大豆亲本及其体细胞杂交后代的耐盐性和光合特性比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐胁迫是严重影响植物生长,导致农作物减产的主要非生物因子之一。为了研究植物的耐盐机制及功能,本文通过不对称体细胞杂交技术,将野生大豆(Glycine cyrioloba ACC547)的耐盐特性引入到了栽培大豆(G.max Melrose)中,综合分析比较了亲本及其体细胞杂交后代的耐盐特性,利用这些材料筛选到了野生大豆特异的ndhH基因并研究了该基因及其生理功能在大豆盐胁迫耐性中的可能作用。主要结果如下:
     Glycine cyrtoloba ACC547是生长在澳大利亚海滩上的一种野生大豆,具有较强的耐盐性能;G.max Melrose是一个高产栽培大豆品种,但对盐胁迫较为敏感。利用不对称体细胞杂交技术,获得了一批ACC547和Melrose的原生质体融合再生株系。随机扩增多态性DNA(randomamplified polymorphic DNA,RAPD)和扩增片段长度多态性(amplified fragment lengthpolymorphism,AFLP)分析结果都表明这些再生株系为野生大豆和栽培大豆的体细胞杂交后代。这些杂交后代在表型上获得了两个亲本的一些特征,耐盐性实验表明有些杂交后代也从野生大豆获得了较高的耐盐特性。
     对两个稳定遗传的体细胞杂交后代S111-9和S113-6及其亲本的耐盐性鉴定表明,与栽培大豆相比,杂交后代及其野生大豆亲本具有较强的耐盐性能。盐胁迫严重地影响了栽培大豆的生长,表现为叶片出现失绿坏死,生物量和光合速率严重下降;而盐胁迫下两个杂交后代的叶片失绿坏死程度和生物量的降低都比其栽培种亲本轻,但要重于其野生亲本,然而其光合速率的下降程度与野生大豆无显著的差别,这表明体细胞杂交后代部分地获得了其野生大豆亲本的耐盐性能。
     在盐处理后期,野生大豆亲本根茎中的Na~+和CI含量与栽培大豆差异不大,但叶中这两种离子的含量明显少于栽培大豆,而K~+含量和K~+/Na~+比值要远大于栽培大豆。这表明降低植株体内尤其是叶片中的盐离子含量,增强叶片对K~+的选择性吸收,减轻盐分对叶片的伤害,维持较高的光合性能,是野生大豆具有较高耐盐特性的部分原因。尽管体细胞杂交后代的叶片K~+含量和K~+/Na~+明显高于栽培大豆,但其叶中和整个植株体内的Na~+和Cl~-含量都要远大于其野生大豆亲本,而与其栽培亲本无显著差别。因此,同野生大豆相比,杂交后代较高的盐胁迫适应能力可能主要不在于其减少体内盐离子的能力,而在于其对盐胁迫的耐受性。
     在体细胞杂交后代从野生大豆亲本获得的AFLP条带中,发现有一个AFLP条带(ASH1)与叶绿体NAD(P)H脱氢酶(NAD(P)H dehydrogenase,NDH)H亚基的基因ndhH具有很大的同源性。通过设计ASH1特异引物进行PCR鉴定,证明了ASH1代表了野生大豆亲本特异的ndhH基因并通过PCR扩增和DNA测序获得了其全长序列。野生大豆特异的ndhH与栽培大豆的ndhH的比对结果表明,二者在其所推测蛋白的氨基酸序列上只有五个氨基酸残基的差别,野生大豆特异的NDH-H蛋白在三级构型上于相应的位置缺少了一个β转角。与栽培大豆相比,盐胁迫诱导了野生大豆亲本类囊体膜结合的约45kD蛋白的合成,其在分子量上与野生大豆亲本特异的NDH-H类似。盐胁迫下野生大豆亲本的‘作用光关闭后叶绿素荧光瞬时上升'的程度和P700的重还原速率以及利用不同电子受体和供体所测定的PSI活性,都要远高于栽培大豆亲本,这表明盐胁迫下野生大豆的NDH介导的围绕PSI的环式电子传递(cyclic electron flow around PSI,CEF1)速率要高于栽培大豆。基于以上这些结果,我们推测野生大豆亲本特异的ndhH能够受盐胁迫的特异诱导而高丰度表达,其所编码的产物参与组成了一个特异的NDH,介导了盐胁迫下高效的光合环式电子传递。另外我们还发现,由于获得了野生大豆亲本特异的ndhH基因,体细胞杂交后代的CEF1活性也受盐胁迫诱导而显著提高,这可能是杂交后代具有较高耐盐特性的一个重要原因。
     盐胁迫下,体细胞杂交后代及其野生大豆亲本的叶片毫秒延迟荧光(ms-DLE)强度明显升高,叶绿素荧光的非光化学淬灭(NPQ)尤其是高能态非光化学荧光淬灭(qE)也维持在较高的水平;叶片内活性氧的积累明显少于栽培大豆;叶绿体结构受损较轻,PSⅡ的最大光化学效率(Fv/Fm)下降也较少。而栽培大豆叶片的ms-DLE强度、NPQ和qE在盐处理下显著下降;活性氧的生成明显增强,叶绿体受损较为严重,Fv/Fm明显降低。这些结果表明杂交后代及其野生大豆亲本的CEF1活性有利于其叶片跨类囊体膜的pH梯度(△pH)的生成和维持,从而激发了其叶片内过剩光能的耗散机制来保护光合机构免受活性氧的损害;而由于不具备高效的CEF1活性,栽培大豆的这种保护机制较弱。此外,杂交后代及其野生大豆亲本盐胁迫下叶片中光诱导的ATP合成明显高于栽培大豆,表明野生大豆及其杂交后代较高的CEF1活性推动了ATP的积累。我们还发现野生大豆的Na~+大多定位于液泡,这是否预示着这种ATP的积累参与了Na~+的液泡区域化,尚待进一步研究。
Salt stress is one of the major abiotic stresses that depress plants growth and drastically limit crop production.To study the mechanisms for plant tolerance to salt stress,salinity-resistant traits of a wild soybean species Glycine cyrtoloba ACC547 were introduced to a cultivated soybean G.max Melrose using asymmetric somatic hybridization.The capacity for salt tolerance was compared in the parents and their hybrid descendants,and a wild-soybean-special-ndhH gene was discovered with these materials and the possible function of this gene in the tolerance of soybean to salt stress was studied.The main results obtained were shown as follow:
     Glycine cyrtoloba ACC547,with high tolerance to salinity,is a wild soybean species native to saline soils in Australian beach.G.max Melrose is a high-yielding soybean cultivar but susceptible to salinity.A series of regenerated lines were obtained from the fused protoplast using asymmetric somatic hybridization.RAPD(random amplified polymorphic DNA)and AFLP(amplified fragment length polymorphism)analysis revealed that these regenerated plants were hybrids between ACC547 and Melrose.The hybrid descendants possessed several morphological features of their parents and some of them also possessed higher salinity-tolerant traits of the wild soybean detecting with salinity-tolerance experiments.
     It was shown that two of the stable hybrid descendants(S111-9 and S113-6)and their wild parent had higher salinity-tolerance in comparison with the cultivated soybean.Salt stress dramatically depressed the growth of cultivated soybean whose leaves lost green with necrotic lesions,biomass and photosynthetic rate decreased markedly.Both necrotic lesions in leaves and decline in biomass are much lighter in hybrid descendants than in cultivated soybean,but more serious than in wild soybean.However,the decline in photosynthetic rate was not significantly different between hybrid descendants and their wild parent.These results suggested that the descendants inherited partially tolerance to salt stress from the wild species.
     In the late time of saline treatment,it had no significant difference in root and stem Na~+ and Cl~-concentrations between the wild and cultivated soybean,but the latter owned much higher concentrations of the two ions and much lower K~+ content and K~+/Na~+ ratio in leaves.These results indicated that the partial reason for salt tolerance in wild species was the exclusion of Na~+ and Cl~-from the whole plant and especially from the leaves,the enhancement in K~+ selectivity of leaves,the alleviation in damage of salt to leaves,and the coupled maintenance in photosynthesis.Although possessing higher leaf K~+ content and K~+/Na~+ ratio than their cultivated parent,the descendances showed higher Na~+ and Cl~- contents in both leaves and whole plant than their wild parent with no significant difference from the cultivated soybean.It was suggested that the higher adaptation of the descendances to salt stress might not be due to the capacity for excluding toxic ions from their bodies, but to their tolerance to salinity.
