铁电薄膜移相器的设计与制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相控阵天线用铁电薄膜移相器具有速度快、驱动功率小、功率容量大、可靠性好、抗辐射性好及成本低等优点,是目前各国军事机构和科研机构研究的热点之一。本文研究了铁电薄膜移相器平面波导( CPW )结构的传输特性、移相器用Ba_(1-x-y)Pb_xSr_yTiO_3(BPST)材料的制备与表征以及移相器单元的设计和制备工艺等。
     根据准静态场法和全波分析法分别得出了CPW结构特征阻抗解。利用MATLAB软件分析了模型结构参数对特征阻抗的影响,利用HFSS软件对CPW结构和电容加载CPW结构进行了模拟仿真和参数优化。给出了移相器单元设计的优化参数:信号线宽度40μm~60μm;缝隙宽度10μm~20μm;BST薄膜厚度0.5μm~1μm;铂电极厚度为4.6μm以上,金电极厚度为2.2μm以上;加载叉指电极的叉指宽度2μm ~5μm,叉指间距2μm ~5μm,叉指长度35μm。
     设计了BPST材料体系,利用固态烧结工艺制备了BPST靶材,利用射频磁控溅射法制备了BPST薄膜。通过对薄膜样品的XRD分析和介电性能测试,得出BST薄膜制备的优化工艺参数:衬底温度为600℃,溅射气压为2Pa,溅射气氛为O2:Ar =1:5,此条件下制备的BST薄膜介电常数为455,介电损耗为0.0143,调谐率为34%,FOM因子为23.77;得出BPST薄膜制备的优化工艺参数为:衬底温度为400℃,溅射气压为2Pa,溅射气氛为O2:Ar =1:5,此条件下制备的BPST薄膜介电常数为520,介电损耗为0.017,调谐率为48%,FOM因子为28.24。由以上结果得出,Pb掺杂改良了BST薄膜材料的介电性能。
     利用半导体工艺制备了相应的铁电薄膜移相器单元。采用剥离工艺制备了移相器单元和叉指阵列单元电极,电极图形最小线宽为1.5μm。
The ferroelectric films based shifter for phase array antenna using has attracted much more attention in recent years because it has merits such as rapid scanning, small drive power, high power capability, anti-radiation, high reliability and low cost. In this dissertation, the transmission characteristics of coplanar waveguide structure of ferroelectric films based shifter, preparation and characterization of Ba_(1-x-y)Pb_xSr_yTiO_3 materials for phase shifter using, design and fabrication of phase shifter unit are discussed.
     According to quasi-static field method and the full-wave analysis method the characteristics impendence solution of CPW structure are derived separately. The effection of structure parameters on device impendence is analysed by using MATLAB software. The simulation and optimization of CPW and CPW with capacitance loaded model parameters are implemented using HFSS software. The optimization parameters of phase shifter model are derived as the width of signal line is 40μm to 60μm, the width of slot is 10μm to 20μm, the thickness of BST film is 0.5μm to 1μm, the thickness of Pt electrode is over 4.6μm, the thickness of Au electrode is over 2.2μm, the width of interdigital electrode as capacitance loaded is 2μm to 5μm, the width between interdigital electrode is 2μm to 5μm, the length of interdigital electrode is 35μm and the best substrate material is MgO, LaAlO3 and high resistance Si.
     The series of BPST materials are designed. BPST ceramic targets are prepared by solid state sintering method. BPST films are prepared by RF-magnetron sputtering. According to the result analysed by XRD and dielectric properties test, the optimization parameters of RF-magnetron sputtering preparation technology for BST films are derived as the temperature of substrate is 600℃, the spurting pressure is 2 Pa and the sputtering atmosphere is O2:Ar as 1:5. The dielectric constant of BST film prepared in technology above is 455, the dielectric loss is 0.0143, the tunability is 34%, the FOM is 23.77. The optimization parameters of preparation technology for BPST film are derived as the temperature of substrate is 400℃, the spurting pressure is 2 Pa and the sputtering atmosphere is O2:Ar as 1:5. The dielectric constant of BPST film prepared in technology above is 520, the dielectric loss is 0.017, the tunability is 48%, the FOM is 28.24. Based on the results above it is indicated that Pb doping improves the performance of BST film.
