石化企业蒸汽动力系统运行优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒸汽动力系统是石化企业的重要组成部分,同时消耗大量燃料而产生大量污染物,造成了严重的环境问题。因此,蒸汽动力系统的优化操作,不仅是石化企业节能降耗、提高效益的重要途径,也对环境保护和人类社会的可持续发展有着重要的意义。
     依据蒸汽动力系统自身复杂运行特性对其进行深入理解和分析,是制定系统合理的运行优化方案的前提,对实现石化企业能量系统总体优化也至关重要。本文在阅读大量国内外与蒸汽动力系统多层次集成建模体系结构相关文献基础上,建立了蒸汽动力系统物理结构、流结构、功能层次模型和蒸汽动力系统多周期运行优化的数学模型。并基于粒子群算法收敛速度慢、全局寻优能力弱的缺点,提出了一种新的优化算法——线性变化参数的粒子群(ICPPSO)算法,对约束的处理进行了简化,把约束问题转化为无约束优化问题。运用ICPPSO算法对部分文献中的算例和实际算例进行优化求解,与其他方法相比能很快得到运行优化方案,降低了大量运行成本,表明了其实用性和有效性。
     石化企业中,由于生产量和季节变化等原因,造成了各周期间蒸汽和电的需求变化比较大,导致锅炉和汽轮机的频繁启停,不仅增加了运行费用,而且对设备的寿命影响较大。在对以往研究设备启停费用模型基础上本文提出了修正,如果不考虑设备启停时间,进行了数学意义上的修正;如果考虑设备启停时间对其模型提出两种修正方案,种方案是把蒸汽和电力需求约束分成三个时间段:设备启动、设备正常运行和设备停运时间;另一种方案是对设备启停逻辑约束进行修正,把启动周期提前、停运周期推迟。本文结合某石化企业的蒸汽动力系统实际情况建立了设备启停费用数学模型,运用ICPPSO算法采用分步求解策略得到了合理的优化运行方案,两种优化方案总运行费用分别减少1.4%和2.3%。该修正模型不仅具有数学方面的意义,而且对具有转运关系的调度问题也有参考作用。
     我国能源状况面临着经济增长和环境保护的双重制约,能源短缺和环境污染的压力会急剧加大。对此本文提出了包括环境成本在内的石化企业蒸汽动力系统多周期运行优化模型,该模型不仅考虑了污染物的排放,也考虑了污染物的减排因素,增加了污染物排放限制约束,加大了对气体污染物的惩罚力度。结合某石化企业的蒸汽动力系统实际情况建立了多周期运行优化数学模型,运用ICPPSO算法对其优化求解,得到了合理的单元配置、燃料选择和不同操作周期的动力输入、输出和购买蒸汽及环境成本的运行优化方案,并给出了降低包括环境成本在内的运行总成本的合理性建议。
Steam power system (SPS) is an important part of the petrochemical enterprises, its security and stable operation are the basic of the process industrial long-period operation. Steam power system consumes a large amount of fuel and causes serious environment problem. Therefore, the optimization of the SPS operation and the reduction of operating costs, not only is an important way to improve efficiency for the process of industrial energy consumption, but also have important research significance to the sustainable development of human society.
     Steam power system in the petrochemical enterprises has its own complex operating characteristics. Understanding and analyzing deeply the characteristics is a premier to develop reasonable optimization programs for the operation of SPS. It is very important to establish a multi-level integration steam power system model of petrochemical enterprises for understanding deeply steam power system, guiding the activities of steam power system and achieving the overall optimization of energy systems of petrochemical enterprises. In this thesis, the multi-level modeling architecture is introduced, and the hierarchical model of steam power system, physical structure model and flow model are established. An integrated optimization mathematical model of steam power system including boiler, turbine, waste heat boilers and other major equipment, is established. Because of the shortcoming of traditional Particle swarm optimization with the slow convergence speed and weak convergence of global optimization, a new improved optimization algorithm-linear parameters of particle swarm optimization (ICPPSO algorithm) is developed. The algorithm predigests the constraint handling and transforms the constraint problem to unconstraint. Using the improved PSO algorithm to optimize the solution of the case in literature and practical case, the results show that the optimization speed of ICPPSO is higher than that of other optimization methods, and the optimized program can reduce operational costs largely. The results also show that the algorithm has good practicality and effectiveness.
     The variations of petrochemical enterprise's production capacity, market demand and seasonal alternation cause to different needs of steam and power in different periods and result in frequent start-up and shut-down issues of boiler and turbines. These operations not only increase the total operational cost, but also have very important impact on equipment life. Therefore, the model based on previous research on equipment start-up and shut-down cost is revised, In the thesis, when the start-up and shut-down time of boiler and gas turbine is considered, the models in the literatures are revised on the mathematic meaning. On the contrary, when the time is taken over, two revised programs are proposed. One program is to divide total time into three stages:equipment start-up time, equipment uptime and equipment shut-down time; the other revises the logic constraint of equipment start-up period early and delays shut-down period. Combined the steam power system of a petrochemical enterprise, a optimization mathematic model is developed and solved by adopting the ICPPSO algorithm with solving strategies by step, and two reasonable optimization programs are reached and the corresponding total operation cost decrease by 1.4% and 2.3% respectively. The results show that the revised model has not only mathematic meaning, and but also make the operation of SPS more near to ideal conditions and has good reference on the problem with the transit scheduling.