     One of the AFLP bands which the descendants obtained from their wild soybean parent--ASH1 was found to have highly similar sequence to ndhH,a gene for the H-subunit of chloroplast NAD(P)H dehydrogenase(NDH).PCR analysis with special primers for ASH1 demonstrated that ASH1 represented an ACC547-special ndhH gene,and the whole sequence of this gene was obtained through PCR amplification and DNA sequencing.Multi-alignment of the deduced protein sequences indicated only 5 amino acids in ACC547-special NDH-H different from soybean NDH-H,and the ACC547-special NDH-H lacked oneβcorner in related site in three-dimensional model.In wild soybean,salt stress induced the synthesis of an approximately 45kD thylakoid-membrane-bound protein which was similar to ACC547-special NDH-H in molecular weight.Under salt-stress conditions,the post-illumination transient increase in chlorophyll fluorescence,the rate of p700~+ rereduction,and PSI activity detected with different electron donors and accepters,were all much higher in wild than in cultivated soybean,indicating that NDH-mediated cyclic electron flow around PS I(CEF1)was accelerated by salt stress more greatly in wild than in cultivated soybean.Based on these results,we suspected ACC547-special ndhH could be induced by salinity to express with high level,and its product might be a part of a special NDH complex which mediated efficient CEF1 under salt stress.Moreover,salt stress also prompted CEF1 activity in the descendants due to its derivation of ndhH gene from their wild parent,which might make great contributions to the high salinity-tolerance of the descendants.
     Under salt tress,Ms-delayed light emission(ms-DLE)was markedly strengthened, non-photochemical quenching of chlorophyll fluorescence(NPQ),particularly high-energy state non-photochemical quenching(qE)were still maintained at a high level,less reactive oxygen species (ROS)was generated in the leaves,chloroplast remained the integrated ultrastructure,and there was higher PSⅡmaximal photochemical efficiency(Fv/Fm)in the descendants and their wild parent. Comparatively,salt treatment significantly decreased ms-DLE,NPQ,qE and Fv/Fm,enhanced the accumulation of ROS,and disrupted the chloroplast structure in Melrose.These results suggested that the higher CEF1 activity via ACC547-special NDH in the wild and hybrid soybeans contributed to the generation and maintenance of proton gradient across thylakoid membranes(△pH)and hence to the efficient thermal dissipation of excess light energy,which protected photosynthetic apparatus from ROS damage.However,this protective mechanism functioned less due to the absence of the efficient CEF1 in cultivated soybean.In addition,light-induced ATP synthesis in leaves was higher in the descendants and their wild parent than in their cultivated parent under salt stress,which indicated that the higher CEF1 activity accelerated the generation of extra ATP in the wild and hybrid soybeans.We also discovered that most of Na~+ were localized in vacuoles in wild soybean,and further study was required to elucidate whether the extra ATP participated the compartmentation of Na~+ into vacuoles.
引文
邓勇,叶济宇,米华玲,沈允钢.2003.集胞蓝藻PCC6803含疏水亚基的NAD(P)H脱氢酶亚复合体的分离.生物化学与生物物理学报.35:723-727.
    龚明,赵方杰,吴颂如,汪良驹,刘友良.1990.NaCl胁迫对大麦硝酸盐吸收和有关酶活性的影响.植物生理学通讯2:13-16.
    郭连旺,沈允钢.1996.高等植物光合机构避免强光破坏的保护机制.植物生理学通讯32:1-8.
    蒋德安,饶立华,彭佐权.1988.低钾条件下水稻的光合特性.植物生理学报14:50-55.
    李新国,孟庆伟,赵世杰.2004.强光胁迫下银杏叶片的光抑制及其防御机制.林业科学3:56-59.
    刘友良,毛才良,汪良驹.1987.植物耐盐性研究进展.植物生理学通讯4:1-7.
    刘友良,汪良驹.1998.植物对盐胁迫的反应和耐盐性.In:余叔文,汤章城.植物生理与分子生物学(第二版),北京:科学出版社,752-769.
    苏吉虎,沈允钢.2003.大豆叶片状态转换过程中跨膜质子动力势的变化.科学通报,48:652-657.
    孙俊威,杨勇,黄宗安,金松恒,蒋德安.2004.聚已二醇诱导水分胁迫引起水稻光合下降的原因探讨.中国水稻科学18:539-543.
    王爱国,罗广华.1990.植物的超氧自由基与羟胺反应的定量关系.植物生理学通讯6:55-57.
    王宝山,赵可大.1997.NaCl胁迫下玉米黄化苗质外体和共质体Na~+与Ca~(2+)浓度的变化.作物学报,23:27-33.
    王丽燕,张红.2004.盐胁迫下野大豆无机离子分布的研究.德州学院学报20:67-70.
    王仁雷,华春,刘友良.2002.盐胁迫对水稻光合特性的影响.南京农业大学学报25:11-14.
    吴长艾,孟庆伟,邹琦.2001.叶黄素循环及其调控.植物处理学通讯37:1-5。
    徐春和,沈允钢.1983.叶绿体毫秒延迟发光的快相变化与水氧化时质子释放的关系的研究.中国科学,B辑,9:802-810.
    许大全.2002.光合作用效率.上海科学技术出版社.上海.
    叶济宇.1998.叶绿体的电子传递.1n:余叔文,汤章城.主编.植物生理与分子生物学,科学出版社.北京.198-211。
    於丙军,刘友良.2000.大豆耐盐性研究进展.大豆科学,19:154-159.
    於丙军,罗庆云,刘友良.2001.盐胁迫对盐生野大豆生长和离子分布的影响.作物学报,27:776-780.
    於丙军,罗庆云,刘友良.2003.NaCl胁迫下野生和栽培大豆幼苗体内离子的再转运.植物生理与分子生物学学报,29:39-44.
    赵可夫,冯立田.2001.中国盐生植物资源.北京,科学出版社.
    赵可夫,卢元芳,张宝泽.1993.Ca~(2+)对小麦幼苗降低盐害效应的研究.植物学报,35:51-56.
    曾广文,蒋德安.2000.植物后理学,中国农业科技出版社.北京
    郑少玲,严小龙.1996.盐胁迫下不同水稻基因型根内和的分布情况比较.华南农业大学学报,17:24-28.
    朱新广,王强,张其德,卢从明,匡廷云.2002.冬小麦光合功能对盐胁迫的响应.植物营养与肥料学报,8:177-180.
    朱新广,张其德,匡廷云.2000.NaCl对小麦光合功能的伤害主要是由离子效应造成的.植物学通报,17:360-365.
    Abel GH.1969.Inheritance of the capacity for chloride inclusion and chloride exclusion in soybean.Crop Science,9:697-689.
    Al-Hasan RH,Ghannoum MA,Sallak AK,Abu-Elteen KH,Radwan SS.1987.Correlative changes of growth,pigmentation and lipid composition of Dunaliella salina in response to halostress.Journal of Genetic Microbiology,133:2607-2616.
    Allakhverdiev S I,Sakamoto A,Nishiyama Y,Inaba M,Murata N.2000.Ionic and osmotic effects of NaCl-induced inactivation of Photosystems Ⅰ and Ⅱ in Synechococcus sp.Plant Physiology,123:1047-1056.
    Alscher RG,Donahue JL,Cramer CL.1997.Reactive oxygen species and antioxidants:relationship in green cells.Physiologia Plantarum,100:224-233.
    Apse MP, Aharon GS, Snedden WA, Blumwald E. 1999. Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiporter in Arabidopsis. Science, 285: 1256-1258.
    Arnon DI. 1959. Conversion of light into chemical energy in photosynthesis. Nature 184: 10-21.
    
