     3)偏折层析中的级数展开类算法研究
     提出了直接将折射率梯度离散化建立线性方程组的方法,并在此基础上,研究了三种不同的线性方程组求解算法,数值模拟的结果表明该算法有较强的抗系统噪声的能力。同时又提出了以局部基函数为基的偏折层析的迭代重建算法,该算法在保证了系数矩阵稀疏性的同时,能以一种“自然”的方式对偏折层析问题进行离散化。数值模拟表明,其既能保证较高的重建精度,又能有效的抑制系统噪声的影响。
     4)偏折层析的非完全数据重建方面的研究。
     在有限角问题中,提出基于贝叶斯准则的迭代算法用于对有限角的偏折层析重建中。在内问题的研究中,借鉴了Farrokh等人提出的基于小波理论的局部层析重建算法对偏折层析中的局部重建进行了研究。
     5)对真实流场的莫尔重建的研究
     使用偏折层析滤波反投影算法和相应改进算法对火箭燃气射流密度场进行了重建,重建结果表明改进的算法确实能够有效的抑制场的倾斜现象。然后用基于汉宁窗函数展开的迭代算法对高超音速风洞内包含激波的密度场进行重建,并与只适用于轴对称场的逆Abel变换法的重建结果进行了对比,两者的重建结果是基本吻合的,但新算法可以用于任意分布的场的重建,具有更好的普适性。对这两个真实流场的重建有效验证了前文中的算法,为莫尔层析的使用打下了基础。
Optical Computerized Tomography (OCT) is a branch of ComputerizedTomography. It is a non-contact measurement technique and shows superioritiesin many domains, such as flow visualization and measurement of thermo physicalparameters. The moire tomography belongs to the Optical ComputerizedTomography and its projection data is deflection angles. It has many meritssuch as simple optical configuration, superior ability of anti-error andadaptation to tough environment. The moire tomography has great practicalvalue to the qualitative visualizations and quantitative measurements ofcomplex flow fields. But up to now, the theory system and reconstructionalgorithms of the moire tomography have not been studied systematically. Soemphasis of this dissertation is put on the reconstruction algorithms of moiretomography for the complex flow fields. The main work is described as follows:
     1) Theory research of moire tomography
     The relation between the deflection projection and the traditionalprojection is studied and is described from many different views. By thisrelation, the deflection tomography can have a explicit position in the wholetomographic theoretical frame and theoretical law can be found to thesemethods which apply the traditional tomographic reconstruction algorithms tothe reconstruction of deflection tomography.
     2) Research work to the transform algorithms of deflection tomography
     According to the relation between these two tomographic problems, thedeflection filtered back-projection algorithm is achieved and its numericalimplementation is studied. The corresponding convolution back-projectionalgorithm is also given. Then an error analysis is made to the DFBP algorithmand a modified algorithm is presented.
     3) Research work to the series expansion algorithms of deflectiontomography
     A model which directly numeralize the gradient of refractive index ispresented to get the discrete linear equations of deflection tomography.According to the model, three reconstruction algorithms are studied to solvethese linear equations. Numerical experiments show that these algorithms have strong abilities of noise immunity. Another deflection iterative algorithmbased on the expansion of local basis is presented. This algorithm can notonly reserve the sparse property Of the coefficient array, but also discretethe deflection tomography in a natural way. Good quality of anti-noise andreconstruction accuracy of this algorithm have been found by numericalexperiments.
     4) Research work to the reconstructions of deflection tomography withincomplete data
     In the limited angle problem, a deflection tomographic iterative algorithmwhich is based on the Bayesian Law is presented. In the research of the interiorproblem, the wavelet based local tomographic reconstruction algorithm whichis present by Farrokh is introduced to the local reconstruction of deflectiontomography.
