负载金属催化剂的新制备方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
负载金属催化剂由于其原子利用率高、催化性能优异等特性广泛应用于石油化工、精细化工和环境催化等领域。负载金属催化剂通常由浸渍法和离子交换法等传统方法制得,并已应用于工业化生产。但这些方法都存在制备过程复杂、影响因素较多和重复性差等缺点,严重影响催化剂的催化性能。本论文的目的是采用新方法制备负载金属催化剂,以期获得高性能的负载金属催化剂,具有重要意义。
     本论文采用了两种负载金属催化剂制备新方法,第一种是脉冲激光沉积法,目前只有法国Rousset课题组和美国Brenner课题组从事这方面的研究,而我们是第三个从事脉冲激光沉积法制备负载纳米金属催化剂的课题组。脉冲激光沉积法是采用脉冲激光激发金属使之生成等离子体,等离子体再定向沉积到载体表面制得负载金属催化剂。该方法是物理制备法,由金属原子直接负载到载体表面,中间无化学反应,具有一步完成、操作简便和过程绿色化等特点。
     第二种是载体直接吸附可溶性纳米颗粒制备负载金属催化剂,该方法是目前国际上负载催化剂制备的研究新热点,可以制得金属颗粒小于5nm,高度分散的负载金属催化剂,从而大幅度提高催化剂的催化性能。载体直接吸附可溶性纳米颗粒是采用金属有机化合物(如Pd_2(dba)_3)在还原剂(如氢气)下分解,制得溶剂稳定的可溶性纳米金属颗粒,再通过载体直接吸附,将其吸附负载到载体表面制得负载金属催化剂。该制备方法制备工艺简单,容易操作,制各过程中影响催化剂性质及催化性能的因素少,催化剂制备重复性好,制备过程很少有污染,溶剂可重复利用。
     本论文采用脉冲激光沉积法制备Pt/Al_2O_3催化剂和一系列不同载体负载的Pt,Pd催化剂;采用载体直接吸附可溶性纳米颗粒制备Pd/Al_2O_3和Pd/C催化剂;采用XRD、TEM、ICP和XPS等表征手段表征了这两种新方法制得的负载金属催化剂的晶态结构、表面形态、金属负载量及电子状态等物理化学性质。以邻氯硝基苯催化加氢合成邻氯苯胺反应为探针反应测试脉冲激光沉积法制备的负载Pt,Pd催化剂的催化性能;分别以Suzuki反应和Heck反应为探针反应测试载体直接吸附可溶性纳米颗粒制备的Pd/Al_2O_3和Pd/C催化剂的催化性能。研究结果如下:
     1.催化剂表征结果表明,脉冲激光沉积法制备条件载体温度、沉积池压力和激光电压对Pt/Al_2O_3催化剂的Pt颗粒度、分散度及负载量有很大影响。邻氯硝基苯催化加氢结果表明,激光制备条件对Pt/Al_2O_3催化剂催化邻氯硝基苯加氢性能也有很大的影响。Pt/Al_2O_3催化剂催化活性随着载体温度升高而降低,随沉积池压力和激光电压增大而降低;邻氯苯胺选择性随载体温度升高而增大,随沉积池压力增大而增大,但随激光电压增大而降低。较佳的激光制备条件为:激光电压260V,沉积池压力300Pa,载体温度600℃。在此条件下制得的Pt/Al_2O_3催化剂催化邻氯硝基苯加氢反应,邻氯硝基苯的转化率达到99.8%,邻氯苯胺的选择性达到99.4%,表现出较高的加氢性能和抑制脱卤性能。
     2.脉冲激光沉积法制备了一系列不同载体负载的Pt,Pd催化剂。催化剂表征结果表明,金属颗粒按CNTs<γ-Al_2O_3<SiO_2依次增大,金属分散度越来越差。负载Pt催化剂活性组分Pt与载体之间的电子作用可以忽略,而负载Pd催化剂活性组分Pd与载体之间有较强的电子作用,并且按Pd/CNTs>Pd/Al_2O_3>Pd/SiO_2依次降低。邻氯硝基苯催化加氢结果表明,CNTs负载的金属催化剂相比γ-Al_2O_3和SiO_2负载的金属催化剂在催化活性与选择性方面都表现出了很好的优越性。对于负载Pt催化剂,载体对其催化性能的影响可以从几何效应和载体结构及性质两方面得到解释。对于负载Pd催化剂,载体对其催化性能的影响可以从几何效应、电子效应和载体结构及性质三方面得到解释。由于脉冲激光沉积法制备的负载Pt,Pd催化剂的活性组分主要负载在载体的外表面,故这一系列催化剂可以很好地抑制加氢产物邻氯苯胺的深度加氢脱氯,提高邻氯苯胺的选择性。
     3.催化剂表征结果表明,载体直接吸附可溶性纳米颗粒制得的P&Al_2O_3催化剂Pd金属颗粒以零价态均匀地负载在载体表面,且分散度高,粒径在3-8 nm之间;活性组分Pd与载体γ-Al_2O_3存在电子作用,电子由γ-Al_2O_3的O向Pd转移。SuZuki反应结果表明,载体直接吸附可溶性纳米颗粒制得的Pd/Al_2O_3催化剂能较好地催化溴苯与苯硼酸的Suzuki反应;最优反应条件为:碱K_2CO_3、DMF/H_2O溶剂的体积比例7/3、DMF/H_2O溶剂回流(110℃)和Pd负载量2.0 wt%;在此反应条件下,30min内溴苯完全转化,偶联产物联苯的产率达到99%;Pd/Al_2O_3催化剂也能较好地催化溴代芳烃与苯硼酸的Suzuki反应,对位吸电子基加快反应速率,对位供电子基减慢反应速率。
     4.催化剂表征结果表明,载体直接吸附可溶性纳米颗制得的Pd/C催化剂Pd金属颗粒以零价态均匀地负载在载体表面,且分散度好,粒径在3-8nm之间;Pd/C催化剂Pd 3d_(5/2)和Pd 3d_(3/2)电子结合能都增大,电子从Pd向活性炭转移。Heck反应结果表明,载体直接吸附可溶性纳米颗粒制备的Pd/C催化剂可以较好地催化碘苯及对位有吸电子基的溴代芳烃与丙烯酸甲酯的Heck反应;最优反应条件为:碱K_2CO_3、溶剂DMF和反应温度120℃;在此反应条件下,120min内碘苯完全转化,偶联产物的产率达到99%;Pd/C催化剂对对位有供电子基的溴代芳烃和氯代芳烃与丙烯酸甲酯的Heck反应催化效果较差;载体直接吸附可溶性纳米颗粒制备的Pd/C催化剂具有较好的重复使用性能,反应3次,催化剂活性没有明显下降,偶联产物产率仍在98%以上,比传统的商用Pd/C催化剂具有更好的稳定性。
     总之,通过本项目研究表明,脉冲激光沉积法制备的负载Pt,Pd催化剂具有很高的催化邻氯硝基苯加氢性能和抑制脱卤性能;载体直接吸附可溶性纳米颗粒制备的Pd/Al_2O_3催化剂对溴苯的Suzuki反应具有很高的催化性能;载体直接吸附可溶性纳米颗粒制备的Pd/C催化剂对碘苯与有吸电子基的溴代芳烃的Heck反应具有很高的催化性能。脉冲激光沉积法和载体直接吸附可溶性纳米颗粒都是制备负载金属催化剂的新型方法,制备过程简单,影响因素少,并且非常绿色化;选择恰当的工艺参数可获得定量负载及颗粒粒径可控的负载金属催化剂;采用这两种新方法可制备金属颗粒小、高分散度、高催化性能的其他单组分或多组分负载金属催化剂;采用这两种方法制备的负载金属催化剂,可应用到其他多相催化反应,获得高转化率、高选择性的目标产物。同时,这两种制备负载金属催化剂的新方法也具有一定的工业化应用前景。
Supported metal catalysts are extensively applied in petrochemical industry,fine chemistry and environmental catalysis owing to its high metal utilization ratio and good catalytic properties.Supported metal catalysts are usually prepared by impregnation and chemical reduction,and have been found wide application in industry.However,these preparation methods have the drawbacks of complicated procedure,too many influence factors,poor reproducibility,which affecting the catalytic properties,companying with severe environmental pollution.This thesis tries to produce supported metal catalyst with better catalytic properties by novel preparation methods.