    Arnon DI, Allen MB, Whatley FR. 1954. Photosynthesis by isolated chloroplasts. Nature, 174: 394-396.
    Arnon DI, Chain RK. 1975. Regulation of ferredoxin-catalyzed photosynthetic phosphorylations. Proceedings of the National Academy of Sciences of the USA, 72: 4961-4965.
    Arnon DI, Tsujimoto HY, McSwain BD. 1967. Ferredoxin and photosynthetic phosphorylation. Nature, 214: 562-566.
    
    Asada K. 1999. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molexular Biology, 50: 601-639.
    
    Asada K, Heber U, Schreiber U. 1993. Electron flow to the intersystem chain from stromal components and cyclic electron flow in maize chloroplasts, as detected in intact leaves by monitoring redox change of P700 and chlorophyll fluorescence. Plant Cell Physiol, 34: 39-50.
    
    Asada K, Takahashi M. 1987. Production and scavenging of active oxyen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ, ed Phtoinhibition. Elsevier, Amsterdam.
    
    Baker N R. 1991. A possible role for photosystem II in environmental perturbations of photosynthesis. Physiologia Plantarum, 81: 563-570.
    
    Bendall DS, Manasse RS. 1995. Cyclic Phosphorylation and electron transport. Biochemica et Biophysica Acta, 1229: 23-38.
    Berger S, Ellersiek U, Westhoff P, Steinmuller K. 1993. Studies on the expression of NDH-H, a subunit of the NAD(P)H-plastoquinone-oxidoreductase of higher-plant chloroplasts. Planta, 190: 25-31.
    Binzel ML, Hess FD, Bressan RA, Hasegawa PM. 1988. Intracellular compartmentation of ions in salt adapted tobacco cell. Plant Physiology, 86, 607-614.
    Bosher JM,Labouesse M.2000.RNA interference:genetic wand and genetic Watchdog.Nature Cell Biology,2:E31-E36.
    Brar DS,Khush GS.1997.Alien introgression in rice.Plant Molecular Biology,35:35-47.
    Brugnoli E,Bjorkman O.1992.Growth of cotton under continuous salinity stress:influence on allocation pattern,stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy.Planta,187:335-347.
    Brugnoli E,Lauteri M.1991.Effects of salinity on stomatal conductance,photosynthetic capacity,and carbon isotope discrimination of salt-tolerant(Gossypium hirsutum L.)and salt-sensitive (Phaseolus vulgaris L.)C3 non-halophytes.Plant Physiology,95:628-635.
    Bukhov N,Carpentier R.2004.Alternative Photosystem I-driven electron transport routes:mechanisms and functions.Photosynthesis Research,82:17-33.
    Bukhov NG,Wiese C,Neimanis S,Heber U.1999.Heat sensitivity of chloroplasts and leaves:leakage of protons from thylakoid and reversible activation of cyclic electron transport.Photosynthesis.Research,59:81-93.
    Burrows PA,Sazanov LA,Svab Z,Maliga P,Nixon PJ.1998.Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes.EMBO Journal,17,868-876.
    Carter DR,Cheeseman JM,1993.The effect of external NaCI on thylakoid stacking in lettuce plants.Plant,Cell and Envirnment,16:215-223.
    Chen HX,An SZ,Li WJ,Gao HY,Zou Q.2004a.Enhancement of the Mehler-peroxidase reaction in salt-stressed Rumex K-1 leaves.Acta Botanica Sinica,46:811-818.
    Chen HX,Gao HY,An SZ,Li WJ.2004b.Dissipation of excess energy in Mehler-peroxidase reaction in Rumex leaves during salt shork.Photosynthetica,42:117-122.
    Clark JE,Johnson GN.2001.In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley.Planta,212:808-816.
    Cleland RE,Bendall DS.1992.Photosystem I cyclic electron transport:measurement of ferredoxin-plastoquinone reductase activity.Photosynthesis Research,34:409-418.
    Cline K, Andrews J, Mersey B, Newcomb EH, Keegstra K. 1981. Separation and characterization of inner and outer envelope membranes of pea chloroplasts. Proceedings of the National Academy of Sciences of the USA, 78: 3595-3599.
    