     5) Research work to the real flow field of moire tomography
     The deflection filtered back-projection algorithm and its correspondmodified algorithm are applied to reconstruct the density field caused by therocket exhausted plumes. Results show that the modified algorithm can depressthe slope phenomena efficiently. The iterative algorithm which is based onthe expansion of harming function is applied to reconstruct thedensity fieldin a hypersonic wind tunnel. The reconstruction results are compared with theinverse Abel transform method which can only be applied with axial symmetricalfield. Results coincident well with each other. But it is obviously that thenovel algorithm have handle arbitrary flied and more universality.Reconstructions to these real flow fields show those algorithms are valid.So the application foundation of moire tomography has been provided in thisdissertation.
引文
1 Johann Radon, Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten. Bertichte Sachsischeder Wissenchaften, Leipzig, Mathematische-physikalische Klasse, 1917, (69): 262-267
    2 Bracewell R. N., Strip integration in radio astronomy, Aust. J. Phys, 1956, (9): 198-217
    3 Bracewell R. N. and Riddle. A. C, Inversion of fan beam scan in radio astronomy, Astrophys. J., 1967, (150): 427-434
    4 A. M. Cormack, Representation of a Function by its Line Integrals, with Some Radiological Applications, J. Appl. Phys., 1963, (45): 2722
    5 A. M. Cormack, Representation of a Function by its Line Integrals, with Some Radiological Applications II, J. Appl. Phys., 1964, (35): 2908
    6 R. L. Clarke, E. N. C. Milne and G. Van Dyk, The Use of Compton scattered gamma ray for tomography, Invest Radio, 1976, (11): 225-235
    7 Harding, On the Sensitivity and application possibilities of a novel Compton Scatter Imaging, IEEE Trans Nucl Sci, 1982, (29): 1260-1265
    8 Manoj V. Narayanan, An Interior Point Iterative Maximum-Likelihood Reconstruction Algorithm Incorporating Upper and Lower Bounds with Application to SPECT Transmission Imaging, IEEE Tran. Medi. Imag. 2001, (20): 342-354
    9 V. Solo, P. Purdon and R. Weisskoff, A Signal Estimation Approach to Functional MRI, IEEE Trans. Medi. Imag. 2001, (20): 26-36
    10 Yun Gao, Stanley J. Reeves, Fast k-Space Sample Selection in MRSI with a Limited Region of Support. 2001, (20): 868-877
    11 K. Kitamura, H. Lida and M. Shidahara, Noise Reduction in PET Attenuation Correction Using Non-linear Gaussian Filters, IEEE Trans. Nucl. Sci. 2000, (47): 994-1000
    12 Dickin F, Wang M, Electrical resistance tomography for process applications. Meas. Sci. Technol. 1996, (7): 247-260
    13 Liu L Fu, W Q Yang, Optimization of an iterative image reconstruction algorithm for electrical capacitance tomography, Meas. Sci. Technol. 1999, (10): 37-39
    14 Senol A. J., Romine G. L., Three dimensional refraction-diffraction of EM waves through rocket exhaust plumes, AIAA 17~(th) fluid dynamics, plasma dynamics and lasers conference, AlAA-84-1597, 1984
    15 Reuss D., Schultz P. H., Interferometric temperature measurements of a flame in a cylindrical tube using holography, Appl. Opt., 1987, (26): 1661-1667
    16 Synder R., Hesselink L., Optical tomography for flow visualization of the density field from multidirectional interferometric data, Appl. Opt., 1984, (12): 1649-1664