     The ferroelectric films based phase shifter unit is fabricated using semiconductor technology. The phase shifter units and interdigital electrode array are fabricated by lift-off technology and the smallest width of electrode is 1.5μm.
引文
[1] Mueller C H, Romanofsky R R, Miranda F A. Ferroelectric thin film and broadband satellite systems. Potentials, 2001, 20(2): 36-39
    [2] Miranda F A, Subramanyam G, Van Keuls F W, et al. Design and development of ferroelectric tunable microwave components for Kuand K-band satellite communication systems. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(7) :1181-1189
    [3] Keis V N, Kozyrev A B, Khazov M L, et al. 20 GHz tunable filter based on ferroelectric (Ba,Sr)TiO3 film varactors. Electronics Letters, 1998, 34(11):1107-1109
    [4] Hu W F, Zhang D, Lancaster M J, et al. Investigation of ferroelectric thick-film varactors for microwave phase shifters. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(2):418-424
    [5] Kim W, Iskander M F, Palmer W D. An integrated phased array antenna design using ferroelectric materials and the continuous transverse stub technology. IEEE Transactions on Antennas and Propagation, 2006, 54(11):3095-3105
    [6] Vendik O G. Insertion loss in reflection-type microwave phase shifter based on ferroelectric tunable capacitor. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(2): 425-429
    [7]钟维烈.铁电体物理学.第1版.北京:科学出版社, 1996: 7-8, 72-74, 330-331
    [8] Louca D, Roder H, Sarrao J L, et al. The local atomic structure and phonons in Ba0.5Sr0. 5TiO3. J Phys. Chem. Solids., 2000, 61: 239-294
    [9] Johnson K M. Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices. J Appl. Phys., 1962, 33: 2826-2831
    [10] Diamond H. Variation of permittivity with electric field in perovskite-like ferroelectrics. J. Appl. Phys., 1961, 32(5):909-915
    [11] Gevorgian S S, Kollberg E L. Do we really need ferroelectrics in paraelectric phase only in electrically controlled microwave devices. IEEE Transaction on microwave theory and techniques, 2001, 49: 2117-2124
    [12] Alexandru H V, Berbecaru C, Stanculescu F, et al. Ferroelectric solid solutions (Ba,Sr)TiO3 for microwave applications. Materials Science and Engineering B, 2005, 118(1-3): 92-96
    [13] Zhang Y Y, Wang G S, Zeng T, et al. Electric field-dependent dielectric properties and high tunability of porous Ba0.5Sr0.5TiO3 Ceramics. Journal of the American Ceramic Society, 2007, 90(4): 1327-1330
    [14] Lemanov V V, Smirnova E P, Syrnikov P P, et al. Phase transitions and glasslike behavior in Sr1-xBaxTiO3. Phys. Rev. B, 1996, 54(5):3151-3157
    [15] Iskander M F, Zhang Z J, Yun Z Q, et al. New phase shifters and phased antenna array designs based on ferroelectric materials and CTS technologies. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(12):2547-2553
    [16] Lee S Y, Tseng T Y. Electrical and dielectric behavior of MgO doped Ba0.7Sr0.3TiO3 thin films on Al2O3 substrate. Applied Physics Letters, 2002, 80(10): 1797~1799
    [17] Chang D C, Hung C I, Yao J H. The development of a compact point-defense phased array antenna. Antennas and Propagation Society International Symposium, 1993, 1: 230-233