    Comic G, Bukhov NG, Wiese C, Bligny R, Heber U. 2000. Flexible coupling between light-dependent electron and vectorial proton transport in illuminated leaves of C_3 plants. Role of photosystem I -dependent proton pumping. Planta, 210: 468-477.
    
    Cramer GR, Lauchli A, Polito VS. 1985. Displacement of Ca~(2+) by Na~+ from the plasmalemma of root cells. A primary response to salt stress. Plant Physiology, 79: 207-211.
    
    Davies KJA. 1987. Protein damage and degradation by oxygen radicals. 1. General aspects. Journal of Biological Chemistry, 262: 9895-9901.
    
    Davis DJ, San Pietro A. 1977. Evidence for the role of sulfhydryl groups in a pH-dependent transition of ferredoxin: NADP+oxidoreductase. Archives of Biochemistry and Biophysics, 184: 572-577.
    
    Delfine S, Alvino A, Zacchini M, Loreto F. 1998. Consequences of salt stress on conductance to CO_2 diffusion, Rubisco characteristics and anatomy of spinach leaves. Australian Journal of Plant Physiology, 25: 395-402.
    
    Demmig-Adams B, Adams WW III. 1992. Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology, 43: 599-626.
    Deng Y, Ye JY, Mi H. 2003. Effects of low CO_2 on NAD(P)H dehydrogenase, a mediator of cyclic electron transport around Photosystem I in the cyanobacterium Synechocystis PCC 6803. Plant and Cell Physiology, 44,534-540.
    Durand M, Lacan D. 1994. Sodium partitioning within the shoot of soybean. Physiologia Plantarum, 91: 65-71.
    
    Endo T, Shikanai T, Takabayashi A, Asada K, Sato F. 1999. The role of chloroplastic NAD(P)H dehydrogenase in photoprotection. FEBS Letters, 457, 5-8.
    Evans MVW, Telfer A, Lord AV. 1972. Evidence for the role of a bound ferredoxin as the primary electron accepter of photosystem 1 in spinach chloroplasts. Biochimica et Biophysica Acta, 267: 530-537.
    Everard J D,Gucci R,Kann S C,Flore J A,and Loescher W H.1994.Gas exchange and carbon partitioning in the leaves of celery(Apium graveolens L.)at various levels of root zone salinity.Plant Physiology,106:281-292.
    Farquhar G D,Sharkey T D.1982.Stomatal conductance and photosynthesis.Annual Review of Plant Physiology,33:317-345.
    Fearnley IM,Runswick MJ,Walker JE.1989.A homologue of the nuclear coded 49 kd subunit of bovine mitochondrial NADH-ubiquinone reductase is coded in chloroplast DNA.EMBO Journal,8:665-672.
    Fish LE,Jagendorf AT.1982.High rates of protein synthesis by isolated chloroplasts.Plant Physiology,70:1107-1114.
    Flowers JT,Troke PF,Yeo AR.1977.The mechanism of salt tolerance in halophytes.Annual Review of Plant Physiology and Plant Molecular Biology 28:89-121.
    Fork DC,Herbert SK.1993.Electron transport and photophosphorylation by photosystem I in vivo in plants and cyanobacteria.Photosynthesis Research 36:149-168.
    Friedrich T,Steinmuler K,Weiss H.1995.The proton-pumping respiratory complex I of bacteria and mitochondria and the homologue in chloroplasts.FEBS Letters,367:107-111.
    Furbank RT,Horton P.1987.Regulation of photosynthesis in isolated barley protoplasts:the contribution of cyclic photophosphorylation.Biochimica et Biophysica Acta,894:332-338.
    García-Valenzuela X,García-Moya E,Rasc6n-Cruz Q,Herrera-Estrella L,Aguado-Santacruz GA.2005.Chlorophyll accumulation is enhanced by osmotic stress in graminaceous chlorophyllic cells.Journal of Plant Physiology,162:650-661.
    Genty B,Harbinson J,Baker NR.1990.Relative quantum efficiencies of the two Photosystem of leaves in photorespiratory and non-photorespiratory conditions.Plant Physiology and Biochemistry 28:1-10.
    Giardi MT,Komenda J,Masojidek J.1994.Involvement of protein phosphorylation in the sensitivity of photosystem Ⅱ to strong illumination.Physiologia Plantarum,92:181-187.
    Golbeck JH.1992.Structure and function of photosystem I.Annual Review of Plant Physiology and Plant Molexular Biology,43:293-324.
    Golbeck JH.1999.A comparative analysis of the spin state distribution of in vitro and in vivo mutants of PsaC.Photosynthesis Research,61:107-114.
    Golbeck JH,Warden JT.1982.Electron spin resonance studies of the bound iron-sulfur centers in photosystem I.Photoreduction of center A occurs in the absence of center B.Biochimica et BiophysicaActa,681:77-84.
    Gossett DR,Millhollon EP,Lucas MC.1994.Antioxidant response to salt stress in salt-tolerant and salt-sensitive cultivars of cotton,Crop Science,34:706-714.
    Guéra A,Calatayud A,Sabater B,Barreno E.2005.Involvement of the thylakoidal NADH-plastoquinone-oxidoreductase complex in the early responses to ozone exposure of barley(Hoedeum vulgare L.)seedlings.Journal of Experimental Botany,56,205-218.
    Guex,N.and Peitsch,M.C.1997.SWISS-MODEL and the Swiss-PdbViewer:An environment for comparative protein modelling.Electrophoresis,18:2714-2723.
    Hammond ET,Andrews TJ,Woodrow IE.1998.Regulation of ribulose-1,5-bisophosphate carboxylase/oxygenase by carbamylation and 2-carboxyarabinitol 1-phosohate in tobacco:insights from studies of antisense plants containing reduced amounts of Rubisco activase.Plant Physiology,118:1463-1471.
    Hasegawa PM,Bressan RA,Zhu JK,Bohnert HJ.2000.Plant cellular and molecular responses to high salinity.Annual Review of Plant Physiology and Plant Molecular Biology,51:463-499.
    Hayashi Y,Kyozuka J,Shimamoto K.1988.Hybrid of rice(Oryza sativa L)and wild Oryza species obtained by cell fusion.Mol.Gen.Genet.,214:6-10.
    Heber U,Egneus H,Hank U,Jensen M,Koster S.1978.Regulation of photosynthetic electron transport and phosphorylation in intact chloroplasts and leaves of Spinacia olereacea.Planta 143:41-49.
    Hedrich R.1994.Voltage-dependent chloride channels in plant ceils:identification,characterization,and regulation of guard cell anion channel.In:Current Topics in Memberanes,42:1-33.Guggino W,ed.Academic Press,Sandiego,USA.
    Hernandez JA, del Rio LA, Sevilla F. 1994. Salt stress induced changes in superoxide dismutase isoenzymes in leaves and mesophyll protoplasts from Vigna unguiculata (L.). New Phytologist, 126: 37-44.
    
