新型环保型Pd-Pt、Cu/不锈钢丝网VOCs消除催化剂的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挥发性有机化合物VOCs是大气污染的主要来源之一。在众多处理技术中,催化燃烧法是消除VOCs的最有效方法之一,因其能耗低、处理效率高、设备简单,不易形成NOx二次污染等优点在当前VOCs处理技术中备受关注。其中催化剂是VOCs催化燃烧技术的核心。为了克服传统以堇青石蜂窝为载体的催化剂易破碎、热稳定性差等缺点,本论文采用不锈钢丝网(stainless steel wire mesh,标记为SSWM)为催化剂的载体。且经阳极氧化技术,使其表面自生长一层阳极氧化膜来解决载体比表面积小的问题。
     基于不锈钢丝网作为载体的优良性能及实验室前期所取得的实验成果,为拓宽不锈钢丝网种类在催化剂载体上的应用,本论文使用型号为304网,0.12mm×80目的不锈钢丝网为载体。基于绿色化学是一种新型的化学理念,研究工作从简化金属材料不锈钢丝网的预处理过程中去表层油脂、去氧化皮、表面活化等工艺入手;系统地探索了阳极氧化过程中膜形成过程;通过改变阳极氧化工艺中电解液的种类,使金属材料表面形成与催化活性组分相匹配、厚度适中、孔洞大小合适的阳极氧化膜,从而制备了低含量、环境友好型0.1%Pd-0.05%Pt/不锈钢丝网催化剂。通过XRD、SEM、XPS.TPR、EDX等实验技术对催化剂进行了表征。实验结果表明,该催化剂完全氧化丙酮、甲苯的温度为240℃、180℃。经300h的甲苯氧化稳定性试验中,转化率一直保持98%以上,表现出了优良的稳定性。
     在前面优化载体预处理基础上,采用电化学沉积法制备了Cu不锈钢丝网催化剂,考察了不同活性组分负载方法对催化剂的催化活性的影响,研究了不同电沉积电压及时间等制备因素,发现当电沉积时间为15min,电压为3V时制备的Cu/SSWM催化剂表现出优良的催化性能,完全氧化丙酮、甲苯和乙酸乙酯的温度分别为240、220、260℃。通过XRD、SEM、XPS、TPR、EDX等实验技术,表征了不同Cu不锈钢丝网催化剂的物理化学性质,发现不锈钢丝网表面高度分散的CuO物种以及CuO物种与阳极氧化膜的强相互作用,对催化剂的催化活性和稳定性能起到重要作用。
VOCs are one of the main sources of air pollution. Among current technologies on VOCs control, catalytic combustion technology has been regarded as the most effective one because of its relatively low energy consumption, high efficiency and simple equipments. Moreover, there is no associated pollution such as nitrogen oxides (NOx) production. And a catalyst with high activity is the key to catalytic combustion of VOCs.
     In order to conquer the disadvantages of conventional cordierite honeycomb support, such as low thermal stability and easy fragmentation, we applied stainless steel wire mesh (SSWM) as the catalyst support. Moreover, the anodic oxidation treatment was applied to design a porous membrane over the stainless steel wire mesh surface to enlarge the surface area.
     The stainless steel wire mesh has excellent performance as catalyst support and some excellent experimental results have been obtained in the past. To broaden the stainless steel wire mesh application in catalyst support, we applied the Type 304, 0.12mm×80 mesh as the catalyst support. As green chemistry is a novel chemical concept, the research greatly optimized the process of removal of oil, primary oxides and other superficial impurities of the stainless steel wire mesh; systematically investigated the membrane formation of during the anodic oxidation process; changed the anodic oxidation electrolytes to form the membrane of medium thickness and right size hole. A Low levels and environment-friendly catalyst of 0.1% Pd-0.05% Pt/stainless steel wire mesh catalyst was prepared for VOCs elimination. The morphologies and reducibility of the stainless steel wire mesh supports and catalysts were characterized by means of scanning electron microscopy (SEM), temperature-programmed reduction (TPR), X-ray photoelectron spectrometry (XPS) and Energy-dispersive X-ray spectroscopy (EDX). The results indicated that 0.1%Pd-0.05%Pt/SSWM held better catalytic performance for VOCs. The temperatures of complete acetone and toluene conversion are low to 180 and 240℃, respectively. Moreover, the catalyst shows stable activity under the reaction of toluene oxidation at 200℃for 300 h.