     In this thesis,two novel methods were used for preparation of supported metal catalysts,laser vaporization deposition(LVD) and soluble metal nanoparticles direct-adsorption.At present,only three research goups around the world,Rousset's,Brenne's and ours',are to be employed in Laser vaporization deposition.A pulsed laser was focused on the bulk metal and a plasma was formed;Afterward,the plasma was oriented and deposited onto the surface of the support and nucleated to form metallic clusters.Laser vaporization deposition is a physical method,which is a simple and green approach for preparation of supported metal catalysts with few affecting factors on the catalytic properties.
     Soluble metal nanoparticles direct-adsorption is also a simple and green approach for preparation of supported metal catalysts.Soluble metal nanoparticles were extensively studied around the world,currently.Supported metal catalyst with small particles(<5 nm) and high metal dispersion can be obtained by soluble metal nanoparticles direct-adsorption,exhibits good catalytic properties.The soluble metal nanoparticles were obtained by the decomposition of organometallic precursors such as Pd_2(dba)_3 using a reducing gas such as hydrogen gas in a solvent and stabilized by the solvent; Afterwards,the stable metal nanoparticles were adsorbed on the surface of support to produce the supported metal catalyst.There were few factors affecting the catalytic properties during the preparation process.
     In this thesis,Pt/Al_2O_3 catalyst and a series supported Pt,Pd catalyst were produced by laser vaporization deposition of bulk metals;Pd/Al_2O_3 and Pd/C catalysts were prepared by soluble metal nanoparticles direct-adsorption. The catalysts were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM),inductive coupled plasma emission spectrometer (ICP) and X-ray photoelectron spectroscopy(XPS).The liquid phase hydrogenation of o-chloronitrobenzene(o-CNB) was used to test the catalytic properties of the catalysts obtained by laser vaporization deposition;Suzuki reaction and Heck reaction were used to test the catalytic properties of Pd/Al_2O_3 and Pd/C catalysts obtained by soluble metal nanoparticles direct-adsorption,respectively.The results are listed as follows:
     1.The characterization results show,the support temperature,the pressure of chamber and the voltage of laser have an impact on the properties of the Pt/Al_2O_3 catalyst obtained by laser vaporization deposition.The hydrogenation results show,the catalytic activity decreases with the support temperature,the pressure of chamber and the voltage of laser.The selectivity to o-chloroaniline(o-CAN) increases with the support temperature,the pressure of chamber,but decrease with the voltage of laser.The catalyst prepared under 300 Pa,600℃and 260 V exhibits the best catalytic properties, obtaining o-CAN with 99.4%selectivity at a conversion level of 99.8%.
     2.The characterization results show,the supports have a significant influence on the metal dispersion,the particles size and the electronic state of metal.The metal particles on CNTs are smaller than that onγ-Al_2O_3 and SiO_2; The metal-support interaction for the Pt-based catalysts is negligible,but the metal-support interaction for the Pd-based interaction is in order Pd/CNTs>Pd/γ-Al_2O_3>Pd/SiO_2.The hydrogenation results show the superiority of CNTs versus the high surface areaγ-Al_2O_3 and SiO_2 in terms of the catalytic activity and the selectivity to o-CAN.The effect of the supports may be interpreted by geometric effect and the textures and properties of the supports for the Pt-based catalysts.However,the effect of the supports may be interpreted by geometric effect,electronic effect and the textures and properties of the supports for the Pd-based catalysts.In addition, hydrogenolysis of the C-C1 bond in o-CAN is well inhibited over supported Pt, Pd catalysts obtained by laser vaporization deposition due to the metal particles deposited on the outer surface of the supports.
     3.The characterization results of the Pd/Al_2O_3 catalyst obtained by soluble metal nanoparticles direct-adsorption show,the Pd particles are evenly distributed over the surface ofγ-Al_2O_3,and the size range is 3-8 nm;The Pd particles size is invariant between pre-supported and Pd/Al_2O_3 catalyst.The electron is transferred fromγ-Al_2O_3 to Pd.The best Suzuki reaction results was obtained with K_2CO_3 as base,DMF/H_2O volume ratio 7/3 as solvent, reflux,and Pd loading 2.0 wt%,which provided the highest brornobenzene conversion of 100%and the highest biphenyl yield of 99%in 30 min.The substrates with electron-withdrawing groups or electron-donating groups were all achieved in good yields.The coupling reactions of aryl bromides containing electron-withdrawing groups proceeded more efficiently than that of bromobenzene,while aryl bromides containing electron-donating groups needed a longer reaction time for completion.
     4.The characterization results of the Pd/C catalyst obtained by soluble metal nanoparticles direct-adsorption show,the Pd particles are evenly distributed over the surface of active carbon,and the size range is 3-8 nm;The Pd 3d_(5/2) and Pd 3d_(3/2) level binding energies of Pd/C catalyst are higher than that of bulk Pd metal.The electron is transferred from Pd to active carbon. The best Heck reaction results was obtained with K_2CO_3 as base,DMF as solvent and reaction temperature 120℃,which provided the highest iodobenzene conversion of 100%and the highest coupling yield of 99%in 120 min.The coupling reactions of iodobenzene and aryl bromides containing electron-withdrawing groups proceeded efficiently,while aryl bromides containing electron-donating groups and aryl chlorides hardly proceeded.The catalyst can be reused for 3 times,exhibiting better stability than commercial Pd/C catalyst.
     In conclusion,it is clear that supported Pt,Pd catalysts obtained laser vaporization deposition exhibit good catalytic properties on the hydrogenation of o-CAN;Pd/Al_2O_3 catalyst obtained by soluble metal nanoparticles direct-adsorption exhibits good catalytic properties on Suzuki reaction of aryl bromides;Pd/C catalyst obtained by soluble metal particles supported method exhibits good catalytic properties on Heck reaction of iodobenzene and aryl bromides containing electron-withdrawing groups.Laser vaporization deposition and soluble metal particles supported method are novel,simple and green approaches for preparation of supported metal catalyst;Under suitable conditions,supported metal catalysts with metal particles and loading controllable can be produced;Other single component or multicomponents supported metal catalysts also can be produced by the two novel methods; These supported metal catalysts obtained by the two novel methods can be potentially applied in several mutil-phase reactions to produce the target products with high conversion and selectivity.In addition,the two novel methods can be potentially applied at the industrial scale.