    Hernandez JA, Olmos E, Corpas FJ, Sevilla F, del Rio LA. 1995. Salt-induced oxidative stress in chloroplasts of pea plants, Plant Science. 105:151-167.
    
    Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M. 1989. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet, 217:185-194.
    
    Hirotsu N, Makino A, Ushio A, Mae T. 2004. Changes in the thermal dissipation and the electron flow in the water-water cycle in rice grown under conditions of physiologically low temperature. Plant and Cell Physiology, 45: 635-644.
    
    Holmstrom KO. 2000. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. Journal of Experimental Botany, 51: 177-185.
    
    Horton, P., Ruban, A.V. and Walters, R.G. 1996. Regulation of light harvesting in green plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47: 655-684.
    
    Horvath, E.M., Peter, S.O., Joet, T., Rumeau, D., Cournac, L., Horvath, G.V., Kavanagh, T.A., Schafer, C, Peltier, G. and Medgyesy, P. 2000. Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiology, 123: 1337-1349.
    
    Huang CY. 1996. Salt stress induces lipid degradation and lipid phase transition in plasma membrane of soybean plants. Taiwania, 41: 96-104.
    
    Huang CY, Liau EC, Kuo TY. 1997. Effects of salt stress on the biosynthesis of lipids in chloroplast membranes of soybean plant. Taiwania, 42: 63-72.
    
    Huang ZA, Jiang DA, Yang Y, Sun JW, Jin SH. 2004. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. Photosynthetica, 42: 357-364.
    Imlay JA, Linn S. 1988. DNA damage and oxygen radical toxicity. Science, 240: 1302-1309.
    
    Ishikawa T, Shimizu S, Makino A. 1998. Light-dependent fragmentation of the large subunit of ribulose-l,5-bisphosphate carboxylase/oxygenase in chloroplasts isolated from wheat leaves. Planta, 204: 305-309.
    Jeanjean R, Mattijs HCP. 1993. Exposure of Cyanobacterium synechocystis PCC 6803 to salt stress induces concerted changes in respiration and photosynthesis. Plant and Cell Physiology, 34: 1073-1079.
    Jiang M, Zhang J. 2001. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant and Cell Physiology. 42: 1265-1273.
    Joet T, Cournac L, Horvath EM, Medgyesy P, Peltier G. 2001. Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB. Evidence for a participation of the NADH-dehydrogenase complex to cyclic electron flow around photosystem I. Plant Physiology, 125: 1919-1929.
    Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S. 1996.
    
    Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Research. 3,109-136.
    
    Karimi G, Ghorbanli M, Heidari H. Khavari-Nejad RA, Assareh MH. 2005. The effects of NaCl on growth, water relations, osmolytes and ion content in Kochia prostrate. Biologia Plantarum, 49: 301-304.
    
    Kasinathan V, Wingler A. 2004. Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana. Physiologia Plantarum, 121: 101-107.
    Kim S J,Lee CH,Hope AB,Chow WS.2001.Inhibition of photosystems Ⅰ and Ⅱ and enhanced back flow of photosystem Ⅰ electrons in cucumber leaf discs chilled in the light.Plant and Cell Physiology 42:842-848.
    Kinoshita T,Mori K.2001.In vitro techniques for genomic alteration in rice paints.Euphytica.120:367-372.
    Kirschbaum MUF,Pearcy RW.1988.Gas exchange analysis of the relative importance of stomatal and biochemical factors in photosynthesis induction in Alocasia macrorrhiza.Plant Physiology,86:782-785.
    Kirst GO.1990.Salinity tolerance of cukaryotic marine algae.Annual Review of Plant Physiology and Plant Molecular Biology,40:21-53.
    Kishor PBK,Hong Z,Miao GH,Hu CAA,Verma DPS.1995.Overexpression of D1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants.Plant Physiology,108:1387-1394.
    Klughammer B,Siiltemeyer D,Badger MR,Price GD.1999.The involvement of NAD(P)H dehydrogenases subunits,NdhD3 and NdhF3,in high-affinity CO_2 uptake in Synechocystis sp.strain PCC7002 gives evidence for multiple NDH-1 complexes with specific roles in cyanobacteria.Molecular Microbiology,32:1305-1315.
    Kobayashi Y,Kaiser W,Heber U.1995.Bioenergetics of carbon assimilation in intact chloroplasts:coupling of proton to electron transport at the ratio H~+/e=3 is incompatible with H~+/ATP=3 in ATP synthesis.Plant and Cell Physiology,36:1629-1637.
    Kovtun Y,Chiu WL,Tena G,Sheen J.2000.Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants.Proceedings of the National Academy of Sciences of USA,97:2940-2945.
    Krause GH,Weis E.1991.Chlorophyll fluorescence and photosynthesis:the basics.Annual Review of Plant Physiology and Plant Molecular Biology,42:313-349.
    Lacan D,Durand M.i995.Na~+ and K~+ transport in excised soybean roots.Physiologia Plantarum,93:132-138.
    Lazof DB, Bernstein N. 1999. The NaCl induced inhibition of shoot growth: the case for distributed nutrition with special consideration of calcium. Advances in Botanical Research, 29: 113-189.
    Li XG, Duan W, Meng QW, Zou Q, Zhao SJ. 2004. The function of chloroplastic NAD(P)H dehydrogenase in tobacco during chilling stress under low irradiance. Plant and Cell Physiology 45,103-108.
    Lilina TM, Yulizanev, Maslenkova LT, Zanev Y, Popova LP. 1993. Adaptation to salinity as monitored by PSII oxygen evolving reactions in barley thylakoids. Journal of Plant Physiology, 42: 629-634.
    