     China's energy situation is subject to dual constraints of economic growth and environmental protection. With the development of energy shortage and environmental pollution, the energy problem becomes more serious. An optimization model of petrochemical steam power system in different operation period including the environmental cost is proposed, In the model, the pollutant emission and the pollutant emission reduction factor are considered, and the constraint of pollutant emission is introduced and the penalty on air pollutants is enhanced. Combined the SPS of a petrochemical enterprise, the model is solved by adopting ICPPSO algorithm and a reasonable operation program is obtained. The optimization result demonstrates different unit configuration and fuel selection. Furthermore, the operation programs including power input, output, and steam purchased in different periods will be different even same fuel choices whether the environmental cost is considered. In the end, some reasonable advice is proposed to decrease total operational cost including environmental cost.
引文
[1]Kim J H, Han C. Short-term multiperiod optimal planning of utility systems using heuristics and dynamic programming[J]. Industrial and Engineering Chemistry Research.2001,40(8):1928-1938.
    [2]Bojic M, Dragicevic S. Optimization of steam boiler design[J]. Proceedings of the Institution of Mechanical Engineers, Part. A:Journal of Power and Energy.2006,220(6):629-634.
    [3]江泽民.对中国能源问题的思考[J].上海交通大学学报.2008,42(03):345-359.
    [4]苏明,傅志华,韩凤芹,等.中美能源对话与合作研究[J].经济研究参考.2008,(55):13-30.
    [5]詹华,姚士洪.对我国能源现状及未来发展的几点思考[J].能源工程.2003,(03):1-4.
    [6]张珍花,王鹏.我国能源现状的思考与能源战略建议[J].煤炭经济研究.2008,(10):4-7.
    [7]国家发展改革委有关负责人就《中国的能源状况与政策》白皮书答记者问[J].应用能源技术.2008,(02):44-45.
    [8]华贲.中国城市建筑能源系统的集成创新[J].华南理工大学学报(自然科学版).2007,35(10):111-115.
    [9]国涓.我国能源消费与环境污染关系的分析[J].商业经济.2008,(11):8-9,56.
    [10]马凯.我国当前的能源形势与“十一五”能源发展——在中宣部等六部委联合举办的形势报告会上的报告[J].时事报告.2006,(8):8-26.
    [11]王新平,陈国辉.2005年中国炼化行业经济运行分析及2006年展望[J].国际石油经济.2006,14(05):7-12.
    [12]毛加祥.中国炼油工业发展展望[J].当代石油石化.2000,8(06):8-10.
    [13]华贲.国家重点基础研究发展规划项目《高效节能的关键科学问题》建议书[M].2000.
    [14]华贲.炼油厂能量系统优化技术研究与应用.北京:中国石化出版社;2009.
    [15]何银仁,陈先芽,杨华英,等.炼油和石油化工生产计划模型中公用工程的优化[J].石油炼制与化工.1996,27(12):45-48.
    [16]蒋白桦,黄景汉,赵建华,等.炼油企业信息化研究[J].计算机与现代化.2002,(10):5-7,10.
    [17]Nishio M, Itoh J, Shiroko K, et al. A thermodynamic approach to steam-power system design[J]. Industrial & Engineering Chemistry, Process Design and Development.1980,19(2):306-312.
    [18]Nishio M, Shiroko K, Umeda T. Optimal use of steam and power in chemical plants[J].1982, 21(4):640-646.
    [19]Chou C C, Shih Y S. A thermodynamic approach to the design and synthesis of plant utility systems[J]. Industrial & Engineering Chemistry Research.1987,26(6):1100-1108.
    [20]Yoo Y H, H.S.Yi, Y.K.Yeo. Modeling and Simulation of Energy Distribution Systems in a Petrochemical Plant[J]. Korean J.Chem.Eng.1996,13(4):384-392
    [21]Yi H S, Yeong Koo, Kim J K, et al. A rule-based steam distribution sysrem for petrochemical plant operation[J]. Ind. Eng. Chem.Res.1998,37:1051-1062.
    [22]Linnhoff B, Marsland. User Guide on Process Integration for the Efficient Use of Energy[J]. Comput. Chem. Engng.1982,18:456-462.
    [23]Dhole V R, Linnhoff B. Total site targets for fuel co-generation, emissions, and c.ooling[J]. Computers & Chemical Engineering.1993,17(Suppl):101-109.