    [18] Cherepanov A S, Guskov A B, Yavon Y P, et al. Innovative integrated ferrite phased array technologies for EHF radar and communication applications. IEEE International Symposium on Phased Array Systems and Technology, 1996:74-77
    [19] Takasu H, Sasaki F, Kawano M, et al. Ka-band low loss and high power handling GaAs PIN diode MMIC phase shifter for reflected-type phased array systems. IEEE MTT-S International Microwave Symposium Digest, 1999, 2: 467-470
    [20] Rao J B L, Trunk G V, Patel D P. Two low-cost phased arrays. IEEE Aerospace and Electronic Systems Magazine, 1997, 12(6): 39-44
    [21] Teo P T, Jose K A, Gan Y B, et al. Adaptive ferroelectric phase shifters for phased array antenna. The 1999 Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications, 1999: 182-187
    [22] Flaviis F D, Alexopoulos N G. Planar Microwave Integrated Phase-Shifter Design with High Purity Ferroelectric Material. IEEE, 1997, 45(6):963-969
    [23] Kozyrev A, Osadchy V, Pavlov A, et al. Application of ferroelectrics in phase shifter design. IEEE MTT-S International Microwave Symposium Digest, 2000,3:1355-1358
    [24] Romanofsky R R, Bernhard J T, Keuls F W V, et al. K-band phased array antennas based on Ba0.60Sr0.40TiO3 thin-film phase shifters.IEEE Transactions on Microwave Theory and Techniques, 2000, 48(12): 2504-2510
    [25] Acikel B, Taylor T R, Hansen P J, et al. A new high performance phase shifter using BaxSr1-xTiO3 thin films. IEEE Microwave Compon Lett, 2002, 12(7):237-239
    [26] Kim W, Iskander M, Tanaka C. Low cost phase shifters and integrated phased antenna arrays designs based on the ferroelectric materials technology. IEEE Antennas and Propagation Society International Symposium, 2004, 4: 3964-3967
    [27] Yu A, Yang C R, Chen H W, et al. Modified principle of distributed ferroelectric phase shifter considering the influence of interconnecting lines. Microwave and optical technology letters, 2008, 50(3):748-751
    [28] Fu C L, Pan F S, Chen H W, et al. Coplanar phase shifters based on ferroelectric thin films. Int J Infrared Milli Waves, 2007, 28:229-235
    [29] Yang W M, Yu J, He L X, et al. Crystallization and electrical properties of (Ba0.4Pb0.3)Sr0.3TiO3 thin film by pulsed laser deposition. Journal of Wuhan University of Technology (Materials Science Edition), 2007, 22(4): 634-637
    [30] Yu J, Yang W M, Zhou S, et al. Effect of RF-magnetron sputtering parameters on structure and properties of Ba0.7Sr0.3TiO3 thin films.电子器件, 2008, 31(1): 216-219
    [31] Wen C P. Coplanar waveguide: A surface strip transmission line suitable for non-reciprocal gyromagnetic device application. IEEE Trans., 1969, 17:1087-1090
    [32]吴敏.复变函数.第1版.广州:华南理工出版社, 2004: 127-128
    [33]闫润卿,李英惠.微波技术基础.第3版.北京:北京理工大学出版社, 2004: 169-171
    [34] Wheeler H A. Transmission line properties of parallel wide strips by conformal mapping approximation. IEEE Trans, 1964, 12:280-289
    [35] Veyres C, Hanna V F. Extension of the application of conformal mapping techniques to coplanar lines with finite dimensions. Int. J. Electron., 1980, 48:47-56
    [36] Hasnain G. Dispersion of picoseconds pulses in coplanar transmission lines. IEEE Trans., 1986, 34:738-741
    [37] Pintzos S G. Full-Wave spectral domain analysis of coplanar strips. IEEE Trans., 1991, 39:239-246
    [38] Fukuoka Y. Analysis of slow-wave coplanar waveguide for monolithic integrated circuits. IEEE Trans., 1983, 31:567~573