    Liu XD, Shen YG. 2004. Hypoosmotic shock induces a state I transition of photosynthetic apparatus in Dunaliella salina. Chinese Science Bulletin, 49: 672-675.
    Liu XD, Shen YG. 2006. Salt shock induces state II transition of the photosynthetic apparatus in dark-adapted cells. Environmental and experimental Botany, 57: 19-24.
    Lu C, Qiu N, Lu Q, Wang B, Kuang T. 2002. Does salt stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors?. Plant Science, 163: 1063-1068.
    
    Lu CM, Vonshak A. 2002. Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiologia Plantarum, 114: 405-413.
    Lunde C, Jnesen PE, Haldrup A. 2000. The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Nature, 408: 613-615.
    
    Ma W, Mi H. 2005. Expression and activity of type 1 NAD(P)H dehydrogenase at different growth phases of the cyanobacterium, Synechocystis PCC 6803. Physiologia Plantarum, 125: 135-140
    
    Maathuis FJM, Amtmann A. 1999. K~+ nutrition and Na toxicity: the basis of cellular K~+/Na~+ rations. Annals of Botany, 84: 123-133.
    Maathuis FJM, Verlin D, Smith FA, Sanders D, Fernandez JA, Walker NA. 1996. The physiological relevance of Na~+-coupled K~+-transport. Plant Physiology, 112: 1609-1616.
    Makino A,Miyake C,Yokota A.2002.Physiological functions of the water-water cycle(mehler reaction)and the cyclic electron flow around PSI in rice leaves.Plant and Cell Physiology,43:1017-1026
    Makela P,Kontturi M,Pehu E,Somersalo S.1999.Photosynthetic response of drought- and salt-stressed tomato and turnip rape plants to foliar-applied glycinebetaine.Physiologia Plantarum,105:45-50.
    Mano J,Miyake C,Schreiber U,Asada K.1995.Photoactivation of the electron flow from NADPH to plastoquinone in spinach chloroplasts.Plant and Cell Physiology,36:1589-1598.
    Marco E,Ohad N,Schwarz R,Lieman-Hurwitz J,Gabay C,Kaplan A.1993.High CO_2concentration alleviates the block in photosynthetic electron transport in an ndhB-inactivated mutant of Synechococcus sp.PCC 7942.Plant Physiology,101,1047-1053.
    Martín M,Casano LM,Sabater B.1996.Identification of the product of ndhA gene as a thylakoid protein synthesized in response to photooxidative treatment.Plant and Cell Physiology,37:293-298.
    Martín M,Casano LM,Zapata JM,Guéra A,Campo EM,Schmitz-Linneweber C,Maier RM,Sabater B.2004.Role of thylakoid Ndh complex and peroxidase in the protection against photo-oxidative stress:fluorescence and enzyme activities in wild-type and ndhF-deficient tobacco.Physiologia Plantarum,122:443-452.
    Martino C D,Delfine S,Pizzuto R,Loreto F,Fuggi A.2003.Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress.New Phytologist,158:455-463.
    Masojidek J,Hall D O.1992.Salinity and drought stresses are amplified by high irradiance in sorghum.Photosynthetica,27:159-171.
    Matsushita N,Matoh T.1991.Characterization of Na~+ exclusion mechanisms of salt-tolerant reed plants in comparison with salt-sensitive rice plants.Physiologia Plantarum,83:170-176.
    Maxwell PC,Biggins J.1976.Role of cyclic electron transport in photosynthesis as measured by the photoinduced turnover of P700 in vivo.Biochemistry,15:3975-3981.
    Mead JF. 1976. Free radical mechanism of lipid damage, a consequence for cellular membranes. In: Free Radical in Biology, Chapter 2. Pryor WA. Ed. Academic Press, New York.
    
    Mi H, Deng Y, Tanaka Y, Hibino T, Takabe T. 2001. Photo-induction of an NADPH dehydrogenase which functions as a mediator of electron transport to the intersystem chain in the cyanobacterium Synechocystis PCC6803. Photosynthesis Research, 70: 167-173.
    
    Mi H, Endo T, Ogawa T, Asada K. 1995. Thylakoid membrane-bound, NADPH-specific pyridine nucleotide dehydrogenase complex mediates cyclic electron transport in the cyanobacterium Synechocystis sp. PCC 6803. Plant and Cell Physiology, 36: 661-668.
    
    Mi H, Endo T, Schreiber U, Ogawa T, Asada K. 1992. Electron donation from cyclic and respiratory flows to the photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell and Physiology, 33: 1233-1237.
    
    Mi H, Endo T, Schreiber U, Ogawa T, Asada K. 1994. NAD(P)H dehydrogenase- -dependent cyclic electron flow around Photosystem I in the cyanobacterium Synechocystis PCC 6803: a study of dark-starved cells and spheroplasts. Plant and Cell Physiology, 35, 163-173.
    