    17 Watanbe M., Abe A., Casey R. T. and Yakayma K., Holographic interferometric observation of shock wave phenomena, SPIE, 1991, (1553): 418-426
    18 J. D. Posner, D. Dunn-Rankin, Temperature field measurements of small, nonpremixed flames with use of an Abel inversion of holographic interferograms, Applied Optics, 2003, (42): 952-959
    19 Wang Xue, Wu Donglou, and Pang Guopei, Use of Moire Tomography to Measure the Temperature Field of the Flame of a Pyrotechnical Composition from Its Infrared Radiation, Combustion, Explosion, and Shock Waves, 2001, (37): 440-442
    20 C. Soller, R. Wenskus, P. Middendorf, G. Meier, F. Obermeier, Interferometric tomography for flow visualization of density fields in supersonic jets and convective flow, Appl. Opt., 1994, (33): 2921
    21 阎大鹏,刘峰,王振东等,真实火箭燃气射流的实时显示及定量测试技术的研究,激光技术,1996,(20):332-334
    22 张福祥,李开明,方毅,真实火箭燃气羽流密度场的定量显示,宇航学报,1994,(15):58-63
    23 朱德忠,热物理激光测试技术,第1版,北京:科学出版社,1990
    24 Paul S. Greenberg, Robert B. Klimek, and Donald R. Buchele, Quantitative rainbow schlieren deflectometry, Applied Optics, 1995, (34): 3810
    25 Ajay K. Agrawal, Nelson K. Butuk, Subramanyam R. Gollahalli, and DeVon Griffin, Three-Dimensional Rainbow Schlieren Tornography of a Temperature Field in Gas Flows, Applied Optics, 1998, (37): 479-485
    26 Ajay K. Agrawal, Burt W. Albers, and DeVon W. Griffin, Abel Inversion of Deflectometric Measurements in Dynamic Flows, 1999, (38): 3394-3398
    27 Xudong Xiao, Ishwar K. Purl, and Ajay K. Agrawal, Temperature Measurements in Steady Axisymmetric Partially Premixed Flames by Use of Rainbow Schlieren Deflectometry, Applied Optics, 2002, (41): 1922-1928
    28 Luc Joannes, Frank Dubois, and Jean-Claude Legros, Phase-Shifting Schlieren: High-Resolution Quantitative Schlieren that Uses the Phase-Shifting Technique principle, Applied Optics, 2003, (42): 5046-5053
    29 Alfonso F. Ibarreta, Chih-Jen Sung, Flame temperature and location measurements of sooting premixed Bunsen flames by rainbow schlieren deflectometry, Applied Optics, 2005, (44): 3565-3575
    30 Atul Srivastava, K. Muralidhar, and P. K. Panigrahi, Reconstruction &the concentration field around a growing KDP crystal with schlieren tomography, Applied Optics, 2005, (44): 5381-5392
    31 Douglas A. Feikema, Quantitative rainbow schlieren deflectometry as a temperature diagnostic for nonsooting spherical flames, Applied Optics, 2006, (45): 4826-4832
    32 Collins D. J., The application of holographic interferometry studies of high speed flow fields, AD-741067, 1971
    33 Sweeney D. W., Vest C. M., Measurement of three-dimensional temperature fields above heated surface by holographic interferometry, Int. J. Heat Mass Transfer, 1974, (17): 1443-1454
    34 Sweeney D. W., Vest C. M., Reconstruction of three-dimensional refractive index field from multidirectional interferometric data, Applied Optics, 1984, (12): 1649-1664
    35 O. Kafri, I. Glatt, Moire deflectometry: a ray deflection approach to optical testing, Opt. Eng. 1985, (24): 944-960
    36 H. M. Herts, Experimental determination of 2-D flame temperature fields by interferometric tomography, Optics Communication, 1985, (54): 731-736
    37 Ray Snyder, Lambertus Hesslink. High speed optical tomography for flow visualization. Applied Optics, 1985, (12): 4046-4051
    38 R. Snyder and L. Hesselink, Measurement of mixing fluid flows with optical tomography, Opt. Lett., 1988, (13): 87-89