    [24]Papoulias S A, Grossmann IE. Structural optimization approach in process synthesis-I[J]. Computers & Chemical Engineering.1983,7(6):695-706.
    [25]Petroulas T, Reklaitis G V. Computer-aided synthesis and design of plant utility systems[J]. AIChE Journal.1984,30(1):69-78.
    [26]Colmenares T R, Seider W D. Synthesis of utility systems integrated with chemical processes[J]. Industrial & Engineering Chemistry Research.1989,28(1):84-93.
    [27]Petracci N C, Brignole E A, Eliceche A M. Utility system optimal operation[C]. Amsterdam, Neth, 1991.
    [28]Maia L O A, Vidal de Carvalho LA, Oassim R Y. Synthesis of utility systems by simulated annealing[J]. Computers & Chemical Engineering.1995,19(4):481-488.
    [29]Nath R, Kumana J D, Holliday J F. Optimum dispatching of plant utility systems:To minimise cost and local NOx emissions[C]. Proceeding of the 1992 Industrial Power conference, New Orleans, 1992.
    [30]Yokoyama R, Ito K, Matsumoto Y. Optimal sizing of a gas turbine cogeneration plant in consideration of its operational strategy [J]. Journal of Engineering for Gas Turbines and Power, Transactions of the ASME.1994,116(1):32-38.
    [31]Wellons M C, Sapre A V, Chang A I, et al. On-line power plant optimization improves Texas refiner's bottom line[J]. Oil and Gas Journal.1994,92(20):53-58.
    [32]Morrow A J. Simple linear model for optimal distribution of loads in a group of extraction turbo-alternators [J]. Proceedings of the Society of Photo-Optical Instrumentation Engineers. 1977:133-139.
    [33]Petracci N, Eliceche A M, Bandoni A, et al. Optimal operation of an ethylene plant utility system[J]. Computers & Chemical Engineering.1993,17(Suppl):147-152.
    [34]Papalexandri K P, Pistikopoulos E N, Kalitventzeff B, et al. Operation of a steam production network with variable demands modelling and optimization under uncertainty [J]. Computers & Chemical Engineering.1996,20(Suppl pt A):763-768.
    [35]Lee M H, Lee S J, Han C, et al. Hierachical on-line data reconciliation and optimization for an industrial utility plant[J]. Computers and Chemical Engineering.1998,22(Suppl):247-254.
    [36]Papalexandri K P, Pistikopoulos E N, Kalitventzeff B. Modelling and optimization aspects in energy management and plant operation with variable energy demands-application to industrial problems[J]. Computers & Chemical Engineering.1998,22(9):1319-1333.
    [37]Mavromatis S P, Kokossis A C. Hardware composites:A new conceptual tool for the analysis and optimization of steam turbine networks in chemical process industries. Part Ⅰ:Principles and construction procedure[J]. Chemical Engineering Science.-1998,53(7):1405-1434.
    [38]Mavromatis S P, Kokossis A C. Hardware composites:A new conceptual tool for the analysis and optimization of steam turbine networks in chemical process industries. Part Ⅱ:Application to operation and design[J]. Chemical Engineering Science.1998,53(7):1435-1461.
    [39]Strouvalis A M, Mavromatis S P, Kokossis A C. Conceptual optimisation of utility networks using hardware and comprehensive hardware composites[J]. Computers & Chemical Engineering.1998, 22(22):175-182.
    [40]Strouvalis A M, Heckl I, Friedler F, et al. Customized solvers for the operational planning and scheduling of utility systems[J]. Computers and Chemical Engineering.2000,24(2):487-493.
    [41]刘金平.过程工业蒸汽动力系统集成建模理论及其应用的研究[D].广州:华南理工大学,2002.
    [42]Strouvalis A M, Heckl I, Friedler F, et al. An accelerated Branch-and-Bound algorithm for assignment problems of utility systems [J]. Computers and Chemical Engineering.2002,26(4-5):617-630.
    [43]Yi H S, han C, Yeo Y K. Optimal multiperiod planning of utility systems considering discrete/continuous variance in internal energy demand based on decomposition method[J]. Journal of Chemical Engineering of Japan.2000,33(3):456-467.
    [44]Yeung K Y, Wai H C, Gani R, et al. Site-wide energy optimization with steam pressure changes. Computer Aided Chemical Engineering:Elsevier; 2001:1029-1034.
    [45]Yi H S, Han C. The integration of complete replanning and rule-based repairing for optimal operation of utility plants[J]. Korean J.Chem.Eng.2001,,18(4):442-450.
    [46]Yi H S, Kim J H, Han C, et al. Periodical replanning with hierarchical repairing for the optimal operation of a utility plant[J]. Control Engineering Practice.2003, 11(8):881-894.
    [47]Ueo Y K, Roh H D, Kim I W, et al. Optimal operation of utility system in petrochemical plants [J]. Korean J. chem.2003,20(2):200-206.