     On the basis of the pretreatment of catalyst support above, Cu/stainless steel wire mesh catalysts were synthesized via electrochemical deposition. The effect of different active component load methods on the catalysts catalytic activity was investigated; also the electrochemical deposition voltage and time. When the electrochemical deposition voltage and time was 3V and 15min, the catalyst Cu/SSWM exhibit best catalytic activity; The temperatures of complete acetone, toluene and ethyl acetate conversion were 240.220 and 260℃, respectively. The surface structure and reducibility of the stainless steel wire mesh supports and Cu catalysts were characterized by means of SEM, TPR, XRD, XPS arid EDX. The results indicated that high dispersed CuO species on the support surface and the interaction between CuO species and the anodic oxidation membrane play an important role in catalytic activity and stability.
引文
[1]Liu, H. J.; Wang, F.; Zhao, Y. B., et al. Synthesis of iron-palladium binary alloy nanotubes by template-assisted electrodeposition from metal-complex solution [J]. Journal of Electroanalytical Chemistry,2009,633(1):15-18.
    [2]Bastos, S. S. T.; Orfao, J. J. M.; Freitas, M. M. A., et al. Manganese oxide catalysts synthesized by exotemplating for the total oxidation of ethanol[J]. Applied Catalysis B Environmental,2009,93(1-2):30-37.
    [3]Delimaris, D.; Ioannides, T. VOC oxidation over CuO-CeO2 catalysts prepared by a combustion method [J]. Applied Catalysis B:Environmental,2009,89(1-2):295-302.
    [4]吴永文;李忠;奚红霞,等。VOCs污染控制技术与吸附催化材料[J]。 IonExchange and Adsorption,2003,19(1):88-95。
    [5]黎维彬; 龚浩。 催化燃烧去除VOCs污染物的最新进展[J]。 物理化学学报,2010,26(4):885-894。
    [6]Gao, S:X.; Zhao, N.; Shu, M. H., et al.Palladium nanoparticles supported on MOF-5:A highly active catalyst for a ligand-and copper-free Sonogashira coupling reaction[J]. Applied Catalysis A:General,388(1-2):196-201.
    [7]Liotta, L. F. Catalytic oxidation of volatile organic compounds on supported noble metals[J]. Applied Catalysis B:Environmental,100(3-4):403-412.
    [8]Saqer, S. M.; Kondarides, D. I.; Verykios, X. E. Catalytic Activity of Supported Platinum and Metal Oxide Catalysts for Toluene Oxidation[J]. Topics in Catalysis, 2009,52(5):517-527.
    [9]Kim, K. J.; Ahn, H. G. Complete oxidation of toluene over bimetallic Pt-Au catalysts supported on ZnO/Al2O3[J]. Applied Catalysis B:Environmental,2009, 91(1-2):308-318.
    [10]Peng Li; Chi He; Jie Cheng, et al. Catalytic oxidation of toluene over Pd/Co3AlO catalysts derived from hydrotalcite-like compounds:Effects of preparation methods [J]. Applied Catalysis B:Environmental,2010.
    [11]Okumura, K.; Kobayashi, T.; Tanaka, H., et al. Toluene combustion over palladium supported on various metal oxide supports[J].Applied Catalysis B Environmental,2003,44(4):325-331.
    [12]Jin, L. Y.; Lu, J. Q.; Luo, M. F., et al. CeO2-Y2O3 washcoat and supported Pd catalysts for the combustion of volatile organic compounds (VOCs)[J]. Acta Physico-Chimica Sinica,2007,23:1691-1695.
    [13]Luo, M. F.; He, M.; Xie, Y. L., et al. Toluene oxidation on Pd catalysts supported by CeO2-Y2O3 washcoated cordierite honeycomb[J]. Applied Catalysis B:Environmental,2007,69(3-4):213-218.
    [14]Gil, A.; Vicente, M. A.; Lambert, J. F., et al. Platinum catalysts supported on Al-pillared clays-Application to the catalytic combustion of acetone and methyl-ethyl-ketone[J]. Catalysis Today,2001,68(1-3):41-51.
    [15]Qi, L. Y.; Chen, M.; Song, C., et al. Catalytic performance of Pd catalyst supported on zirconium and yttrium pillared montmorillonite[J]. Chinese Journal of Inorganic Chemistry,2008,24(3):451-455.