    39 Arthur J. Decker, Steven H. Izen, Three-dimensional computed tomography from interferometric measurements within a narrow cone of views, Applied Optics, 1992, (12): 7696-7706
    40 D. W. Watt, C. M. Vest, Turbulent flow visualization by interferometric integral imaging and computed tomography, Experiments in Fluids, 1990, (8): 301-311
    41 T. L. Spatz, D. Poulikakos, Holographic interferometry experiments the growth of ice from a horizontal pipe, Int. J. Heat Mass Transfer, 1991, (7): 1847-1859
    42 Lawrence W. Carr, Yung H. Yu, The Use of interferometry in the study of rotor craft aerodynamics, Optics and Lasers in Engineering, 1992, (17): 121-146
    43 N. Dobbins, S. P. He et al, Measurement of temperature field in confined jet impingement using phase -stepping video holography, SPIE, 1992, (1554B): 586-592
    44 Enxi Yu, Soyoung S Cha, Interferometric tomographic measurement of an Instantaneous flow field under adverse environments, SPIE, 1996, (2546): 33-44
    45 Depang Yan, Soyoung Stephen Cha, Computational and Interferometric System for Real-Time Limited-View Tomography of Flow Fields, Appl. Opt., 1998, (37): 1159-1164
    46 贺安之,阎大鹏,倪晓武,三维温度场的激光全息与干涉层析.光学学报.1988,(6):543-549
    47 Dapeng Yah, Jiajun Zhang, Anzhi He, Xuehui Mi, Yi Ge, Automatic extraction and registration of shock wave fronts from series interferograms of a flow field, 1994, (33): 2121
    48 Donglou Wu, Anzhi He, Measurement of three-dimensional temperature fields with interferometric tomography, Applied Optics, 1999, (38): 3468-3473
    49 是度芳,肖旭东正交双物光全息有限角层析技术重建燃烧器温度场.光学学报1995(9):1240-1244
    50 Dufang Shi, Shaohtia Chen, Rong Wang, Xudong Xiao, Automatic image-processing system and fast-reconstruction technique for holographic-interferometry computer tomography, Appl. Opt., 1995, (34): 3064
    51 Shaohua Chen, Suyi Huang, Dufang Shi, Orthographic double-beam holographic interferometry for limited-view optical tomography, Appl. Opt., 1995, (34): 6282
    52 高益庆,用全息干涉CT技术重建三维折射率场,激光杂志,1997,(18):35-40
    53 O. Kafri, Noncoherent method for mapping phase objects, Opt. Lett., 1980, (5): 555-557
    54 E. Keren, E. Bar-Ziv, I. Glatt, and O. Kafri, Measurements of temperature distribution of flames by moire deflectometry, Applied Optics, 1981, (20): 4263-4266
    55 C. M. Vest, Formation of images from projections: Radon and Abel transform, J. Opt. Soc. Am. A., 1974, (64): 1215-1218
    56 J. Stricker, O. Kafri, A New Method for Density Gradient Measurements in Compressible Flows, AIAA, 1982, (20): 820-823
    57 Z. Karny, O. Kafri, Refractive-index measurements by moire deflectometry, Applied Optics, 1982, (21): 3326-3328
    58 J. Stricker, E. Keren, and O. Kafri, Axisymmetric Density Field Measurements by Moire Deflectometry, AIAA, 1983, (21): 1767-1769
    59 E. Bar-Ziv, S. Sgulim, O. Kafri, and E. Keren, Temperature mapping in flames by moire deflectometry, Applied Optics, 1983, (22): 698-705
    60 J. Stricker, Analysis of 3-D phase objects by moire deflectometry, Applied Optics, 1984, (23): 3657-3659
    61 Yoshiaki Nakano, Kazumi Murata, Measurements of phase objects using the Talbot effect and moire techniques, Applied Optics, 1984, (23): 2296-2299
    62 E. Keren, O. Kafri, Diffraction effects in moire deflectometry, J. Opt. Soc. Am. A., 1985, (2): 111-120
    63 王海林,激光莫尔度量技术理论和应用研究[学位论文],南京:南京理工大学,1991
    64 Gregory W. Faris, Robert L. Byer, Beam-deflection optical tomography, Opt. Lett., 1987, (12): 72-74