    [48]Shang Z, Kokossis A. A transhipment model for the optimisation of steam levels of total site utility system for multiperiod operation[J]. Computers & Chemical Engineering.2004,28(9):1673-1688.
    [49]Cheung K Y, Hui C W. Total-site scheduling for better energy utilization[J]. Journal of Cleaner Production.2004,12(2):171-184.
    [50]Cheung K Y, Hui C W, Sakamoto H, et al. Short-term site-wide maintenance scheduling[J]. Computers and Chemical Engineering.2004,28(1-2):91-102.
    [51]Iyer R R, Grossmann I E. Optimal multiperiod operational planning for utility systems[J]. Computers & Chemical Engineering.1997,21(8):787-800.
    [52]Iyer R R, Grossmann I E. Synthesis and operational planning of utility systems for multiperiod operation[J]. Computers & Chemical Engineering.1998,22(7-8):979-993.
    [53]Hirata K, Sakamoto H, OYoung L, et al. Multi-site utility integration-An industrial case study[J]. Computers and Chemical Engineering.2004,28(1-2):139-148.
    [54]Oliveira Francisco A P, Matos H A. Multiperiod synthesis and operational planning of utility systems with environmental concerns[J]. Computers and Chemical Engineering.2004,28(5):745-753.
    [55]Aguilar O, Perry S J, Kim J K, et al. Design and optimization of flexible utility systems subject to variable conditions:Part 1:Modelling framework[J]. Chemical Engineering Research and Design. 2007,85(8 A):1136-1148.
    [56]Aguilar O, Kim J K, Perry S, et al. Availability and reliability considerations in the design and optimisation of flexible utility systems[J]. Chemical Engineering Science.2008, 63(14):3569-3584.
    [57]Hui C W, Natori Y. Industrial application using mixed-integer programming technique:a multi-period utility system model[J]. Computers & Chemical Engineering.1996,20(Supplement 2):1577-1582.
    [58]李定凯,沈幼庭,康建斌,等.石化企业蒸汽动力与供热系统新建及改造方案的优化[J].石油化工.1997,26(04):238-244.
    [59]陈元鹏,蒋楚生,郑丹星.大型乙烯企业总能系统的研究(Ⅰ)[J].石油化工.1992,21(03):183-187.
    [60]沈幼庭,袁小雄,石维谭.应用数学模型确定炼油厂蒸汽系统最优改造方案[J].石油化工.1989,18(05):311-317.
    [61]赵士杭.石油化工厂的蒸汽系统设计[J].热能动力工程.1994,9(01):27-31.
    [62]赵士杭,于万纪.蒸汽系统的优化设计[J].石油炼制与化工.1994,25(10):1-8.
    [63]张健,陈丙珍,胡山鹰.系统化的基于动力模块的公用工程综合方法[J].石油化工.2001,30(05):388-393.
    [64]吕泽华,赵士杭,陈钢,等.乙烯装置蒸汽系统的优化[J].石油炼制与化工.2001,32(10):49-52.
    [65]张国喜,华贲,刘金平.石化企业蒸汽动力系统的多工况操作优化[J].石油炼制与化工.2001,32(05):42-46.
    [66]Micheletto S R, Carvalho MCA, Pinto J M. Operational optimization of the utility system of an oil refinery[J]. Computers and Chemical Engineering.2008,32(1-2):170-185.
    [67]Holland J H. Adaptation in Natural and Artificial system[M]. Ann Arbor:University of Michigan press,1975.
    [68]Mitchell M. An Introduction to genetic algorithms[M].Cambridge:MIT Press,1996.
    [69]吉根林.遗传算法研究综述[J].计算机应用与软件.2004,21(02):69-73.
    [70]Rudolph G. Convergence analysis of canonical genetic algorithms [J]. IEEE Transactions on Neural Networks.1994,5(1):96-101.
    [71]尹洪超.过程系统能量综合方法的研究[D].大连:大连理工大学,1996.
    [72]袁一,尹洪超.复杂非线性公用工程系统的遗传算法最优设计[J].大连理工大学学报.1997,37(6):674-678.
    [73]王克峰,修乃云,匡国柱,等.非线性蒸汽动力系统参数优化新方法——改进遗传算法[J].化学工程.1998.26(04):42-45,55.
    [74]尹洪超,陈光宇,邱庆刚,等.热电联产热力系统参数与结构方案同步综合[J].大连理工大学学报.1998,38(06):687-690.
    [75]Quan G J. A parallel hybrid genetic algorithm for solving a kind of non-identical parallel machine scheduling problems[C]. Proc 4TH HPC-ASIA2006, Beijing,2006.
    [76]谷琳霞.基于遗传算法的蒸汽动力系统优化新方法[J].测试技术学报.1998,12(03):408-412.
    [77]Chen G, Li Z, Tang L, et al. Hybrid simplex-genetic algorithm for global numerical optimization[C]. Piscataway, NJ 08855-1331, United States,2008.