    [16]Wang, X. G.; Landau, M. V.; Rotter, H., et al. TiO2 and ZrO2 crystals in SBA-15 silica:performance of Pt/TiO2(ZrO2)/SBA-15 catalysts in ethyl acetate combustion[J]. Journal of Catalysis,2004,222(2):565-571.
    [17]Yang, K. S.; Choi, J. S.; Chung, J. S. Evaluation of wire-mesh honeycomb containing porous Al/Al2O3 layer for catalytic combustion of ethyl acetate in air[J]. Catalysis Today,2004,97(2-3):159-165.
    [18]Kamiuchi, N.; Mitsui, T.; Muroyama, H., et al. Catalytic combustion of ethyl acetate and nano-structural changes of ruthenium catalysts supported on tin oxide[J]. Applied Catalysis B:Environmental,97(1-2):120-126.
    [19]金凌云; 迈何; 鲁继青,等。 Y203涂层负载Pd整体式催化剂的制备和催化性能[J]。 催化学报,2007,28(7):635-640。
    [20]Li, W. B.; Zhuang, M.; Wang, J. X. Catalytic combustion of toluene on Cu-Mn/MCM-41 catalysts:Influence of calcination temperature and operating conditions on the catalytic activity[J]. Catalysis Today,2008,137(2-4):340-344.
    [21]郭建光; 李忠; 奚红霞,等。 催化燃烧VOCs的三种过渡金属催化剂的活性比较[J]。 华南理工大学学报(自然科学版),2004,32(5):56-59。
    [22]刘亚宁;黄海涛;孙始财。铜基催化剂上甲苯深度氧化的机理分析[J]。环境科学与技术,2006,29(3):6-8。
    [23]Zimowska, M.; Michalik-Zym, A.; Janik, R., et al. Catalytic combustion of toluene over mixed Cu-Mn oxides[J]. Catalysis Today,2007,119(1-4):321-326.
    [24]Ribeiro, M. F.; Silva,J. M.; Brimaud, S., et al. Improvement of toluene catalytic combustion by addition of cesium in copper exchanged zeolites[J]. Applied Catalysis B:Environmental,2007,70(1-4):384-392.
    [25]Soylu, G S. P.; Ozcelik, Z.; Boz, I. Total oxidation of toluene over metal oxides supported on a natural clinoptilolite-type zeolite[J]. Chemical Engineering Journal, 2010,162(l):380-387.
    [26]Hu, C. Q. Enhanced catalytic activity and stability of Cu0.13Ce0.87Oy catalyst for acetone combustion:Effect of calcination temperature[J]. Chemical Engineering Journal,2010,159(1-3):129-137.
    [27]严新宇; 岑树琼; 项立平,等。Cu-Mn复合氧化物的结构表征及丙酮氧化性能[J]。 科技通报,2005,21(5):521-523。
    [28]Larsson, P.O.; Andersson, A. Oxides of copper,ceria promoted copper, manganese and copper manganese on Al2O3 for the combustion of CO, ethyl acetate and ethanol[J]. Applied Catalysis B Environmental,2000;24(3-4):175-192.
    [29]Larsson, P.0.; Andersson, A. Complete oxidation of CO,ethanol, and ethyl acetate over copper oxide supported on titania and ceria modified titania[J]. Journal of Catalysis,1998,179(1):72-89.
    [30]Yang, Y. X.; Xu, X. L.; Sun, K. P. Catalytic combustion of ethyl acetate on supported copper oxide catalysts[J]. Journal of Hazardous Materials,2007, 139(1):140-145.
    [31]Tsoncheva, T.; Linden, A.; Areva, S., et al. Copper oxide modified large-pore ordered mesoporous silicas for ethyl acetate combustion[J]. Catalysis Communications,2006,7(6):357-361.
    [32]高丽蓉。La0.8Sr0.2MnO3+λ负载于α, γ-Al2O3上作为燃烧催化剂的研究[J]。内蒙古大学学报:自然科学版,1998,29(4):583-584。
    [33]Labalme, V.; Garbowski, E.; Guilhaume, N., et al. Modifications of Pt/alumina combustion catalysts by barium addition Ⅱ. properties of aged catalysts[J]. Applied Catalysis A:General,1996,138(1):93-108.