引文
[1]Dijkkamp D,Venkatesan T,Wu X D,et al.Preparation of Y-Ba-Cu-Oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material[J].Appl.Phys.Lett,1987,51(8):619-621.
    [2]Yong-Tae Shin,Seung-Woo Shin,et al.Pulsed laser deposition of a thin conjugated-polymer flim[J].Thin Solid Flims,2000,360:13-16.
    [3]Xin Ju Yang,Yong Xin Tang,et al.Pulsed laser deposition of aluminum tris-8-hydroxy quinine thin flims[J].Thin Solid Flims,2000,358:187-190.
    [4]Rousset J L,Cadrot A M,Cadete Santos Aires F J.et al.Study of bimetallic Pd-Pt clusters in both free and supported phases[J].Journal of Chemical Physics,1995,102(21):8574.
    [5]Brenner J R,Marshall,C L,Nieman,G C,Parks,E K,et al.Structural Characterization of Rhodium-Containing Hydrodesulfurization(HDS) Catalysts Derived from a Laser Vaporization Cluster Source[J].Journal of Catalysis,1997,166:294-305.
    [6]Arrii S,Morfin F,Renouprez A J,Rousset J L.Oxidation of CO on Gold Supported Catalysts Prepared by Laser Vaporization:Direct Evidence of Support Contribution [J].J.Am.Chem.Soc,2004,126:1199-1205.
    [7]Rossignol C,Arrii S,Morfin F,et al.Selective oxidation of CO over model gold based catalysts in the presence of H_2[J].Journal of Catalysis,2005,230:476-483.
    [8]Rousset J L,Aires F J,Cadete Santos,et al.CoMPaarative x-ray Photoemission Spectroscopy Study of Au,Ni,and AuNi Clusters Produced by Laser Vaporization of Bulk Metals[J].Journal of Physical Chemistry B,2000,104(23):5430-5435.
    [9]Rousset J L,Cadrot A M,Aires F S,et al.Preparation of bimetallic PtnPdm supported clusters with well-defined stoichiometry[J].Surface Review and Letters,1996,3(1):1171-1176.
    [10]Rousset J L,Khanra B C,Cadrot A M,et al.Investigations on supported Bimetallic Pd-Pt nano-structures[J].Surface Science,1996,352-354:583-587.
    [11]Rousset J L,Renouprez A,Cadrot A M.Ion-scattering study and Monte Carlo simulations of surface segregation in Pd-Pt nanoclusters obtained by laser vaporization of bulk alloys[J].Physical Review B,1998,58(1):2150-2156.
    [12]Renouprez A,Rousset J L,Cadrot A M,et al.Structure and catalytic activity of palladium-platinum aggregates obtained by laser vaporisation of bulk alloys[J].Journal of Alloys and Compounds,2001,328:50-56.
    [13]Gaudry M,Lerme J,Cottancin E,et al.Size and concentration effects in the optical properties of alloyed(AuxAg1-x)_n and core-shell(NixAg1-x)_n embedded clusters[J].European Physical Journal D,2001,16:201-204.
    [14]Wu X S,Cai H L,et al.Substrate and thickness effects on structure and transport properties of La_(2/3)Ca_(1/3)MnO_3 films[J].JAP,2004,95(11):7109-7111.
    [15]Ma Y Q,Song W H,et al.Effect of electric current on the charge-ordered state in La_(5/8)-yPryCa_(3/8)MnO_3[J].Phys.Rev.B,2004,70:54413-54419.
    [16]谈国太等.钙钛矿锰氧化物La1-xTexMnO_3(x=0.04,0.1)的两类磁电阻现象[J].物理学报,2005,54(1):379-383.
    [17]许兴中,杨建锋,李小年等.激光溅射法制备Pt/CNTs催化剂用于邻氯硝基苯的液相加氢反应[J].物理化学学报,2008,24(1):121-126.
    [18]郑启光.激光先进制造技术[M].武汉:华中科技出版社,2001.
    [19]Rousset J L,Stievano L,Cadete Santos Aires F J,et al.Hydrogenation of Tetralin in the Presence of Sulfur over r-A1.,O3 Supported Pt,Pd,and Pd-Pt Model Catalysts[J].Journal of Catalysis,2001,202:163-168.
    [20]江辉明,叶志清,曾明生.脉冲激光沉积(PLD)机理分析及其应用[J].江西师范大学学报(自然科学版),2005,29(1):53-57.
    [21]高国棉,陈长乐,王永仓等.脉冲激光沉积(PLD)技术及其应用研究[J].空军工程大学学报(自然科学版),2005,6(3):77-81.
    [22]何建廷,庄惠照,薛成山等.脉冲激光沉积法制备ZnO薄膜的研究进展[J].电子元件与材料,2006,25(5):9-12.
    [23]唐亚陆,杜泽民.脉冲激光沉积(PLD)原理及其应用[J].桂林电子工业学院学报,2006,26(1):24-27.
    [24]Schmidt G.Large clusters and colloids.Metals in the embryonic state[J].Chemical Reviews,1992,92(8):1709-1727.
    [25] Bradley J S. In cluster and Collids From Theory to Application[M]. New York:VHC, 1994.
    [26] Aiken J D, Finke R G. Polyoxoanion- and Tetrabutylammonium-Stabilized Rh(0)_n Nanoclusters: Unprecedented Nanocluster Catalytic Lifetime in Solution[J]. J.Am. Chem. Soc, 1999, 121(38): 8803-8810.
    [27] Aiken J D, R G Finke. A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis[J]. Journal of Molecular Catalysis A: Chemical, 1999,145(1-2): 1-44.
    [28] Widegren J A, Finke R G. A review of soluble transition-metal nanoclusters as arene hydrogenation catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2003191: 187-207.
    [29] Schmidt G, Chi L F. Metal Clusters and Colloids[J]. Advanced Materials, 1998,10(7): 515.
    [30] Besson C, Finney Eric E, Finke R G. Nanocluster Nucleation, Growth, and Then Agglomeration Kinetic and Mechanistic Studies: A More General, Four-Step Mechanism Involving Double Autocatalysis[J]. Chem. Mater, 2005, 17: 4925-4938.
    [31] Besson C, Finney E E, Finke R G A Mechanism for Transition-Metal Nanoparticle Self-Assembly[J]. J. Am. Chem. Soc, 2005,127: 8179-8184
    [32] Finke R G, Ozkar S. Molecular insights for how preferred oxoanions bind to and stabilize transition-metal nanoclusters: a tridentate, C_3 symmetry, lattice size-matching binding model[J]. Coordination Chemistry Reviews, 2004, 248 (1-2)135-146.
    [33] Widegren J A, Finke R G. A review of the problem of distinguishing true homogenous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions [J]. Journal of Molecular Catalysis A: Chemical, 2003, 198:317-341.