    [78]Zhang J, Zhong J H, Hu X M. A novel genetic algorithm with orthogonal prediction for global numerical optimization[C]. Heidelberg, D-69121, Germany,2008.
    [79]Cardoso M F, Salcedo R L, de Azevedo S F, et al. Simulated annealing approach to the solution of MINLP problems[J]. Computers & Chemical Engineering.1997,21(12):1349-1364.
    [80]Maia L O A, Qassim R Y. Synthesis of utility systems with variable demands using simulated annealing[J]. Computers & Chemical Engineering.1997,21(9):947-950.
    [81]吕泽华.热电联供背压汽轮机调节系统数学模型与动态特性[J].汽轮机技术.1995,37(05):277-283,295.
    [82]吕泽华,黄志明.蒸汽管道的传递函数及工程应用[J].清华大学学报(自然科学版).1997,37(02):103-107.
    [83]贺阿特,冯霄,隋新华,等.蒸汽动力系统可调节性分析[J].热能动力工程.2000,15(03):226-228.
    [84]张卓理.大化肥蒸汽管网优化控制[J].兰化科技.1998,16(03):182-185.
    [85]罗向龙.炼油企业蒸汽动力系统运营与设计优化研究[D].广州:华南理工大学,2007.
    [86]华贲,韩方煜.过程系统技术与企业的集约化[C].过程系统工程与集约化经营高级研讨会论文集,江西九江,1998.
    [87]Westerberg A W. Computer-assisted process and control engineering[C]. In Frontiers in Chemical Engineering-Research needs and opportunities, Washington DC,1988.
    [88]Grossmann I. Enterprise-wide optimization:A new frontier in process systems engineering[J]. AIChE Journal.2005,51(7):1846-1857.
    [89]王基铭.过程系统工程技术与中国石化可持续发展[J].化工学报.2007,58(10):2421-2426.
    [90]华贲.中国炼油企业能源构成和能量转换技术的发展趋势[J].炼油技术与工程.2005,35(11):1-5.
    [91]龙妍,黄素逸,刘可.大系统中物质流、能量流与信息流的基本特征[J].华中科技大学学报(自然科学版).2008,36(12):87-90.
    [92]夏燕萍,吕泽华,赵士杭.热电厂锅炉-汽轮机的优化调度[J].清华大学学报(自然科学版).2000,40(11):59-62.
    [93]鄢烈祥,胡晟华,麻德贤.锅炉蒸汽系统多操作周期的优化调度[J].化工学报.2003,54(12):1708-1712.
    [94]罗向龙,华贲,张冰剑.石化企业蒸汽动力系统的多周期运行优化[J].计算机与应用化学.2006,23(01):41-45.
    [95]Mavromatis S P, Kokossis A C. Conceptual optimization of utility networks for operational variations-I. Targets and level optimization[J]. Chemical Engineering Science.1998,53(8):1585-1608.
    [96]J.R.Pattison, Sharma V. Selection of boiler plant and overall system efficiency[M]. Studies in energy efficiency in buildings,British Gas,1980.
    [97]石李胜.蒸汽系统动力优化调度[D].西安:西安交通大学,2003.
    [98]李国俊,郁鸿凌,李瑞阳,等.大型蒸汽管网系统的运行优化调度[J].化工进展.2007,26(01):77-81.
    [99]Schneider D F. Build a better process model[J]. Chemical Engineering Progress.1998,94(4):75-85.
    [100]Kovacs Z, Ercsey Z, Friedler F, et al. Separation-network synthesis:global optimum through rigorous super-structure[J]. Computers and Chemical Engineering.2000,24(8):1881-1900.
    [101]杨友麒,温浩.面向二十一世纪的计算机化工应用技术[J].计算机与应用化学.1997,(14(增刊)):1-13.
    [102]Chen L H, Hsueh C C. A mathematical programming method for formulating a fuzzy regression model based on distance criterion[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics.2007,37(3):705-712.
    [103]Peng Y, Guan Z, Ma L, et al. A mathematical programming method for flow path design in high-mix and low-volume flow manufacturing[C]. Singapore, Singapore,2008.
    [104]Zhang L, Cai L b, Li M, et al. A method for least-cost QoS multicast routing based on genetic simulated annealing algorithm[J]. Computer Communications.2009,32(1):105-110.
    [105]Vilcot G, Billaut J C. A tabu search and a genetic algorithm for solving a bicriteria general job shop scheduling problem[J]. European Journal of Operational Research.2008,190(2):398-411.
    [106]Zhang X, Tang L. Anew hybrid ant colony optimization algorithm for the vehicle routing problem[J]. Pattern Recognition Letters.2009,30(9):848-855.
    [107]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001.
    [108]Toksari M D. Ant colony optimization for finding the global minimum[J]. Applied Mathematics and Computation.2006,176(1):308-316.
    [109]Duran ToksarI M. Ant colony optimization approach to estimate energy demand of Turkey[J]. Energy Policy.2007,35(8):3984-3990.