    65 Gregory W. Faris, Robert L. Byer, Beam-deflection optical tomography of a flame, Opt. Lett. 1987, (12): 155-157
    66 Gregory W. Faris, Robert L. Byer, Three-dimensional beam-deflection optical tomography of a supersonic jet, Applied Optics, 1988, (27): 5202-5212
    67 G. W. Faris, H. Bergstrom, Two-wavelength beam deflection technique for electron density measurements in laser-produced plasmas, Applied Optics, 1991, (30): 2212-2218
    68 G. W. Faris, Elizabeth Brinkman, Jay Jeffries, Density measurements in a DC arcjet using scanned beam deflection tomography, Optics Express, 2000, (7): 447-460
    69 贺安之,阎大鹏,激光瞬态干涉度量学,第1版,北京:机械工业出版社,1993
    70 高益庆,龚勇清,用莫尔计算机层析技术诊断三维电弧温度场,光学学报,1998,(18):376-380
    71 Yao Hongbing, He, Anzhi, Application of optical computerized tomography in the heat elimination of an aeroengine blade, Microwave and Optical Technology Letters, 2003, (38): 117-119
    72 贺安之,阎大鹏,倪晓武,王海林,实时大口径高灵敏度,高精度莫尔偏折仪的设计和应用,中国激光,1991,(18):827-831
    73 阎大鹏,王海林,贺安之,杨祖清,乐嘉陵,高灵敏度莫尔偏折法及其在激波风洞流场中的应用,空气动力学学报,1994,(12):43-50
    74 J. D. Trolinger, Automated data reduction in holographic interferometry, Optical Engineering, 1985, (5): 840-842
    75 Friedhelm Becker, Yung H.Yu, Digital fringe reduction techniques applied to the measurement of three-dimensional transonic flow fields, Optical Engineering, 1985, (6): 429-434
    76 Lambertus Hesslink, Digital image processing of flow visualization photo-graphics, Applied Optics, 1983, (5): 1454-1461
    77 O. Kafri, Line thinning algorithm for nearly straight molte fringes, Optical Engineering, 1986, (3): 495-498
    78 M. Servin, R. Rodriguez-Vera, M. Carpio, and A. Morales, Automatic fringe detection algorithm used for moire Deflectometry, Applied Optics, 1990, (29): 3266-3270
    79 Vlad V, Popa D, Apostol I, Computer moire Deflectometry using the Talbot effect. Opt. Eng., 1991, (30): 300-306
    80 H. Canabal, J. Quiroga, E. Bemabeu, Automatic processing in moire Deflectometry by local fringe direction calculation, Applied Optics, 1998, (37): 5894-5901
    81 Thomas M. Kreis, Computer aided evaluation of fringe patterns, Optics and Lasers in Engineering, 1993, (19): 221-240
    82 T. Yatagai, M. Idesawa, Interactive fringe analysis system: applications to moire contourgram and interferogram, Optical Engineering, 1982, (5): 901-906
    83 Toyohiko Yatagai, Suezou Nakadate, Automatic fringe analysis using digital image processing techniques, Optical Engineering, 1982, (7): 432-435
    84 Toyohiko Yatagai, Automated Fringe analysis techniques in Japan, Optics and Lasers in Engineering, 1991, (15): 79-91
    85 K. Ramesh, B. R. Pramod, Digital image processing of fringe patterns in photomechanics, Optical Engineering, 1992, (7): 1487-1498
    86 Amar Choudry, Automated Fringe Reduction Techniques, Proc. Soc. Photo-Opt Instrum Eng., 1987, (816): 49-55
    87 Stidhar Krishnaswamy, Algorithm for computer tracing of interference fringe, Applied Optics, 1991, 30, (13): 1624-1628
    88 Zhi Huang, Fringe Skeleton Extraction using adaptive refining, Optics and Lasers in Engineering, 1993, (18): 281-295
    89 阎大鹏,贺安之等,含冲击波流场干涉图的图象处理方法研究,光学学报,1993,(5):424-428
    90 Dufang Shi, Shaohua Chen, Rong Wang, arid Xudong Xiao, Automatic image-processing system and fast reconstruction technique for holographic-interferometry computer tomograhy, Applied Optics, 1995, (34): 3064-3068