    [34] Mu X D, Meng J Q, Li Z C, Kou Y. Rhodium Nanoparticles Stabilized by Ionic Copolymers in Ionic Liquids: Long Lifetime Nanocluster Catalysts for Benzene Hydrogenation[J]. J. Am. Chem. Soc, 2005, 127(27): 9694.
    [35] Zhao C, Wang H Z, Yan N, et al. Ionic-liquid-like copolymer stabilized nanocatalysts in ionic liquid:Ⅱ.Rhodium-catalysted hydrogenation of arenas[J].Journal of Catalysis,2007,250:25-32.
    [36]邹鸣,牟新东,颜宁等.离子液体中离子型共聚高分子保护铂纳米粒子催化剂催化肉桂醛选择性加氢[J].催化学报,2007,28(5):389-391.
    [37]Xiao C X,Wang H Z,Mu X D,Kou Y.Ionic-liquid-like copolymer stabilized nanocatalysts in ionic liquids I.Platinum catalyzed selective hydrogenation of o-chloronitrobenzene[J].Journal of Catalysis,2007,250(1):25-32.
    [38]Ould Ely T,Pan C,Amiens C,et al.Nanoscale Bimetallic CoPt Particles Dispersed in Poly(vinylpyrrolidone):Synthesis from Organometallic Precursors and Characterization[J].J.Phys.Chem.B,2000,104(4):695-702.
    [39]Naoki T,Yukihide S,Toshiharu T,et al.Various Ligand-stabilized Metal Nanoclusters as Homogeneous and Heterogeneous Catalysts in the Liquid Phase[J].Applied Organometallic Chemistry,2001,15(3):178-196.
    [40]Ramirez E,Erades L,Philippot K,et al.Shape Control of Platinum Nanoparticles[J].Advanced Functional Materials,2007,17(13):2219-2228.
    [41]Homstein B J,Finke R G.Transition-Metal Nanocluster Catalysts:Scale-up Synthesis,Characterization,Storage Conditions,Stability,and Catalytic Activity before and after Storage of Polyoxoanion- and Tetrabutylammonium-Stabilized Ir(0)Nanoclusters[J].Chemistry of Materials,2003,15:899.
    [42](O|¨)zkar S,Finke R G.Iridium(0) Nanocluster,Acid-Assisted Catalysis of Neat Acetone Hydrogenation at Room Temperature:Exceptional Activity,Catalyst Lifetime,and Selectivity at Complete Conversion[J].J.Am.Chem.Soc,2005,127(13):4800-4808.
    [43]Scheen C W,Machado G,Dupont J,et al.Nanoscale Pt(0) Particles Prepared in Imidazolium Room Temperature Ionic Liquids:Synthesis from an Organometallic Precursor,Characterization,and Catalytic Properties in Hydrogenation Reactions[J].Inorganic Chemistry,2003 42(15):4738-4742.
    [44]徐克勋.精细有机化工原料及中间体手册[M].北京:化学工业出版社,1998.
    [45]蒋志斌,侯琳娜等.利用醇镁还原体系一步法制取对氯苯胺的研究[J].精细石油化工进展,2002,3(11):50-51.
    [46]姚蒙正,张若蘅.芳香族硝基化合物还原反应的若干进展[J].化工进展,1984,(4):19-25
    [47]Stutts K J,Scortichini C L,Repucci C M.Electrochemical reduction of nitroaromatics to anilines in basic media:effects of positional isomerism and cathode composition[J].Journal of Organometallic Chemistry,1989,54:3740-3744.
    [48]张胜帮,吴美宁,冯玲玲.电合成对氯苯胺[J].精细化工,2006,23(1):74-76.
    [49]Groggins P H.Unit Processes in Organic Synthesis,5th ed.,183.McGraw Hill book Company 1958.
    [50]Ertl G.,Knotzinger H,Weitkamp J,Handbook of Heterogeneous Catalysis[M],Wiley-VCH,Weinheim 1997.
    [51]叶惠仁.加氢合成对苯二胺的研究[J].辽宁化工,1993,(5):45-46.
    [52]Richard J G.Process for the manufacture of aromatic halogenoamino compounds [P]US:1498772,1975-03-03.
    [53]Bohm W,Wissner A.A process for the production of halogenated aromaticamines[P].GB:1191610,1970-05-13.
    [54]左东华,张志琨,崔作林.纳米镍在硝基苯加氢中催化性能的研究[J].分子催化,1995,9(4):298-302
    [55]Zhang Z K,Cui Z L,Chen K Z,et al.Thin-shell structure of nanometer particles [J].Mater.Characterization,2000,44(2):371-374.
    [56]Lee S P,Chen Y W.Nitrobenzene hydrogenation on Ni-P,Ni-B and Ni-P-B ultrafine materials[J].Journal of Molecular Catalysis:A Chemical,2000,152(1-2):213-223.
    [57]Yan X H,Sun J Q,Xu Y H,Yang J F.Liquid-phase hydrogenation of chloronitrobenzene to chloroaniline over Ni-Co-B amporphous alloy catalyst[J].Chinese Journal of Catalysis,2006,27(2):119-123.
    [58]严新焕,孙军庆,李波,吕翔,孙孟飞.Ni-Ce-P非晶态合金催化剂用于氯代硝基苯加氢制氯代苯胺究[J].催化学报,2006,27(2):178-182.
    [59]Yah X H,Sun J Q,Wang Y W,Yang J F.A Fe-promoted Ni-P amorphous alloy catalyst(Ni-Fe-P) for liquid phase hydrogenation of m- and p-chloronitrobenzene[J].Journal of Molecular Catalysis:A Chemical,2006,252(1-2):17-22.
    [60]Yang X L,Liu H F.Influence of metal ions on hydrogenation of o-chloronitrobenzene over platinum colloidal clusters[J].Appl.Catal,1997,164(1-2):197-203.
    [61]Tu W X,Liu H F,Tang Y,et al.The metal complex effect on theselective hydrogenation of m-and p-chloronitrobenzene over PVP-stabilized platinum colloidal catalysts[J],Journal of Molecular Catalysis:A Chemical,2000,159(1):115-120.
    [62]Liu M H,Yu W Y,Liu H F,et al.Selective hydrogenation of o-chloronitrobenzene over polymer-stabiilzed ruthenium colloidal catalysts[J].Journal of Molecular Catalysis:A Chemical,1999,138(2-3):295-303.
    [63]Yan X P,Liu M H,Liu H F,et al.Metal Complex effect on the hydrogenation of o-chloronitrobenzene over polymer-stabilized colloidal ruthenium clusters[J].Journal of Molecular Catalysis:A Chemical,2001,170(1-2):203-208.
    [64]Coq B,Tijani A,Figueras F.Particle size effect on the kinetics of p-chloronitrobenzene hydrogenation over platinum/alumina catalysts[J].Journal of Molecular Catalysis,1991,68(3):331-345.
    [65]Amina T,Bernard C,and Fran(?)ois F.Hydrogenation of para-chloronitrobenzene over supported ruthenium-based catalysts[J].Journal of Molecular Catalysis,1991,76(2):255-266.
    [66]Han X X,Zhou R X,Lai G H,et al.Effect of transition metal(Cr,Mn,Fe,Co,Ni and Cu) on the hydrogenation properties of chloronitrobenzene over Pt/TiO2catalysts[J].Journal of molecular catalysis A:Chemical,2004,209:83-87.