    [110]Hani Y, Amodeo L, Yalaoui F, et al. Ant colony optimization for solving an industrial layout problem[J]. European Journal of Operational Research.2007,183(2):633-642.
    [111]Bontoux B, Feillet D. Ant colony optimization for the traveling purchaser problem[J]. Computers & Operations Research.2008,35(2):628-637.
    [112]Yagmahan B, Yenisey M M. Ant colony optimization for multi-objective flow shop scheduling problem[J]. Computers & Industrial Engineering.2008,54(3):411-420.
    [113]Chebouba A, Yalaoui F, Smati A, et al. Optimization of natural gas pipeline transportation using ant colony optimization[J]. Computers & Operations Research.2009,36(6):1916-1923.
    [114]ToksarI M D. Minimizing the multimodal functions with Ant Colony Optimization approach[J]. Expert Systems with Applications.2009,36(3, Part 2):6030-6035.
    [115]李宁,邹彤,孙德宝,等.基于粒子群的多目标优化算法[J].计算机工程与应用.2005,41(23):43-46.
    [116]Jingxuan W, Yuping W. A novel multi-objective PSO algorithm for constrained optimization problems[C]. Hefei, China,2006.
    [117]Niu Y, Shen L. The optimal multi-objective optimization using PSO in blind color image fusion[C]. Seoul, Korea, Republic of,2007.
    [118]Li L D, Li X, Yu X. A multi-objective constraint-handling method with PSO algorithm for constrained engineering optimization problems[C]. Hong Kong, China,2008.
    [119]Li X, Tian P, Kong M. A novel particle swarm optimization for constrained optimization problems [C]. Sydney, Australia,2005.
    [120]Zahara E, Hu C-H. Solving constrained optimization problems with hybrid particle swarm optimization[J]. Engineering Optimization.2008,40(11):1031-1049.
    [121]魏静萱,王宇平.求解约束优化问题的改进粒子群算法[J].系统工程与电子技术.2008,(04)
    [122]庞巍,王康平,周春光,et al.模糊离散粒子群优化算法求解旅行商问题[J].小型微型计算机系统.2005,26(08):1331-1334.
    [123]Tasgetiren M F, Suganthan P N, Pan Q-K. A discrete particle swarm optimization algorithm for the generalized traveling salesman problem[C]. London, United kingdom,2007.
    [124]Sivanagaraju S, Rao J V, Raju P S. Discrete particle swarm optimization to network reconfiguration for loss reduction and load balancing[J]. Electric Power Components and Systems.2008, 36(5):513-524.
    [125]Jatmiko W, Sekiyama K, Fukuda T. A PSO-based mobile robot for odor source localization in dynamic advection-diffusion with obstacles environment:Theory, simulation and measurement[J]. IEEE Computational Intelligence Magazine.2007,2(2):37-51.
    [126]Zhao L, Chen J X. Soccer robot strategy based on chameleon PSO[J]. Journal of Harbin Institute of Technology (New Series).2008,15(SUPPL.2):145-147.
    [127]刘钊,陈建勋.基于粒子群算法的足球机器人动作选择研究[J].武汉科技大学学报(自然科学版).2006,29(01):83-85.
    [128]刘自发,葛少云,余贻鑫.一种混合智能算法在配电网络重构中的应用[J].中国电机工程学报.2005,25(15):73-78.
    [129]Jeyakumar D N, Jayabarathi T, Raghunathan T. Particle swarm optimization for various types of economic dispatch problems[J]. International Journal of Electrical Power and Energy Systems. 2006,28(1):36-42.
    [130]肖健梅,李军军,王锡淮.求解车辆路径问题的改进微粒群优化算法[J].计算机集成制造系统CIMS.2005,11(04):577-581.
    [131]Peng Y. Research on vehicle routing problem with stochastic demand and PSO-DP algorithm with Inver-over operator[J]. Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice.2008,28(10):76-81.
    [132]原萍,王光兴,张洋洋.求解通信优化问题的一种微粒群优化方法[J].东北大学学报(自然科学版).2004,25(10):934-937.
    [133]苏成利,徐志成,王树青.PSO算法在非线性系统模型参数估计中的应用[J].信息与控制.2005,34(01):123-125.
    [134]王雅洁,钱侃,王战江,et al. PSO改进算法在机械优化设计中的实现[J].装备制造技术.2006,(05):32-33,45.
    [135]Dos Coelho L S, Mariani V C. An efficient particle swarm optimization approach based on cultural algorithm applied to mechanical design[C]. Vancouver, BC, Canada,2006.
    [136]Yin P Y, Yu S S, Wang P-P, et al. A hybrid particle swarm optimization algorithm for optimal task assignment in distributed systems[J]. Computer Standards and Interfaces.2006,28(4):441-450.
    [137]Mandal K K, Basu M, Chakraborty N. Particle swarm optimization technique based short-term hydrothermal scheduling[J]. Applied Soft Computing Journal.2008,8(4):1392-1399.