    91 V. Parthiban, Rajpal S. Sirohi, Interactive fringe processing algorithm for Interferogram Analysis, Optics and lasers in Engineering, 1989, (11): 101-113
    92 H. H. Bartels-Lehnhoff, P. H. Baomann, Computer aided evaluation of interferograms, Experiments in Fluids, 1993, (16): 46-53
    93 Wonjong Joo, Soyoung S. Cha, An Expert System for Noise-ridden interferogram data analysis, SPIE, 1993 (2005): 26-37
    94 Wonjong Joo, Soyoung S. Cha, Automated interferogram analysis based on an integrated expert system, Applied Optics, 1994, (10): 7486-7496
    95 Huang Zhi, Roll B.Johansson, Interpretation and Classification of fringe pattern, Optics and Lasers in Engineering, 1992, (17): 9-25
    96 Malgorzata Kujawinska, The architecture of a Multipurpose Fringe Pattern Analysis System, Optics and Lasers in Engineering, 19, (1993): 261-268
    97 W. R. J. Funnell, "Image processing applied to the interactive analysis of interferometric fringes", Applied Optics, 1981, 20, (18): 3245-3250
    98 J. Stricker, Electronic Heterodyne Readout of Fringes in Moire Deflectometry, Opt. Lett, 1985, (10): 247-249
    99 J. Stricker, Performance of Moire Deflectometry With Deferred Electronic Heterodyne Readout, J. Opt. Soc. Am. A, 1987, (4): 1798-1806
    100 T. Pfeifer, B. Wang, J. Evertz, and R. Tutsch, Phase-shifing moire Deflectometry, Optik, 1995, (98): 158-162
    101 K. Hibino, B. F. Oreb, D. I. Farrant, and K. G. Larkin, Phase shifting for nonsinusoidal waveforms with phase-shift errors, J. Opt. Soc. Am. A, 1995, (12): 761-768
    102 Hector Canabal, Juan Antonio Quiroga, and Eusebio Bernabeu, Improved Phase-shifting Method for Automatic Processing of Moire Deflectograms, Applied Optics, 1998, (37): 6227-6233
    103 M. Takeda, H. Ina, and S. Kabayashi, Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry, J. Opt. Soc. Am. A, 1982, (72): 156-160
    104 Donald J. Bone, Bachor, H.A., "Fringe pattern analysis using 2-D Fourier transform", Applied Optics, 1986,25(10): 1653-1660
    105 Creath,K, "Phase measurement interferometry techniques", Progressing in Optics, 1988,26:350-393
    106 Donald J. Bone, "Fourier fringe analysis: the two dimensional phase unwrapping problem", Applied Optics, 1991,25(30):3627 -3632
    107 Wang M, Projection moire Deflectometry for the auomatic measurement of phase objects, Opt. Eng., 1996, (35): 2005-2011
    108 Wang M, Li D, and Zhong J, Fourier transform moire deflectometry, Laser interferometry IX: techniques and analysis, SPIE, 1998, (3478): 393-404
    109 Wang M, Fourier transform moire tomography for high-sensitivity mapping asymmetric 3-D temperature field, Optics & Laser Technology, 2002, (34): 679-685
    110 Juan Antonio Quiroga, Daniel Crespo, and Eusebio Bernabeu, Fourier transform method for automatic processing of moire deflectograms, Opt. Eng., 1999, (38): 974-982
    111 Wei Yao, Donglou Wu, Anzhi He, Real 3-D Tomography of temperature field based on wave-front retrieval, Optical Engineering, 1998, (37): 2710
    112 Wei Yao, Anzhi He, Application of Gabor transformation to the two-dimensional projection extraction in interferometric tomography, J. Opt. Soc. Am. A, 1999, (16): 258-263
    113 M. Hino, T. Aono, M. Nakajima and S. Yuta, Light emission computed tomography system for plasma diagnostics, Appl. Opt., 1987, (26): 4742-4746
    114 X Wan, SL. Yu, etc, Three-dimensional plasma field reconstruction with multiobjective optimization emission spectral tomography, J. Opt. Soc. Am. A., 2004, (21): 1161-1171