    [67]Han X X,Zhou R X,Lai G H,et al.Influence of support and transition metal(Cr,Mn,Fe,Co,Ni and Cu) on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts[J].Catalysis Today,2004,93-95:433-437.
    [68]韩晓祥,周仁贤,郑小明.负载Pt催化剂在卤代硝基苯氢化反应中的催化性能研究[J].复旦学报(自然科学版),2003,42(3):428-430.
    [69]张晋霞,韩晓祥,周仁贤等.稀土在聚合物负载铂催化氢化氯代硝基苯反应 中的作用研究[J].中国稀土学报,2002,20(增刊):54-56.
    [70]Han X X,Zhou R X,Zheng X M,et al.Effect of rare earths on the hydrogenation properties of p-chloronitrobenzene over polymer-anchored platinum catalysts[J].Journal of Molecular Catalysis A:Chemical,2003,193(1-2):103-108.
    [71]Hart X X,Zhou R X,Lai G H,et al.Hydrogenation catalysts based on platinum complexes with polymer[J].React.Kinet.Catal.Lett,2004,81(1):41-47.
    [72]Xu S G,Xi X L,Shi J,et al.A homogeneous catalyst made of (poly4-vinylpyridine-c-oN-vinylpyrorlidone)-Pd complex or hydrogenation of aromatic nitro compounds[J].Journal of Molecular Catalysis A:Chemical,2000,160(2):287-292.
    [73]严新焕,许丹倩,楼芝英等.对氯硝基苯催化加氢合成对氯苯胺[J].中国医药工业杂志,2001,32(10):471.
    [74]吴琼,李翔,张曼征.Pd-Fe/吸附树脂催化剂的结构及其对卤代芳香硝基化合物的催化加氢性能[J].催化学报,1997,18(4):338-340.
    [75]Yu Z K,Liao S J,Xu Y,et al.Hydrogenation of nitroaromatics by polymer-anchored bimetallic palladium-ruthenium and palladium-platinum catalysts under mild conditions[J].Journal of Molecular Catalysis A:Chemical,1997,120:247-255.
    [76]赵松林,陈骏如,刘新梅等.金属离子对Ru-Pt/γ.Al2O3催化剂上对氯硝基苯选择加氢反应的影响[J].催化学报,2004,25(11):850-854.
    [77]赵松林,陈骏如,周娅芬等.金属离子修饰的Ru-Pt/γ-Al2O3催化p-CNB收率加氢[J].高等学校化学学报,2004,25(8):1552-1554.
    [78]Kosak,John R.Process for reducing chloronitrobenzene using ruthenium with aminor amount of platinum as the catalyst[P].US:4760187,1988-7-26.
    [79]Auer E,Freund A,Gross M,et al.Multimetallic catalyst and process for preparing substituted aromatic amines[P].US:6316381,2001-11-13.
    [80]Yu Z K,Liao S J,Xu Y,et al.Hydrogenation of nitro aromatics polymer-anchored bimetallic palladium ruthenium and palladium-platinum catalysts under mild conditions[J].Journal of Molecular Catalysis A:Chemical,1997,120(1-3):247-255.
    [81]Miyaura N,Yanagi T,Suzuki A.The Palladium-Catalyzed Cross-Coupling Reaction of Phenylboronic Acid with Haloarenes in the Presence of Bases[J].Synthetic Communication,1981,11(7):513-519.
    [82]Martin A R,Yang Y H.Palladium-Catalyzed Cross-Coupling Reactions of Organoboronic Acids with Organic Electrophiles[J].Acta.Chem.Scand,1993,47:221-230.
    [83]Tamao K,Sumittani K,Kiao Y,et al.Nickel-Phosphine Complex-Catalyzed Grignard Coupling.I.Cross-Coupling of Alkyl,Aryl,and Alkenyl Grignard Reagents with Aryt and Alkenyl Halides:General Scope and Limitations[J].Bull.Chem.Soc.Jpn,1976,49(7):1958-1969.
    [84]Anderson J C,Namli H,Roberts C A.Investigations into ambient temperature biaryl coupling reactions[J].Tetrahedron,1997,53(44):15123-15134.
    [85]Miyaura N,Suzuki A.Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds[J].Chemical Reviews,1995,95(7):2457-2483.
    [86]Moreno-Manax M,Perez M,Pleixatas R.Palladium-Catalyzed Suzuki-Type Self-Coupling of Arylboronic Acids.A Mechanistic Study[J].J.Org.Chem,1996,61(7):2346-2351.
    [87]Aramendia M A,Lafont F.Electrospray Ionization Mass Spectrometry Detection of Intermediates in the Palladium-Catalyzed Oxidative Self-Coupling of Areneboronic Acids[J].J.Org.Chem,1999,64(10):3592-3594.
    [88]Badone D,Baroni M,Cardamone R,et al.Highly Efficient Palladium-Catalyzed Boronic Acid Coupling Reactions in Water:Scope and Limitations[J].J.Org.Chem,1997,62(21):7170-7173.
    [89]Zhou H,Zhuo G L,Jiang X Z.Heck reaction catalyzed by Pd supported on LDH-F hydrotalcite[J].Journal of Molecular Catalysis A:Chemical,2006,248(1-2):26-31.
    [90]LeBlond C R,Andrews A T,Sowa J R J,et al.Activation of aryl chrorides for Suzuki cross2coupling by ligandless,heterogenous palladium[J].Org.Lett,2001,3:1555-1557.
    [91]Saito S,Sakai M,Miyaura N.A synthesis of biaryls via nickel(0) catalyzed cross coupling reaction of chloroarenes with phenylboronic acids[J].Tetrahedron Letters,1996,37(17):2993-2996.
    [92]Leadbeater N E,Resouly S M.Suzuki aryl couplings mediated by phosphine free nickel compounds[J].Tetrahedron,1999,55:11889-11894.
    [93]Lipshutz B H,Sclafani J A,Blomgren P A.Biaryls via Suzuki crosscouplings catalyzed by nickel on charcoal[J].Tetrahedron,2000,56:2139-2144.
    [94]陈新兵,安忠维.新颖的纳米镍催化芳基硼酸与芳基溴的偶联反应[J].化学通报,2002(1):36-40.
    [95]Crisp G T.Variations on a theme-recent developments on the mechanism of the Heck reaction and their implications for synthesis[J].Chem.Soc.Rev,1998,27(6):427-436.
    [96]Antia S,Adriano F I.Martin S,et al.A New Generation of Air Stable,Highly Active Pd Complexes for C-C and C-N Coupling Reactions with Aryl Chlorides[J].Angew.Chem.Int.Ed,2002,41(19):3668-3670.
    [97]Lee C S,Pal S,Yang W S,et al.Bis-chelate tetracarbene palladium(Ⅱ) complex as an efficient and recyclable catalyst precursor for Heck reaction[J].Journal of Molecular Catalysis A:Chemical,2008,280(1-2):115-121.
    [98]Dell'Anna M M,Mastrorilli P,Muscio F,et al.A Polymer-Supported β-Ketoesterate Complex of Palladium as an Efficient,Phosphane-Free,Air-Stable,Recyclable Catalyst for the Heck Reaction[J].Eur.J.Inorg.Chem,2002,2002(5):1094.