    [138]Lopez P R, Gonzalez M G, Reyes N R, et al. Optimization of biomass fuelled systems for distributed power generation using Particle Swarm Optimization[J]. Electric Power Systems Research.2008, 78(8):1448-1455.
    [139]Montalvo I, Izquierdo J, Perez R, et al. Particle Swarm Optimization applied to the design of water supply systems[J]. Computers and Mathematics with Applications.2008,56(3):769-776.
    [140]Hota P K, Barisal A K, Chakrabarti R. An improved PSO technique for short-term optimal hydrothermal scheduling[J]. Electric Power Systems Research.2009,79(7):1047-1053.
    [141]Liu Y, Ye C M. Improved PSO algorithm for flow shop scheduling problem with fuzzy delivery time[J]. Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology.2009, 41(1):145-148.
    [142]Zheng X W, Liu H. A study on multidisciplinary collaborative optimisation based on an improved PSO[J]. International Journal of Computer Applications in Technology.2009,36(3-4):162-171.
    [143]Kennedy J, Eberhart R. Particle swarm optimization[C]. Modified particle swarm optimizer, Piscataway, NJ, USA,1995.
    [144]Shi Y, Eberhart R. A modified particle swarm optimizer[C]. Proceedings of IEEE International Conference on Evolutionary Computation, Anchorage, Alaska,1998.
    [145]Shi Y, Eberhart R C. Parameter selection in particle swarm optimization[C]. Evolutionary Programming Ⅶ:Proc. EP 98, New York,1998.
    [146]Kennedy J, Eberhart R C. Discrete binary version of the particle swarm algorithm[C]. Orlando, FL, USA,1997.
    [147]高尚,杨静宇.群智能算法及其应用[M].中国水利水电出版社,2006.
    [148]刘建华.粒子群算法的基本理论及其改进[D].长沙:中南大学,2009.
    [149]Kennedy J, Eberhart R C. Swarm Intelligence[M]. San Francisco:Morgan Kaufmann division of Academic Press,2001.
    [150]Shi Y, Eberhart R C. Empirical study of particle swarm optimization[C]. Proceedings of the Congress on Evolutionary Computation, Piscataway,1999.
    [151]Suganthan P N. Particle swarm optimizer with neighborhood operator[C]. Proceedings of the IEEE Congress on Evolutionary Computation, Piscataway, NJ,1999.
    [152]Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE Transactions on Evolutionary Computation. 2004,8(3):240-255.
    [153]冯翔,陈国龙,郭文忠.粒子群优化算法中加速因子的设置与试验分析[J].集美大学学报(自然科学版).2006,11(02):146-151.
    [154]Angeline P J. Using selection to improve particle swarm optimization[C]. The 1999 Congress on Evolutionary Computation, Piscataway, NJ,1999.
    [155]Van den Bergh F. An analysis of particle swarm optimizers[D]. South Africa:University of Pretoria, 2002.
    [156]Lewbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimizer with breeding and subpopulations[C]. Third Genetic and Evolutionary Computation Conference, Piscataway, NJ, 2001.
    [157]van den Bergh F, Engelbrecht A P. Anew locally convergent particle swarm optimizer [C]. Proceedings of IEEE International Conference on Systems Man, and Cybernetics, Man and Cybernetics,2002.
    [158]Shi Y, Krohling R A. Co-evolutionary particle swarm optimization to solve min-max problems[C]. The 2002 Congress on Evolutionary Computation, Piscataway, NJ,2002.
    [159]Baskar S, Suganthan P N. A novel concurrent particle swarm optimization[C]. Proceedings of the 2004 Congress on Evolutionary Computation, Piscataway, NJ,2004.
    [160]Kennedy J. Small words and mega-minds:effects of neighborhood topology on particle swarm performance[C]. Proceedings of IEEE Congress on Evolutionary Computation (CEC 1999), Piscataway,1999.
    [161]Higashi N, Iba H. Particle swarm optimization with gaussian mutation[C]. The 2003 Congress on Evolutionary Computation, Piscataway, NJ,2003.
    [162]Wang X, Li J. Hybrid particle swarm optimization with simulated annealing[C]. The 3rd International Conference on Machine Learning and Cybernetics, Piscataway, NJ,2002.
    [163]Yoshida H, Kawata K, Fukuyama Y. A particle swarm optimization for reactive power and voltage control considering voltage security assessment [J]. IEEE Transactions on System.2000, 15(4):1232-1239.
    [164]Yang S, Wang M, Jiao L. A quantum particle swarm optimization[C]. The 2004 Congress on Evolutionary Computation, Piscataway, NJ,2004.
    [165]Xie X, Zhang W, Yang Z. Adaptive particle swarm optimization on individual level[C]. International Conference on Signal Processing, Piscataway, NJ,1998.