    115 Makoto Tabei, Mitshuhiro Ueda, Backprojection by Upsampled Fourier Series Expansion and Interpolated FFT, IEEE Trans. Med. Imag, 1992, (1): 77-88
    116 Shepp L. A. and Logan B. F., The Fourier transform of a head section, IEEE Trans. Nucl. Sci., 1974, (NS-21): 21-43
    117 赫尔曼,投影法重建图象实现和应用,北京:国防工业出版社,1992
    118 刘峰,光学计算机层析技术及三维流场定量测试的理论与实验研究[学位论文],南京:南京理工大学,1997
    119 Da-peng Yah, Feng Liu, Zhen-Dong Wang, et al., Moire tomography by ART, SPIE, 1996, (2861): 146-150
    120 Dapeng Yan, Anzhi He. New method of asymmetric flow field measurement in hypersonic shock tunnel, Applied Optics, 1991, (3):770-774
    121 S. Kawata, O. Nalcioglu, Constrained iterative reconstruction by the conjugate gradient method, IEEE Trans. Med. Imag., 1985, (MI-4): 65-71
    122 R. Gordon, R. Bender, G. T. Herman, Algebraic reconstruction technique (ART) for three dimensional electron microscopy and x-ray tomography, J. Theor. Biol., 1970, (29): 471-481
    123 Guenther R. B., Kerber C. W., Killian C. W. Smith K. T. and Wagner S. L., reconstruction of objects from radiographys and the location of the brain tumors, Proc. Nat. Acad. Sci., 1974, (71): 4884-4886
    124 Bahl S. and Liburdy J. A., Three-dimensional image reconstruction using interferometric data from a limited field of view with noise, Appl. Opt., 1991, (30): 4218-4226,
    125 Herman G. T. and Lent A., Iterative reconstruction algorithms, Comput. Biol. Med., 1976, (6): 273-294
    126 Gilbert R F. C., Iterative Method for the Three-dimensional Reconstruction of a Object from Projections, J. Theor. Bio, 1972, (36): 105-117
    127 A. H. Aderson, A. C. Kak, Simultaneous Algebraic ReConstruction Technique(SART): A Superior Implementation of the ART Algorithm, Ultrasonic Imaging, 1984, (6): 81-89
    128 Rangaraj Rangayyan, Atam Prakash Dhawan and Richard Gordon, Algorithms for limited-view computed tomography: an annotated bibliography and a challenge, Appl. Opt., 1985, (24): 4000-4012
    129 Barry P. Medoff, William R. Brody, Menahem Nassi and Albert Macovski, Iterative convolution backprojection algorithms for image reconstruction from limited data, J. Opt. Soc. Am., 1983, (73): 1493-1500
    130 Charles M. Vest and Ivan Prikryl, Tomography by iterative convolution: empirical study and application to interferometry, Appl. Opt., 1984, (23): 2433-2440
    131 Kenneth M. Hanson, George W. Wecksung, Bayesian approach to limited-angle reconstruction in computed tomography, J. Opt. Soc. Am., 1983, (73): 1501~1509
    132 N. V. Denisova, Two-view tomography, Appl. Phy., 2000, (33): 313-319
    133 N. V. Denisova, Maximum-entropy-based tomography for gas and plasma diagnostics, Appl. Phys., 1998, (30): 1888-1895
    134 B. Roy Frieden, Restoring with Maximum Likelihood and Maximum Entropy, J. Opt. Soc. A., 1972, (62): 511-518
    135 Yuanmei Wang, Weixue Lu, Muttiobjective optimization approach to image reconstruction from projections, Signal Processing, 1992, (26): 17-26
    136 Manoj V. Narayanan, An Interior Point Iternative Maximum-Likelihood Reconstruction Algorithm Incorporating Upper and Lower Bounds with Application to SPECT Transmission Imaging, IEEE Trans. Medi. Imag., 2001, (20): 342-354
    137 Yuanmei Wang, Neural Network Approach to Image Reconstruction from Projections, International Journal of Imaging System & Tech, 1998, (9): 381-387