    [99]Herrmarm W A,Brossmer C,Ofele K,et al.Palladacycles as Structurally Defined Catalysts for the Heck Olefination of Chloro- and Bromoarenes Angew.Chem.Int.Ed,1995,34(17):1844-1848.
    [100]Wu Y J,Hou J J,Yun H Y,et al.Cyclopalladated ferrocenylimines:highly active catalysts for Heck reactions[J].J.Organomet.Chem,2001,637:793-795.
    [101]Beletskaya I P,Cheprakov A V.Palladacycles in catalysis - a critical survey[J].J.Organomet.Chem,2004,689(24):4055-4082.
    [102]Eisenstadt A.In Catalysis of Organic Reactions[M].Ed:Herkes F E,Marcel Dekker,Basel,1988,pp.415-427.
    [103] Maria J, Avelino C, Sara I, et al. Heterogeneous Palladium Catalysts for a New One-Pot Chemical Route in the Synthesis of Fragrances Based on the Heck Reaction[J]. Adv. Synth. Cata, 2007, 349(11-12): 1949-1954.
    [104] Andy Cassez, Nicolas Kania, Fre(?)de(?)ric Hapiot, et al. Chemically modified cyclodextrins adsorbed on Pd/C particles: New opportunities to generate highly chemo- and stereoselective catalysts for Heck reaction[J]. Catalysis Communications,2008, 9(6): 1346-1351.
    [105] Zhao F Y, Arai M. Reactions of chlorobenzene and bromobenzene with methyl acrylate using a conventional supported palladium catalyst[J]. React. Kinet. Catal.Lett, 2004, 81(2): 281-289.
    [106] Xie X G, Lu J P, Chen B, et al. Pd/C-catalyzed Heck reaction in ionic liquid accelerated by microwave heating[J]. Tetrahedron Letters, 2004,45: 809-811.
    [107] Srivastava R, Venkatathri N, Srinivas D, et al. Pd-SAPO-31, an efficient,heterogeneous catalyst for Heck reactions of aryl chlorides[J]. Tetrahedron Letters,2003,44:3649-3651.
    [108] Bigi F, Coluccla S, Maggi R, et al. Heterogenous catalysis in fine chemistry: the Heck reation on Pd/SiO_2 catalysts[J]. Res. Chem. Intermed, 2003, 29(3): 285-291.
    [109] Roberta B, Sandro C, Giancarlo F, et al. Phoshpine-Free Perfluoro-Tagged Palladium Nanoparticles Supported on Fluorous Silica Gel: Application to the Heck Reaction[J]. Org. Lett, 2008, 10(4): 561-564.
    [110] Dahan A, Portnoy M, Pd Catalysis on Dendronized Solid Support: Generation Effects and the Influence of Backbone Structure[J]. J. Am. Chem. Soc. 2007, 129(18):5860-5869.
    [111] Djakovitch L, Koehler K. Heck Reaction Catalyzed by Pd-Modified Zeolites[J].J. Am. Chem. Soc. 2001,123(25): 5990.
    [112] Lin K H, Song M P, Cai D M, et al. Polymer (fiber)-supported palladium catalyst containing imidazolinyl rings and its application to the Heck reaction[J].Tetrahedron Letters, 2003,44(20): 3955-3957.
    [113]Lyer S,Thakur V V.The novel use of Ni,Cu and Mn heterogeneous catalysts for the Heck reaction[J].Journal of Molecular Catalysis A:Chemical,2000,157(1-2):275-278.
    [1]Bae J W,Lee J S,Lee K H.Hydrodechlorination of CCl_4 over Pt/γ-Al_2O_3 Prepared from Different Pt Precursors[J].Applied Catalysis A:General,2008,334(1-2):156-167.
    [2]Kim S S,Lee H,Choi J W,et al.Methane Conversion to Higher Hydrocarbons in a Dielectric-Barrier Discharge Reactor with Pt/γ-Al_2O_3 Catalyst[J].Catalysis Communications,2007,8(9):1438-1442.
    [3]Han X X,Chen Q,Zhou R Xian.Study on the hydrogenation of p-Chloronitrobenzene over Carbon Nanotubes Supported Platinum Catalysts Modified by Mn,Fe,Co,Ni and Cu[J].Journal of Molecular Catalysis A:Chemical,2007,277(1-2):210-214.
    [4]许兴中,杨建锋,李小年等.激光溅射法制备Pt/CNTs催化剂用于邻氯硝基苯的液相加氢反应[J].物理化学学报,2008,24(1):121-126.
    [5]Liu D R,Xiong W,Fan G Y,Chen H,Li R X,Li X J.Selective hydrogenation of trans-4-phenyl-3-butene-2-one to unsaturated alcohol over Ru/γ-Al_2O_3 modified by PPh3 and diamines[J].Applied Catalysis A:General,2008,339(1):93-98.
    [6]Zheng J,Guo M,Song C S.Characterization of Pd catalysts supported on USY zeolites with different SiO_2/Al_2O_3 ratios for the hydrogenation of naphthalene in the presence ofbenzothiophene[J].Fuel Processing Technology,2008,89(4):467-474.
    [7]Savva P G,Goundani K,Vakros J,et al.Benzene hydrogenation over Ni/Al_2O_3catalysts prepared by conventional and sol-gel techniques[J].Applied Catalysis B:Environmental,2008,79(3):199-207.
    [8]Venkataraman Vishwanathan,Venkatreddy Jayasri,P.Mahaboob Basha,et al.Gas phase hydrogenation of ortho-chloronitrobenzene(o-CNB) to ortho-chloroaniline (O-CAN) over unpromoted and alkali metal promoted-alumina supported palladium catalysts[J].Catalysis Communications,2008,9(3):453-458.
    [9]C(?)rdenas-Lizana Fernando,Santiago G(?)mez-Quero,Mark A Keane.Ultra-selective gas phase catalytic hydrogenation of aromatic nitro compounds over Au/Al_2O_3[J].Catalysis Communications,2008,9(3):475-481.
    [10] Nitikon Wongwaranon, Okorn Mekasuwandumrong, Piyasan Praserthdam, et al.Performance of Pd catalysts supported on nanocrystalline α-Al_2O_3 and Ni-modified α-Al_2O_3 in selective hydrogenation of acetylene[J]. Catalysis Today, 2008, 131(1-4):553-558.
    [11] Maria I. Cabrera, Ricardo J. Grau. Methyl oleate isomerization and hydrogenation over Ni/α-Al_2O_3: A kinetic study recognizing differences in the molecular size of hydrogen and organic species[J]. Journal of Molecular Catalysis A:Chemical, 2008,287(1-2): 24-32.
    [12] Denise Sousa Brand(?)o, Rosana Machado Galvao, Maria da Graca, Martins Carneiro da Rocha, Pascal Bargiela and Emerson Andrade Sales. Pt and Pd catalysts supported on Al_2O_3 modified with rare earth oxides in the hydrogenation of tetralin, in the presence of thiophene[J]. Catalysis Today, 2008, 133-135: 324-320.