    [166]Eberhart R C, Shi Y. Comparision between Genetic Algorithm and Particle Swarm Optimization. Lecture Notes in Computer Science(Evolutionary Programming Ⅶ). In. Berlin:Springer Press; 1998.
    [167]雷开友.粒子群算法及其应用研究[D].重庆:西南大学,2006.
    [168]纪震,廖惠连,吴青华.粒子群算法及其应用[M].北京:科学出版社,2009.
    [169]李宁.粒子群优化算法的理论分析与应用研究[D].武汉:华中科技大学,2006.
    [170]叶江明.电厂锅炉原理及设备(第二版)[D].北京:’中国电力出版社,2007.
    [171]陈凯华,张红云.运用全质量管理方法规范锅炉启动操作[J].山西建筑.2004,30(03):71-72.
    [172]钟友谊.电厂锅炉启动操作法的改进[J].冶金动力.2002,(06):41-43,52.
    [173]丁崇功.工业锅炉设备[M].北京:机械工业出版社,2005.
    [174]王乃华,李树海,张明.锅炉设备与运行[M].北京:中国电力出版社,2008.
    [175]秦裕琨.燃油燃气锅炉实用技术[M].北京:中国电力出版社,2001.
    [176]金哲男.热水锅炉启动停运操作程序浅析[J].应用能源技术.2003,(02):23-24.
    [177]李军.小议如何优化汽轮机的启动与停运[J].黑龙江科技信息.2007,(12):17-17.
    [178]刘佳平.汽轮机的中压缸启动[J].江西电力职业技术学院学报.2003,16(02):4-5.
    [179]严俊杰,黄锦涛,张凯,等.发电厂热力系统及设备[M].西安:西安交通大学出版社,2003.
    [180]史月涛,丁兴武,盖永光.汽轮机设备与运行[M].北京:中国电力出版社,2008.
    [181]朱起煌,龙胜祥,白振瑞.开发中国的天然气市场:能源政策的挑战[M].北京:地质出版社,2005.
    [182]张德义.关于中国能源形势的思考[J].当代石油石化.2008,16(02):1-8.
    [183]Hansen J, Sato M, Ruedy R, et al. Global temperature Change[C]. Proceedings of the National Academy of Sciences of the United States of America,2006.
    [184]朱志媛.我国面临的能源问题及对策[J].中国电力教育.2007,(06):49-51.
    [185]保尔森.当美国遭遇能源与环境挑战[J].中国石油石化.2008,(08):16-17.
    [186]中美如何应对能源和环境挑战.华夏时报,2008.
    [187]中华人民共和国国家统计局.中国统计年鉴(2001~2007)[M].北京:中国统计出版社,2001-2007.
    [188]张路.我国石油工业环境保护的行政手段[J].中国科技财富.2008,(11):121.
    [189]王军民,骆广生,朱慎林.NO_x对大气的污染与燃油的脱氮技术[J].环境保护.1997,(02):12-14.
    [190]Richter A, Burrows J P, Nuss H, et al. Increase in tropospheric nitrogen dioxide over China observed from space[J]. Nature.2005,437(7055):129-132.
    [191]张远航,邵可声,唐孝炎,等.中国城市光化学烟雾污染研究[J].北京大学学报(自然科学版).1998,34(Z1):392-400.
    [192]陈罕立,王金南.关于我国NO_x排放总量控制的探讨[J].环境科学研究.2005,18(05):107-110.
    [193]唐孝炎,张远航,邵敏.大气环境化学[M].北京:高等教育出版社,2006.
    [194]周维,王雪松,张远航,等.我国NO_x污染状况与环境效应及综合控制策略[J].北京大学学报(自然科学版).2008,44(02):323-330.
    [195]Intergovernmental Panel on Climate Change(IPCC).Climate Change 2007:The Physical Science Basis[M]. Cambridge:Cambridge University Press,2007.
    [196]Intergovernmental Panel on Climate Change(IPCC). Climate Change 2007:Working Group Ⅱ Report Impacts, Adaptation and Vulnerability[M]. Cambridge:Cambridge University Press,2007.
    [197]Intergovernmental Panel on Climate Change(IPCC). Climate Change 2007:Working Group Ⅲ Report Mitigation of Climate Change[M]. Cambridge:Cambridge University Press,2007.
    [198]何建坤,刘滨.在可持续发展框架下应对气候变化的挑战[J].环境保护.2005,(02):46-49.
    [199]王淑兰,柴发合,张远航,等.成都市大气颗粒物污染特征及其来源分析[J].地理科学.2004,24(04):488-492.
    [200]高磊.浅议环境成本[J].科技创新导报.2008,(04):113-113,115.
    [201]魏学好,周浩.中国火力发电行业减排污染物的环境价值标准估算[J].环境科学研究.2003,16(01):53-56.
    [202]刘季江.电力市场中火力发电厂计及脱硫成本的电价预测[R].保定:华北电力大学,2006.
    [203]陆华,周浩.发电厂的环境成本分析[J].环境保护.2004,(04):51-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700