    [34]Schneider, R.; Kiessling, D.; Wendt, G. Cordierite monolith supported perovskite-type oxides-catalysts for the total oxidation of chlorinated hydrocarbons[J]. Applied'Catalysis B:Environmental,2000,28(3-4):187-195.
    [35]魏伟;史庆南。 汽车尾气催化净化器用载体的研究进展[J]。汽车科技,2001,6(4)。
    [36]陈颖; 聂祚仁; 周美玲,等。 汽车尾气催化净化器用金属载体的研究进展[J]。 材料导报,1999,13(22)。
    [37]张益群; 邬敏忠;周伟。用于摩托车尾气净化催化剂的金属蜂窝[J]。 工 业催化,2001,5:50-54。
    [38]王家明; 袁芳芳; 褚霞,等。 金属载体催化剂的涂层研究[J]。 中国稀土学报,2004,22(549)。
    [39]闫慧忠;孔繁清。催化剂载体FeCrAlY材料表面γ-Al2O3活性层的制备[J]。中国稀土学报,2002,23(1):3-7。
    [40]Maurer, M.; Zhao, L.; Lugscheider, E. Surface refinement of metal foams[J]. Advanced Engineering Materials,2002,4(10):791-797.
    [41]Pranevicius, L.; Pranevicius, L. L.; Valatkevicius, P., et al. Plasma spray deposition of Al-Al2O3 coatings doped with metal oxides:catalytic applications[J]. Surface & Coatings Technology,2000,123(2-3):122-128.
    [42]Ferrandon, M.; Berg, M.; Bjornbom, E. Thermal stability of metal-supported catalysts for reduction of cold-start emissions in a wood-fired domestic boiler[J]. Catalysis Today,1999,53(4):647-659.
    [43]吴晓东; 翁端。 等离子喷涂NiCrAl/ZrO2过渡层对FeCrAl/γ-Al2O3结合性能的影响[J]。 清华大学学报(自然科学版),2002,42:1293-1296。
    [44]Yang, K. S.; Choi, J. S.; Lee, S. H., et al. Development of Al/Al2O3-coated wire-mesh honeycombs for catalytic combustion of volatile organic compounds in air[J]. Industrial & Engineering Chemistry Research,2004,43(4):907-912.
    [45]Yang, K. S.; Jiang, Z. D.; Chung, J. S. Electrophoretically Al-coated wire mesh and its application for catalytic oxidation of 1,2-dichlorobenzene [J]. Surface & Coatings Technology,2003,168(2-3):103-110.
    [46]赫荣晖。 阳极氧化铝膜的制备及影响因素研究。2001。
    [47]代明江。铝阳极氧化机理研究[J]。广东有色金属学报,1996,6(1):51-56。
    [48]朱绪飞; 李东栋; 孟大伟,等。 多孔阳极氧化铝形成的过程[J]。 南京理工大学学报,2006,5:644-648。
    [49]Li Y; Meng G W; Zhang L D. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties [J].Applied Physics Letters,2000, 76(15):2011-2013.
    [50]郭鹤桐; 王为。铝阳极氧化的回顾与展望[J]。材料保护,2000,33(1): 43-45。
    [51]王为; 郭鹤桐;高建平。 铝阳极氧化多孔膜功能化应用的新趋向[J]。 化工进展,1997,4:43-48。
    [52]李文刚; 石宝文。 阳极氧化法处理的铝合金与橡胶粘合性能研究[J]。 新技术新工艺:绿色电镀及表面处理新技术,2008,(11):22-23。
    [53]张少波; 郭敏;赵琢,等。多孔阳极氧化铝模板制备工艺的研究[J]。 电镀与精饰,2009,31(11):1-5。
    [54]Lee, Y. H.; Leu, I. C.; Wu, M. T., et al. Fabrication of Cu/Cu2O composite nanowire arrays on Si via AAO template-mediated electrodeposition [J]. Journal of Alloys and Compounds,2007,427(1-2):213-218.
    [55]Wang, F.; Huang, H. B.; Yang, S. G. Synthesis of ceramic nanotubes using AAO templates [J]. Journal of the European Ceramic Society,2009,29(8):1387-1391.