    [13] Chen C S, Lin J H, Lin A S, Huang H T, Ma H. Synthesis of carbon nanofiber from catalytic hydrogenation of CO2 over Ni-K/Al_2O_3 catalysts[J]. Carbon, 2008,46(2): 369-371.
    [14] Silva-Rodrigo R, Hernandez-Lopez F, Martinez-Juarez K, et al. Synthesis,characterization and catalytic properties of NiMo/Al_2O_3-MCM-41 catalyst for dibenzothiophene hydrodesulfurization[J]. Catalysis Today, 2008, 130(2-4): 309-319.
    [15] Chen R Z, Du Y, Xing W H, Xu N P. Effect of Alumina Particle Size on Ni/Al_2O_3 Catalysts for p-Nitrophenol Hydrogenation[J]. Chinese Journal of Chemical Engineering, 2007,15(6): 884.
    [16] Vasant R. Choudhary, Chanchal Samanta and Prabhas Jana. Decomposition and/or hydrogenation of hydrogen peroxide over Pd/Al_2O_3 catalyst in aqueous medium: Factors affecting the rate of H_2O_2 destruction in presence of hydrogen[J].Applied Catalysis A: General, 2007, 332(1): 70-78.
    [17] Reshetnikov S I, Ivanov E A, Startsev A N. Benzene hydrogenation in the thiophene presence over the sulfide Ni-Mo/γ-Al_2O_3catalyst under periodic operation:Kinetics and process modeling[J]. Chemical Engineering Journal, 2007, 134(1-3):100-105.
    [18] Fern'andez-Pradas J, Cleries L, Martinez E, et al. Calcium Phosphate Coatings Deposited by Laser Ablation at 355 nm Under Different Substrate Temperatures and Water Vapor Pressures[J].Appl Phys A:Mater Sci Process,2000,71:37-42.
    [19]Zhang J L,Wang Y,Ji H,et al.Magnetic Nanocomposite Catalysts with High Activity and Selectivity for Selective Hydrogenation of ortho-chloronitrobenzene[J].Journal of Catalysis,2005,229(1):114-118.
    [20]Coq B,Tijani A,Figueras F.Particle Size Effect on the Kinetics of p-Chloronitrobenzene Hydrogenation over Platinum/Alumina Catalysts[J].Journal of Molecular Catalysis,1991,68(3):331-345.
    [21]Sikhwivhilu L M,Coville N J,Pulimaddi B M,et al.Selective Hydrogenation of o-Chloronitrobenzene over Palladium Supported Nanotublar Titanium Dioxide Derived Catalysts[J].Catalysis Communications,2007,8(1):1999-2006.
    [22]梅华,王欢,陈墨雨等.Pt/C催化剂的制备及其在对氯苯胺合成中的应用[J].工业催化,2007,15(4):37-41.
    [23]Kratky V,Kralik M,Mecarova M,et al.Effect of Catalyst and Substituents on the Hydrogenation of Chloronitrobenzenes[J].Applied Catalysis A:General,2002,235(1-2):225-231.
    [24]曾宪春,王昱.工业生产中Pd/C催化剂失活原因研究[J].工业催化,2001,9(5):17-22.
    [25]Li Y J,Jin Y Y.Hydrogenation of nitro-compounds catalyzed by silica-supported polyvinylpyrrolidone-palladium complexes[J].Journal of Molecular Catalysis,1983,19(2):277-281.
    [26]姜恒,徐筠,廖世健.双重负载钯催化剂用于硝基化合物的催化加氢[J].催化学报,1997,18(1):33-37.
    [1]Wang M W,Li F Y,Zhang R B.Study on catalytic hydrogenation properties and thermal stability of amorphous NiB alloy supported on carbon nanotubes[J].Catalysis Today,2004,93-95:603-606.
    [2]黄利宏,储伟,洪景萍等.碳纳米管对Rh-Ce-Mn/SiO_2催化剂催化CO加氢合成含氧化合物性能的影响[J].催化学报,2006,27(7):596-600.
    [3]周敏,林国栋,张鸿斌.多壁碳纳米管负载铂的甲苯加氢脱芳催化剂[J].催化学报,2007,28(3):210-216.
    [4]Ma H X,Wang L C,Chen L Y,et al.Pt nanoparticles deposited over carbon nanotubes for selective hydrogenation of cinnamaldehyde[J].Catalysis Communications,2007,8(3):452-456.
    [5]许兴中,杨建锋,李小年等.激光溅射法制备Pt/CNTs催化剂用于邻氯硝基苯的液相加氢反应[J].物理化学学报,2008,24(1):121-126.
    [6]Dicenzo S B,Wertheim G K.Photoelectron spectroscopy of supported metal clusters[J].Comments on Solid State Physics,1985,11(5):203-219.
    [7]赵志娟,刘芬,邱丽美等.纳米粒子尺寸效应引起的内层电子结合能位移[J].物理化学学报,2008,24(1):001-009.
    [8]Weast R C,(Ed.in Chief).CRC Handbook of Chemistry.and Physics[M],70th edn.,CRC Press,Boca Raton,FL,1989-1990,pp.E80-E81.
    [9]Li C H,Yu Z X,Yao K F,et al.Nitrobenzene hydrogenation with carbon nanotube-supported platinum catalyst under mild conditions[J].Journal of Molecular Catalysis A:Chemical,2005,226(1):101-105.
    [10]Tessonnier J P,Pesant L,Ehret G,et al.Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde[J].Applied Catalysis A:General,2005,288:203-210.
    [11]Chambers A,Nemes T,Rodriguez N M,et al.Ctatalytic Behavior of Graphite Nanofiber Supported Nickel Particles.1.Comparison with Other Support Media[J].J.Phys.Chem.B,1998,102:2251-2258.
    [12]Salman F,Park C,Baker R T K.Hydrogenation of crotonaldehyde over graphite nanofiber supported nickel[J].Catalysis Today,1999,53(3):385-394.
    [13]Lu P,Toshima N.Catalysis of Polymer-Protected Ni/Pd Bimetallic Nano-Clusters for Hydrogenation of Nitrobenzene Derivatives[J].Bull.Soc.Jpn,2000,73(3):751-758.
    [14]Coq B,Tijani A,Dutartre R,et al.Influence of support and metallic precursor on the hydrogenation of p-chioronitrobenzene over supported platinum catalysts[J].Journal of Molecular Catalysis,1993,79(1-3),253-264.
    [15]Coq B,Tijani A,Figueras F.Particle Size Effect on the Kinetics of p-Chloronitrobenzene Hydrogenation over Platinum/Alumina Catalysts[J].Journal of Molecular Catalysis,1991,68(3):331-345.
    [16]Kratky V,Kralik M,Mecarova M,et al.Effect of Catalyst and Substituents on the Hydrogenation of Chloronitrobenzenes[J].Applied Catalysis A:General,2002,235(1-2):225-231.
    [1]Miyaura N,Suzuki A.Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds[J].Chemical Reviews,1995,95(7):2457-2483.
    [2]Hassan J,Sevignon M,Schulz E,Schulz E,Lemaire M[J].Chemical Reviews,2002,102:1359.