    Mishra SK, Subrahmanyam D, Singhal GS. 1991. Interactionship between salt and light stress on the primary process of photosynthesis. Journal of Plant Physiolology, 138: 92-96.
    
    Mittova V, Tal M, Volokita M, Guy M. 2002. Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiologia Plantarum, 115: 393-400.
    
    Miyake C, Horiguchi S, Makino A, Shinzaki Y, Yamamoto H, Tomizawa K. 2005. Effects of light intensity on cyclic electron flow around PS1 and its relationship to non-photochemical quenching of Chi fluorescence in tobacco leaves. Plant and Cell Physiology, 46: 1819-1830.
    
    Miyake C, Shinzaki Y, Miyata M, Tomizawa K. 2004. Enhancement of cyclic electron flow around PS1 at high light and its contribution to the induction of non-photochemical quenching of Chl fluorescence in intact leaves of tobacco plants. Plant and Cell Physiology, 45:1426-1433.
    
    Miyake C, Yokato A. 2000. Determination of the rate of photoreduction of O_2 in the water-water cycle in watermelon leaves and enhancement of the rate by limitation of photosynthesis. Plant and Cell Physiology, 41: 335-343.
    Mott KA, Snyder GW, Woodrow IE. 1997. Kinetics of Rubisco activase as determined from gas-exchange measurements in antisense plants of Arabidopsis thaliana containing reduced levels of Rubisco activase. Australian Journal of Plant Physiology, 24: 811-818.
    
    Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T. 2004. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature, 429: 579-582.
    
    Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T. 2002. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabibopsis. Cell, 110: 361-371.
    Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. 1999. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Letters, 461: 205-210.
    Neubauer C, Harry Y, Yamamoto HY. 1992. Mehler-peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplast. Plant Physiology, 99:1354-1361.
    
    Neumann G, Massonneau A, Martinoia E, Romheld V. 1999. Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta, 208: 373-382.
    
    Nixon PJ, Gounaris K, Coomber SA, Hunter CN, Dyer TA, Barber J. 1989. psbG is not a photosystem two gene but may be an ndh gene. Journal of Biological Chemistry. 264: 14129-14135.
    
    Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota SI, Inokuchi H, Ozeki H. 1986. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature, 322, 572-574.
    
    Ohkawa H, Pakrasi HB, Ogawa T. 2000a. Two types of functionally distinct NAD(P)H dehydrogenases in Synechocystis sp. strain PCC6803. Journal of Biological Chemistry, 275, 31630-31634.
    Ohkawa H, Price GD, Badger MR, Ogawa T. 2000b. Mutation of ndh genes leads to inhibition of CO_2 uptake rather than HCO_3~- uptake in Synechocystis sp. strain PCC 6803. Journal of Bacteriology, 182, 2591-2596.
    
    Osmond C B, Grace S C. 1995. Perspectives on photoinhibition and photorespiration in the field-quintessential inefficiencies of the light and dark reactions of photosynthesis? Journal of Experimental Botany, 46: 1351-1362.
    
    Panda SK, Upadhyay RK. 2003. Salt stress injury induces oxidative alterations and antioxidative defence in the roots of Lemna minor. Biologia Plantarum, 48: 249-253.
    Pantalone VR, Kenworthy WJ, Slaughter LH, James BR. 1997. Chloride tolerance in soybean and perennial Glycine accessions. Euphytica, 97: 235-239.
    
    Pieulle L, Guedeney G, Cassier-Chauvat C, Jeanjean R, Chauvat F, Peltier G. 2000. The gene encoding the NdhH subunit of type 1 NAD(P)H dehydrogenase is essential to survival of Synechocystis PCC6803. FEBS Letters, 487: 272-276.
    
    Qiu N, Lu C. 2003. Enhanced tolerance of photosynthesis against high temperature damage in salt-adapted halophyte Atriplex centralasiatica plants. Plant, Cell and Environment, 26, 1137-1145.
    
    Quick WP, Stitt M. 1989. An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves. Biochimica et Biophysica Acta, 977: 287-296.
    
    Rahnama H, Ebrahimazadeh H. 2005. The effect of NaCl on antioxidant enzyme activities in potato seedlings. Biologia Plantarum, 49: 93-97.
    
    Rains D, Epstein E. 1967. Sodium absorption by barley roots: Its mediation by mechanisms 2 of alkali cation transport. Plant Physiology, 42: 319-323.
    
    Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX. 2005. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 37, 1141-1146.
    Renganathan M, Dilley RA. 1994. Evidence that the intrinsic membrane protein LHC II in thylakoids is necessary for maintaining localized △_(H+) energy coupling. Journal of Bioenergetics and Biomembranes, 26: 101-109.
    Rumeau D,Bécuwe-Linka N,Beyly A,Louwagie M,Garin J,Peltier G.2005.New subunits NDH-M,-N,and -O,encoded by nuclear genes,are essential for plastid Ndh complex functioning in higher plants.Plant Cell,17,219-232.
    Sazanov LA,Burrows PA,Nixon PJ.1998.The chloroplast NDH complex mediates the dark reduction of the plastoquinone pool in response to heat stress in tobacco leaves.FEBS Letters,429,115-118.
    Sazanov LA,Burrows PA,Nixon PJ.1998.The plastid ndh genes code for an NADH-specific dehydrogenase:isolation of a complex I analogue from pea thylakoid membranes.Proceedings of the National Academy of Sciences of USA,95:1319-1324.
    Schachtman DP,Tyerman SD,Terry BR.1991.The K~+/Na~+ selectivity of a cation channel in the plasma membrane of root cells dcsnot differ in salt-tolerant and salt-sensitive wheat species.Plant physiology,97:598-605.
    Scheller HV.1996.In vitro cyclic electron transport in barley thylakoids follows two independent pathways.Plant Physiology,110:187-194.
    Schreiber U,Endo T,Mi H,Asada K.1995.Quenching analysis of chlorophyll fluorescence by the saturation pulse method:particular aspects relating to the study of eukaryotic algae and cyanobacteria.Plant and Cell Physiololgy,36,873-882.
    Schwede T,Kopp J,Guex N,and Peitsch MC.2003.SWISS-MODEL:an automated protein homology-modeling server.Nucleic Acids Research,31:3381-3385.
    Seemann J R,Critchley C.1985.Effects of salt stress on the growth,ion content,stomatal behaviour and photosynthetic capacity of a salt-sensitive species,Phaseolus vulgaris L.Planta,164:151-162.
    Sentenac H,Bonneaud N,Minet M,Lacroute F,Salmon JM,Gaymard F,Grignon C.1992.Cloning and expressing in yeast of a plant potassium ion transport system.Science,256:663-665.
    Shen B,Jensen RG,Bohnert HJ.1997.Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts.Plant Physiology,113:1177-1183.
    Shi HZ, Lee BH, Wu SJ, Zhu JK. 2003. Overexpression of a plasma membrane Na~+/H~+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology, 21: 81-85.
    
    Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K, Yokota A. 1998. Directed disruption of the tobacco ndhB gene impaired cyclic electron flow around photosystem I. Proceedings of the National Academy of Sciences of USA, 95: 9705-9709.
    
    Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H,
    Sugiura M. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO Journal, 5, 2043-2049.
    
    Skerrett M, Tyerman SD. 1994. A channel that allows inwardly directed fluxes of anions and protoplasts derived from wheat roots. Planta, 192: 295-305.
    
    Song CP, Guo Y, Qiu QS, Lambert G, Galbraith DW, Jagendorf A, Zhu JK 2004. A probable Na~+ (K ~+)/H~+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of USA, 27: 10211-10216.
    
    Stadtman ER. 1992. Protein oxidation and aging. Science, 257: 1220-1224.
    
    Stepien P, Klobus G. 2006. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biologia Plantarum, 50: 610-616.
    
    Surjus A, Durand M. 1996. Lipid changes in soybean root membranes in response to salt treatment. Journal of Experimental Botany, 47: 17-23.
    Tabka K, Otaubo T, Kondu N. 1982. Participation of hydrogen peroxide in the inactivation of Calvin-cycle SH enzyme in SO_2-furmugated spinach leaves. Plant and Cell Physiology, 23: 1009-1018.
    Tagawa K, Arnon DI. 1962. Ferredoxins as electron carriers in photosynthesis and in biological production and consumption of hydrogen gas. Nature, 195: 537-543.
    Tagawa K, Tsujimto HY, Arnon DI. 1963. Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proceedings of the National Academy of Sciences of the USA, 49: 567-572.
    Takabayashi A, Kishine M, Asada K, Endo T, Sato F. 2005. Differential use of two cyclic electron flows around photosystem I for driving CO_2-concentration mechanism in C_4 photosynthesis. Proceedings of the National Academy of Sciences of USA, 102, 16898-16903.
    Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Melecular Biology and Evolution, 10.1093/molbev/msmoq2. Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S, Takabe T. 1999. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Science, 148: 131-138.
    
    Tanaka Y, Katada S, Ishikawa H, Ogawa T, Takabe T. 1997. Electron flow from NAD(P)H dehydrogenase to photosystem I is required for adaptation to salt shock in the cyanobacterium Synechocystis sp. PCC 6803. Plant and Cell Physiology, 38: 1311-1318.
    
    Tarczynski MC, Jensen RG, Bohnert HJ. 1993. Stress protein of transgenic tobacco by production of the osmolytes mannitol. Science, 259, 508-510.
    Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB. 1997. Subcellular localization of H_2O_2 in plants. H_2O_2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant Journal, 11: 1187-1194
    
    Tsugane K, Kobagashi K, Niwam Y, Ohba Y, Wada K, Kobagashi H. 1999. A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell, 11: 1195-1206.
    
    Walter RG, Horton P. 1991. Resolution of components of non-photochemical chlorophyll fluorescence quenching in barley leaves. Photosynthesis Research, 27: 121-133.
    
    Wang HW, Mi H, Ye JY, Deng Y, Shen YK. 2003. Low concentrations of NaHSO_3 increase cyclic photophosphorylation and photosynthesis in cyanobacterium Synechocystis PCC6803. Photosynthesis Research, 75: 151-159.
    Wang P,Duan W,Takabayashi A,Endo T,Shikanai T,Ye JY,Mi H.2006.Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress.Plant Physiology,141:465-474.
    Weimberg R,Lerner HR,Poljakoff-Mayber A.1984.Changes in growth and water-soluble solute concentrations in Sorghum bicolor stressed with sodium and potassium salts.Physiologia Plantarum,62:472-480.
    Wise RR,Naylor AW.1987.Chilling-enhanced photooxidation.Evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxifant.Plant Physiology,83:278-282.
    Wollman FA.2001.State transitions reveal the dynamics and flexibility of the photosynthetic apparatus.EMBO Journal,20:3623-3630.
    Wraight CA,Crofts AR.1971.Delayed fluorescence and high energy state of chloroplasts.Europe Journal of Biochemistry,19:386-387.
    Yang XH,Lu CM.2005.Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants.Physiologia Plantarum,124:343-352.
    Zapata JM,Guéra A,Esteban-Carrasco A,Martín M,Sabater B.2005.Chloroplasts regulate leaf senescence:delayed senescence in transgenic ndhF-defective tobacco.Cell Death and Differentiation,12,1277-1284.
    Zenoff AM,Hilal M,Galo M,Moreno H.1994.Changes in roots lipid composition and inhibition of the extrusion of protons during salt stress in two genotypes of soybean resistant or susceptible to stress.Plant and Cell Physiology,35:729-735.
    Zhou S,Zhao KF.2003.Discussion on the problem of salt gland of Glycine soja.Acta Botanica Sinica 45:574-580.
    Zhou YH,Yu JQ,Mao WH,Huang LF,Song XS,Nogués S.2006.Genotypic variation of rubisco expression,photosynthetic electron flow and antioxidant metabolism in the chloroplasts of chill-exposed cucumber plants.Plant and Cell Physiology,47:192-199.
    Zhu JK.2000.Genetic analysis of plant salt tolerance using Arabidopsis.Plant Physiology,124,941-948.
    Zhu JK.2001.Plant salt tolerance.Trends in Plant Science,6,66-71.
    Ziska LH,Seemann JR,Dejong TM.1990.Salinity induced limitation on photosynthesis in Prunus salicina,a deciduous tree species.Plant Physiology,93:864-870.
    Zium-Hanck U,Heber U.1980.Oxygen requirement of photosynthetic CO_2 assimilation.Biochimica et Biophysica Acta,591:166-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700