    [39] Kiazawa T, Hayashi Y. Quasistatic characteristics of a coplanar waveguide with thick metal coating. Proc. IEE, Part H. 1986, 133:18-20
    [40] Welch J D, Pratt H J. Losses in microstrip transmission systems for integrated microwave circuits. NEREM Rec., 1966, 8:100-101
    [41] Gupta K C, Garg R, Bahl I, et al. Microstrip lines and slotlines. 2nd Ed. Boston:Artech House Inc. 1996:83-85
    [42] Ghione G. A CAD-Oriented analytical model for the losses of general asymmetric coplanar lines in hybrid and monolithic MICs. IEEE Trans., 1993, 41:1499-1510
    [43] Erker E G, Nagra A S, Liu Y, et al. Monolithic Ka-band phase shifter using voltage tunable BaSrTiO3 parallel plate capacitors. IEEE Microwave guided wave let, 2000, 10(1):10-12
    [44] Nagra A S, York R A. Distributed analog phase shifters with low insertion loss. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(9): 1705-1711
    [45] Igreja R, Dias C J. Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure. Sensors and Actuators A, 2004, 112: 291-301
    [46] Wang Y, Chong N, Cheng Y L, et al. Dependence of capacitance on electrode configuration for ferroelectric films with interdigital electrodes. Microelectronic Engineering, 2003, 66: 880-886
    [47] Yoon H, Varadan V K. Design and performance of bilateral interdigital coplanar waveguide phase shifter for rf communication applications. Journal of Microlithography, Microfabrication, and Microsystems, 2005, 3(3): 459-466
    [48]王正林,龚纯,何倩.精通MATLAB科学计算.第1版.北京:电子工业出版社. 2007:1-3
    [49] Lines M E, Glass A M. Principles and applications of ferroelectrics and related materials. Oxford: Clarendon, 1977: 248
    [50]杨卫明.铁电移相材料Ba1-x-yPbxSryTiO3的制备与性能研究.博士学位论文,华中科技大学, 2008
    [51] Regnery S, Ding Y, Ehrhart P, et al. Metal-organic chemical-vapor deposition of (Ba,Sr)TiO3: Nucleation and growth on Pt-(111). J. Appl. Phys., 2005, 98(8): 084904 -1-084904-11
    [52] Scarisoreanu N, Filipescu M, Ioachim A, et al. BST thin films obtained by PLD for applications in electronics. Appl. Surf. Sci., 2007, 253(19): 8254-8257
    [53] Fitsilis F, Regnery S, Ehrhart P, et al. BST thin films grown in a multiwafer MOCVD reactor. J. Euro. Ceram. Soc., 2001, 21(10-11):1547-1551
    [54] Jha G C, Ray S K, Manna I. Effect of deposition temperature on the microstructure and electrical properties of Ba0.8Sr0.2TiO3 thin films deposited by radio-frequency magnetron sputtering. Thin Solid Films, 2008, 516(10):3416-3421
    [55]廖承恩.微波技术基础.第1版.西安:西安电子科技大学出版社,1999:16-22
    [56] Lu C J, Bendersky L A, Chang K, et al. Dissociation and evolution of threading dislocations in epitaxial Ba0.3Sr0.7TiO3 thin films grown on (001) LaAlO3 Materials. Journal of Applied Physics, 2003, 93(1):512-520
    [57] Chen C L, Shen J, Chen S Y, et al. Epitaxial growth of dielectric Ba0.6Sr0.4TiO3 thin film on MgO for room temperature microwave phase shifters. Applied Physics Letters, 2001, 78(5): 652-654
    [58] Wang Y, Liu B T, Wei F, et al. Fabrication and electrical properties of (111) textured Ba0.6Sr0.4TiO3 film on platinized Si substrate. Applied Physics Letters, 2007, 90: 90-92
    [59] Minteer S D. Microfluidic Techniques review and protocols. 1st Ed. Totowa:Humana Press. 2006:27-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700