    [3]Navarro O,Kelly R A,Nolan S P.A General Method for the Suzuki-Miyaura Cross-Coupling of Stefically Hindered Ary Chlorides:Synthesis of Di- and Tri-ortho-substituted Biaryls in 2-Propanol at Room Temperature[J]J.Am.Chem.Soc,2003,125(52):16194-16195.
    [4]Harr K,Enkelmann V,Schulze M,Bunz U H E Suzuki-Coupling of Cp*Ru(para-C6H4Br2) with Phenyl Boronic Acid:A Model Reaction for the Synthesis of Organometallic Polymers[J].Chemische Berichte,1996,129(11):1323-1325.
    [5]Knappa R,Rehahn M.Palladium-catalyzed arylation of ferrocene derivatives:a convenient high yield route to 1,1'-bis(halophenyl)ferrocenes[J].J.Organometol.Chem,1993,452(1-2):235-240.
    [6]Tamao K,Sumittani K,Kiao Y,et al.Nickel-Phosphine Complex-Catalyzed Grignard Coupling.I.Cross-Coupling of Alkyl,Aryl,and Alkenyl Grignard Reagents with Aryl and Alkenyl Halides:General Scope and Limitations[J].Bull.Chem.Soc.Jpn,1976,49(7):1958-1969.
    [7]Anderson J C,Namli H,Roberts C A.Investigations into ambient temperature biaryl coupling reactions[J].Tetrahedron,1997,53(44):15123-15134.
    [8]Zhou H,Zhuo G L,Jiang X Z.Heck reaction catalyzed by Pd supported on LDH-F hydrotalcite[J].Journal of Molecular Catalysis A:Chemical,2006,248(1-2):26-31.
    [9]LeBlond C R,Andrews A T,Sowa J R J,et al.Activation of aryl chrorides for Suzuki cross2coupling by ligandless,heterogenous palladium[J].Organic Letters,2001,3:1555-1557.
    [10]Dicenzo S B,Wertheim G K.Photoelectron spectroscopy of supported metal clusters[J]. Comments on Solid State Physics, 1985,11 (5): 203-219.
    [11] Wright S W, Hageman D L, McClure L D. Fluoride-Mediated Boronic Acid Coupling Reactions [J]. J. Org. Chem, 1994, 59(20): 6095-6097.
    [12] Najera C, Gil-Molto J, Karlstrom S, Falvello L R.Di-2-pyridylmethylamine-Based Palladium Complexes as New Catalysts for Heck,Suzuki, and Sonogashira Reactions in Organic and Aqueous Solvents[J]. Organic Letters, 2003, 5(9): 1451-1454.
    [13] Heidenreich R G, Kohler K, Krauter J G E, Pietsch J. Pd/C as a Hihgly active Catalyst for Heck, Suzuki and Sonogashira Reaction[J]. Synletter, 2002: 1118-1122.
    [14] Zhang H C, Kwong F Y, Tian Y, et al. Base and Cation Effects on the Suzuki Cross-Coupling of Bulky Arylboronic Acid with Halopyridines: Synthesis of Pyridylphenols[J]. J. Org. Chem, 1998, 63(20): 6886-6890.
    [15] Hensel V, Lutzow K, Jacob J, et al. Repetitive Construction of Macrocyclic Oligophenylenes[J]. Angew. Chem. Int. Ed. Engl, 1997, 36(23): 2654-2656.
    [16] Marck G, Villiger A, Buchecker R. Aryl couplings with heterogeneous palladium catalysts[J]. Tetrahedron Letters, 1994, 35(20): 3277-3280.
    [17] Pickett T E, Richards C J. Synthesis of a C_3-symmetric ferrocenylphosphine and its application to the Suzuki reaction of aryl chlorides[J]. Tetrahedron Letters, 2001,42(22): 3767-3769.
    [18] Pickett T E, Roca F X, Richards C T. Synthesis of Monodentate Ferrocenylphosphines and Their Application to the Palladium-Catalyzed Suzuki Reaction of Aryl Chlorides[J]. J. Org. Chem, 2003, 68(7): 2592-2599.
    [1] Dahan A, Portnoy M, Pd Catalysis on Dendronized Solid Support: Generation Effects and the Influence of Backbone Structure[J]. J. Am. Chem. Soc. 2007, 129(18):5860-5869.
    [2] Littke A F, Fu G C. Palladium-Catalyzed Coupling Reactions of Aryl Chlorides[J].Angew. Chem. Int. Ed, 2002,41 (22): 4176-4211.
    [3] Jellery T. Tetraalkylammonium salt-based catalyst systems for directing Heck-type reactions Arylation of allyltrimethylsilane[J]. Tetrahedron Letters, 2000, 41(44):8445-8449.
    [4] Herrmann W A, Brossmer C, Olele K, et al. Tetraalkylammonium salt-based catalyst systems for directing Heck-type reactions Arylation of allyltrimethylsilane[J].Angew. Chem. Int. Ed. Engl, 1995, 34 (17): 1844-1847.
    [5] Miyazah F, Yamaguchi K, Shibasaki M. The synthesis of a new palladacycle catalyst development of a high performance catalyst for Heck reactions[J].Tetrahedron Letters, 1999,40(41): 7379-7383.
    [6] Andersson C M, Karabelas K, Hallberg A. Palladium/phosphinated polystyrene as a catalyst in the Heck arylation. A comparative study[J]. j. Org. Chem, 1985, 50(20):3891-3895.
    [7] Maria J, Avelino C, Sara I, et al. Heterogeneous Palladium Catalysts for a New One-Pot Chemical Route in the Synthesis of Fragrances Based on the Heck Reaction[J]. Adv. Synth. Cata, 2007, 349(11-12): 1949-1954.
    [8] Andy Cassez, Nicolas Kania, Fre'de'ric Hapiot, et al. Chemically modified cyclodextrins adsorbed on Pd/C particles: New opportunities to generate highly chemo- and stereoselective catalysts for Heck reaction[J]. Catalysis Communications,2008,9(6): 1346-1351.
    [9] Xie X G, Lu J P, Chen B, et al. Pd/C-catalyzed Heck reaction in ionic liquid accelerated by microwave heating[J]. Tetrahedron Letters, 2004,45: 809-811.
    [10] Dicenzo S B, Wertheim G K. Photoelectron spectroscopy of supported metal clusters[J]. Comments on Solid State Physics, 1985,11 (5): 203-219.
    [11]Uozumi Y,Kmura T.Heck Reaction in Water with Amphiphilic Resin-Supported Palladium-Phosphine Complexes[J].Synlett,2002,46(12):2045-2048.
    [12]Alcazar-Roman L M,Hartwig J F.Mechanistic Studies on Oxidative Addition of Aryl Halides and Triflates to Pd(BINAP)_2 and Structural Characterization of the Product from Aryl Triflate Addition in the Presence of Amine[J].Organometallics,2002,21(3):491-502.
    [13]Yao Q,Kinney E P,Yang Z.Ligand-Free Heck Reaction:Pd(OAc)_2 as an Active Catalyst Revisited[J].J.Org.Chem,2003,68(19):7528-7531.
    [14]Bohm V P W,Herrmann W A.Mechanism of the Heck Reaction Using a Phosphapalladacycle as the Catalyst:Classical versus Palladium(Ⅳ) Intermediates[J].Chemistry - A European Journal,2001,7(19):4191-4197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700