    [56]Sigurdson, S.; Sundaramurthy, V.; Dalai, A.K.,et al. Effect of anodic alumina pore diameter variation on template-initiated synthesis of carbon nanotube catalyst supports [J]. Journal of Molecular Catalysis A:Chemical,2009,306(1-2):23-32.
    [57]Lin, C. C.; Chang, K. C.; Pan,F. M., et al. Growth of carbon nanotube field emitters in the triode structure using anodic aluminum oxide as the template[J]. Diamond and Related Materials,2007,16(4-7):1388-1392.
    [58]杨文彬; 朱世富; 赵北君,等。纳米孔阵列阳极氧化铝膜的制备和表征[J]。 无机化学学报,2003,19(4):366-371。
    [59]宰学荣。 草酸阳极氧化工艺对氧化铝模板孔径的影响[J]。材料保护,2004,37(1):41-44。
    [60]吕建琴。铝及铝合金铬酸阳极氧化工艺研究[J]。涂料涂装与电镀,2006,4(6):31-34。
    [61]巩运兰。 铬酸浓度对铝阳极氧化多孔膜阻挡层形成过程的影响[J]。 电镀与环保,1999,19(2):20-22。
    [62]朱绪飞; 李东栋; 孟大伟等。 多孔阳极氧化铝形成过程的研究[J]。 南京理工大学学报,2006,30(5):644-648。
    [63]李淑英;王华;马力等。微孔阳极氧化铝膜的制备及膜的耐蚀性研究[J]。 表面技术,2000,29(4):9-10。
    [64]马宗耀;谢发勤。铝-锂合金阳极氧化及膜层性能的研究[J]。电镀与环保,2008,28(6):31-34。
    [65]罗鹏;周海晖; 张平等。超声波对铝阳极氧化工艺及膜层性能的影响[J]。Electroplating & Finishing,2006,25(5):42-44.
    [66]Sungkono, I. E.; Kameyama, H.; Koya, T. Development of catalytic combustion technology of VOC materials by anodic oxidation catalyst[J]. Applied Surface Science,1997,121:425-428.
    [67]应卫勇; 房鼎业。 金属壁与催化层一体化催化剂的制备及其应用[J]。 化工进展,1999,(5):39-42。
    [68]Yoo, S. H.; Liu, L.; Park, S. Nanoparticle films as a conducting layer for anodic aluminum oxide template-assisted nanorod synthesis[J]. Journal of Colloid and Interface Science,2009,339(1):183-186.
    [69]Han, F. M.; Meng, G. W.; Zhao, X. L., et al. Building desired heterojunctions of semiconductor CdS nanowire and carbon nanotube via AAO template-based approach[J]. Materials Letters,2009,63(26):2249-2252.
    [70]Ahn, H. J.; Moon, W. J.; Seong, T. Y., et al. Three-dimensional nanostructured carbon nanotube array/PtRu nanoparticle electrodes for micro-fuel cells[J]. Electrochemistry Communications,2009, 11(3):635-638.
    [71]Yu, K. L.; Ben, Y. H.; Zou, J. J. Copper-assisted, templated preparation of submicron-sized tubular CNT arrays by corona discharge enhanced CVD[J]. Diamond and Related Materials,2008,17(11):1912-1915.
    [1]陈敏; 马莹;宋萃,等。Ce-Pt-Pd/不锈钢丝网催化剂的制备与催化性能[J]。催化学报,2009,30(7):649-653。
    [2]马莹。稀土掺杂阳极氧化金属丝网VOCs处理催化剂的制备及性能研究。杭州,2008。
    [3]李淑英; 王华; 马力,等。 微孔阳极氧化膜的制备及膜的耐蚀性研究[J]。表面技术,2000,29(4):9-10。
    [4]朱绪飞; 李东栋; 孟大伟, 等。 多孔阳极氧化铝形成过程的研究[J]。 南京理工大学学报,2006,30(5):644-648。
    [5]Gao, Z. H.; Liu, Z. C.; He, F., et al. Combined XPS and in situ DRIRS study of mechanism of Pd-Fe/α-Al2O3 catalyzed CO coupling reaction to diethyl oxalate[J]. Journal of Molecular Catalysis A:Chemical,2005,235(1-2):143-149.
    [6]Hoflund, G B.; Hagelin, H. A. E.; Weaver, J. F., et al. ELS and XPS study of Pd/PdO methane oxidation catalysts[J]. Applied Surface Science,2003, 205(1-4):102-112.