    138 Berkman Sahiner and Andrew E. Yagle, Limited Angle Tomography Using Wavelets, IEEE, 1994, 1912-1916
    139 Jian Feng, Reconstruction in Tomography from Severe Incomplete Projection Data Using Multiresolution Analysis and Optimization, IEEE, 1996, 133-136
    140 Maaria Rantala, Simopekka Vanska, Seppo Jarvenpaa, Martti Kalke, Matti Lassas, Jan Moberg and Samuli Siltanen, Wavelet-Based Reconstruction for Limited-Angle X-Ray Tomography, IEEE Trans. Med. Imag., 2006, (25): 210-217
    141 A. Faridani, E. L. Ritman, K. T. Smith, Local Tomography, SIAM J. Appl. Math., 1992, (52): 459-484
    142 A. Faridani, D. V. Finch, E. L. Ritman and K. T. Smith, Local Tomography Ⅱ, SIAM J. Appl. Math., 1997, (57): 1095-1127
    143 A. Faridani, Kory A. Buglione, Pallop Huabsomboon, Ovidin D. lancu and Jeanette McGrath, Introduction to local tomography, contemporary mathematics, AMS, 2001, (278): 29
    144 A. Faridani, E. L. Ritman, High-resolution computed tomography from efficient sampling, Inverse Problems, 2000, (16): 635-650
    145 A. I. Katsevich, A. G. Ramm, Pseudolocal tomography, SIAM J. Appl. Math,1996, (56): 167-191
    146 A. Delaney and Y. Bresler, Multiresolution Tomographic Reconstruction Using Wavelets, IEEE Trans. Image Procs., 1995, (4): 799-813
    147 Joe Deftefano and Tom Olson, Wavelet Localization of The Radon Transform In Even Dimensions, IEEE, 1992:137-129
    148 罗戎蕾,基于小波多分辨率分析的图象重建算法研究[学位论文],杭州:浙江大学,2005
    149 Tim Olson and Joe DeStefano, Wavelet Localization of the Radon Transform, IEEE Trans. Signal Proc., 1994, (42): 20552067
    150 Osami Sasaki, Tomohiro Kobayashi, Beam—eflection optical tomography of the refractive index distribution based on the Rytov approximation, Appl. Opt., 1993, (32): 746-751
    151 Natterer E, The mathematics of computerized tomography, John Wiley &Sons Ltd and Teubner, Stuttgart, 1986
    152 Natterer F., The finite element method for ill-posed problems, RAIRO Anal. Numerique, 1977, (11): 271-278
    153 R. W. Lewitt, Reconstruction algorithms: transform methods, Proc. IEEE, 1983, (71): 390-408
    154 Wei Yao and Malek Adjouadi, Algebraic reconstruction technique fusing with pointwise measurements in optical computerized tomography, SPIE, 2001, (4571): 208
    155 姚红兵,贺安之,虚拟和真实实验相融合的三维非完全数据层析,光学学报,2005,(25):479-484
    156 宋旸,张斌,贺安之,一种新的叠栅层析迭代算法,光学学报,2006,26(3):367~372
    157 王振东,石明全,李振华等,基于平行投影法的三维流场重建,光学学报,2002,22(5):556~559
    158 Kenneth M. Hanson, George W. Wecksung, Local basis-function approach to computed tomography, Applied Optics, 1985, 24(23): 4028-4039
    159 李庆扬,关治,白峰杉,数值计算原理,北京:青华大学出版社,2001
    160 H. Thayyullathil, R. Langoju, R. Padmaram, R. Mohan Vasu, R. Kanjirodan, L. Patnaik, Three-Dimensional Optical Tomographic Imaging of Supersonic Jets through Inversion of Phase Data Obtained through the Transport-of-Intensity Equation, Appl. Opt., 2004, (43): 4133-4141
    161 B. R. Hunt, Bayesian Methods in Nonlinear Digital Image Restoration, IEEE Trans. Comput. 1977, (C-26): 219~229
    162 Charles L. Epstein. The Mathematics of Medical Imaging, 2001, 417~418
    163 Farrokh Rashid-Farrokhi, K. J. Ray Liu, Carlos A. Berenstein and David Walnut, Wavelet-Based Multiresolution Local Tomography, IEEE Trans. Imag. Proc., 1997, (6): 1412-1430
    164 C. M. Vest, Holographic Interferometry, New York, Wiely, 1979

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700