    [7]Morales-Torres, S.; Perez-Cadenas, A. F.; Kapteijn, F., et al. Palladium and platinum catalysts supported on carbon nanofiber coated monoliths for low-temperature combustion of BTX[J]. Applied Catalysis B:Environmental,2009, 89(3-4):411-419.
    [8]Jiang, H.; Xu, Y.; Liao, S. J., et al. A remarkable synergic effect of water-soluble bimetallic catalyst in the hydrogenation of aromatic nitrocompounds[J]. Journal of Molecular Catalysis A:Chemical,1999,142(2):147-152.
    [9]Liu, C.; Tan, R.; Yu, N. Y., et al. Pt-Pd bi-metal nanoparticles captured and stabilized by imine groups in a periodic mesoporous organosilica of SBA-15 for hydrogenation of nitrobenzene[J]. Microporous and Mesoporous Materials,2010, 131(1-3):162-169.
    [10]Alvarez-Galvan, M. C.; O'Shea, V.; Fierro, J. L. G, et al. Alumina-supported manganese-and manganese-palladium oxide catalysts for VOCs combustion[J]. Catalysis Communications,2003,4(5):223-228.
    [11]Jin, L. J.; He, M.; Lu, J. Q., et al. Preparation and catalytic performance of Pd monolithic catalysts supported by Y2O3 washcoat[J]. Chinese Journal of Catalysis, 2007,28:635-640.
    [12]Huang, L.; Zhou, Y. M.; Zhang, Y. W., et al. Propane Dehydrogenation over PtSnNa Catalyst Supported on La-ZSM-5 Zeolite[J]. China Petroleum Processing & Petrochemical Technology,2010,12(3):18-24.
    [1]Liu, H. J.; Wang, F.; Zhao, Y. B., et al. Synthesis of iron-palladium binary alloy nanotubes by template-assisted electrodeposition from metal-complex solution[J]. Journal of Electroanalytical Chemistry,2009,633(1):15-18.
    [2]高会元;李永丹;林跃生。Pd-Cu合金复合膜的制备及表征[J]。‘材料工程,2006, (2):41-45。
    [3]宋萃; 陈敏; 张婷, 等。VOCs催化燃烧Pd-Y/不锈钢丝网催化剂的性能[J]。 无机化学学报,2009,25(3):397-401。
    [4]刘文科; 曹小华; 彭述明,等。钛膜表面阳极氧化层制备及表征[J]。表面技术,2007,36(1):51-55。
    [5]戴俊。 电化学沉积合成锡基合金薄膜及其作为锂离子电池负极材料的研究。2009。
    [6]郭建光。CeO2掺杂对CuO/沸石催化剂催化氧化VOCs活性的影响[J]。高校化学工程学报,2005,19(6):776-780。
    [7]Turco, M.; Bagnasco, G; Cammarano, C, et al. Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol:The role of Cu and the dispersing oxide matrix[J]. Applied Catalysis B:Environmental,2007,77(1-2):46-57.
    [8]Delimaris,D.; Ioannides, T. VOC oxidation over CuoO-CeO2 catalysts prepared by a combustion method[J]. Applied Catalysis B:Environmental,2009,89(1-2):295-302.
    [9]Su, W. G.; Wang, S. G.;Ying, P. L., et al. A molecularr insight-into propylene epoxidation on Cu/SiO2 catalysts using O"2 as oxidant[J]. Journal of Catalysis,2009, 268(1):165-174.
    [10]Shishido, T.; Yamamoto, Y.; Morioka, H., et al.Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol[J]. Applied Catalysis a-General,2004,263(2):249-253.
    [11]陈梁锋。双酯加氢制备二醇的新型Cu基催化剂的合成及催化性能研究:复旦大学, 上海,2009。
    [12]Saadi, A.; Rassoul, Z.; Bettahar, M. M. Gas phase hydrogenation of benzaldehyde over supported copper catalysts[J]. Journal of Molecular Catalysis A:Chemical,2000,164(1-2):205-216.
    [13]Valange, S.; Derouault, A.; Barrault, J., et al. One-step generation of highly selective hydrogenation catalysts involving sub-nanometric Cu2O supported on mesoporous alumina:strategies to control their size and dispersion[J]. Journal of Molecular Catalysis A:Chemical,2005,228(1-2):255-266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700