污染物生物与化学转化中的界面电子转移机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
界面电子转移在生物反应、化学体系、环境修复中都起着重要作用,与能量的流动和转换密切相关。提高界面的电子传递效率,深入剖析电子转移机制,是促进界面反应的基础。本论文针对污染物生物转化和化学转化中界面电子转移的关键问题,分析微生物电子传递链终端氧化还原酶与电子受体,以及化学催化剂与污染物分子的界面反应,实现了胞外电子传递途径的调控以及催化剂结构和表面特性的优化,提高了系统的能量转换效率,促进了污染物的转化。论文的主要研究内容和结果如下:
     1.电化学活性细菌(EAB)与三氧化钨(h-WO3)纳米团簇界面的电子传递机制。EAB在环境、能源、微生物学和生物地球化学领域是一种重要的模式微生物,而六方晶系三氧化钨(h-WO3)纳米团簇可以作为探针对EAB进行高通量筛选。通过分子模拟和电化学实验,在分子水平上分析了WO3纳米团簇筛选EAB胞外电子的机理。结果发现电子传递效率主要受纳米团簇表面细胞色素的分子构型和暴露在溶剂中的亚铁血红素的影响;卟啉分子平面轴向配位的双组氨酸残基能够克服一个较低的热力学能垒而进行界面电子传递,而电子传递速率则主要取决于传递距离。对微生物与纳米团簇界面电子传递的深入分析,有助于设计高效的电子捕获纳米材料。
     2.阳极表面微生物胞外电子传递(EET)的过程调控。通过对外膜蛋白细胞色素c (c-Cyt)的血红素结构到石墨电极的EET过程进行分子水平的解析,发现血红素辅基,即卟啉铁分子周围的氨基酸残基的分子构象能显著影响EET过程;c-Cyt表面的赖氨酸残基能形成氢键缩短了电子传递距离从而加快EET;热力学和动力学分析表明石墨电极表面的亲水性的含氧官能团能降低电子传递能垒,利于反应快速达到平衡。有效控制c-Cyts与石墨之间的相互作用,有利于促进EET过程,进而可以设计出高效的生物能量转换系统。
     3.吩嗪促进EAB与终端电子受体的电子传递过程的分析。吩嗪是一类含氮杂环化合物,多种细菌能够分泌产生,也可以人工合成,且其性质主要取决于不同取代基的位置和特性。它作为一种电子穿梭体,参与了多种生物过程以帮助微生物进行能量代谢和电子传递。因此,对于特定的电子传递途径,找出最合适的吩嗪取代基和分子结构非常重要。利用量化计算分析了水溶液中取代基对吩嗪类氧化还原媒介电位的影响,计算结果得到了实验结果的有效验证。结果表明反应自由能主要受吩嗪分子取代基的位置和质子化水合团簇的影响;在主要的质子反应过程中,含有供电子基团或吸电子基团的吩嗪与不同的质子化水合团簇相互作用取决于质子转移过程水分子的近程效应。因此,采用合适的含取代基吩嗪分子能够实现电子流动途径的调控,降低生物能量的损耗,实现能量的高效转化。设计高效的氧化还原媒介促进微生物与终端电子受体的电子传递过程,对于废水生物处理和环境修复中的能量回收是十分有益的。
     4.纳米Ti02表面光催化硝化和反硝化过程的机理。空气中的N2和O2能够在纳米Ti02表面在紫外光或可见光的条件下形成硝酸盐,这是普遍存在但以前未被发现的硝酸盐形成过程。通过第一性原理密度泛函理论(DFT)计算对该形成机制进行了深入分析,发现该过程中形成了NO中间产物。结果表明,由于NO形成的能垒较低,导带上的形成机制是其主要反应途径,而价带上的形成机制也可能以较低的反应速率同时存在于实际体系中。另一方面,光催化还原硝酸盐转化为N2,是饮用水源中硝酸盐去除的有效方法。我们建立了一种新的生物电-光催化硝酸盐还原方法,其中以TiO2纳米颗粒作为光催化剂,以微生物代谢产生的电子作为空穴清除剂。与传统的反硝化机制相比,生物电-光催化反应途径具有较低的能垒,将硝酸盐完全光催化还原为N2,而无有毒副产物的积累,理论分析结果表明,通过微生物产生的电子来清除空穴,避免了牺牲剂在位点的竞争吸附,从而形成高效的、具有选择性的光催化反硝化过程。
     5.TiO2光催化材料的晶面调控和应用。TiO2作为光催化材料被广泛用于污染物的降解,而TiO2表面经过金属团簇的修饰可增强降解效果。利用DFT计算与实验研究相结合的手段,深入探索了模式污染物硝基苯(NB)在Pt团簇负载的锐钛矿TiO2(Pt/TiO2)催化剂表面的降解机制,分析了有机分子的吸附构型以及催化剂表面的活性位点。研究发现,NB的氧化和还原降解分别发生在TiO2(001)和(101)晶面,Pt团簇的负载促进了NB在催化剂表面的吸附,以及空穴-电子对的分离;计算得到的热力学性质和液质色谱分析结果揭示了NB更倾向于在Pt/TiO2的(001)晶面发生氧化降解。因此,在材料合成时进一步增加Pt/TiO2(001)晶面的比例,有利于提高NB的降解效率,这为根据污染物的特点量身定制光催化纳米材料提供了一个新的思路。
Interfacial electron transfer plays an essential role in a broad range of biological reactions, chemical systems and environmental remediation, including energy flow and conversion. The interfacial reaction could be promoted by giving a deep insight into the electron transfer mechanisms and improving the electron transfer efficiency. This study aims to elucidate the interfacial electron transfer mechanism in biological and chemical transformations of pollutants. A high energy conversion efficiency could be achieved by controlling electron flow routes between microbial terminal oxidoreductase and electron acceptors. The effective pollutant transformation could be accomplished by designing contaminant-targeted photocatalytic nanomaterials to reveal the interaction mechanisms and structural evolution of pollutant molecules on catalyst surface. Main contents and results of this dissertation are as follows:
     1. Biological transformation of pollutants could be improved by screening and using high efficient electrochemically active bacteria (EAB). Hexagonal tungsten oxide (h-WO3) nanocluster was developed as a high-throughput probe for identification of EAB, the "star" microorganisms in the fields of environment, energy, microbiology, and biogeochemistry. Here, the mechanism for screening EAB by the WO3nanocluster is explored using molecular modeling and electrochemical experiments. The electron transfer efficiency is found to be governed by the special molecular configuration of cytochrome and the solvent exposed heme with respect to the nanocluster surfaces. The axial bishistidine residues bounded to the porphyrin plane enable interfacial electron transfer to occur with a low thermodynamic barrier. The apparent electron transfer rate is dependent primarily on the transfer distance. This work provides deep insights into the interfacial electron transfer at microbe-nanocluster, and is useful for molecular design of highly-efficient electron-capturing nanomaterials.
     2. Microbial extracellular electron transfer (EET) could be tuned through modifying anode surface. After a molecular-level investigation, it is revealed that EET from the heme group of c-type cytochrome (c-Cyt), an outer membrane protein, to the graphite nanosheet electrode, a widely used electron acceptor, is significantly influenced by the molecular conformations of the surrounding amino acid residues of c-Cyt and the solvent exposed heme with respect to the EA surface. The lysine residue presented on the surface of c-Cyt provides a weak hydrogen bond to shorten the electron transfer distance and hence accelerate EET. The thermodynamic and kinetic analyses demonstrate that the hydrophilic oxygen-containing groups on graphite surface contribute greatly to the EET through lowering the thermodynamic barrier and allowing rapid reaction equilibrium. Effective control of the c-Cyts/graphite interaction is beneficial to accelerating and engineering EET for designing highly-efficient biological energy-conversion systems.
     3. Phenazines, as a type of electron shuttle, are involved in various biological processes to facilitate microbial energy metabolism and electron transfer. They are constituted of a large group of nitrogen-containing heterocyclic compounds, and can be produced either by a diverse range of bacteria or by artificial synthesis. They vary significantly in their properties, depending mainly on the nature and positions of substitutent groups. Thus, it is of great interest to find out the most favorable substituent type and molecular structure of phenazines for electron transfer routes. Here, the impacts of the substituent group on the reduction potentials of phenazine-type redox mediators in aqueous solution were investigated by using quantum chemical calculations, and the calculation results were further validated with experimental data. The results show that the reaction free energy was substantially affected by the location of substituent groups on the phenazine molecule and the protonated water clusters. For the main proton addition process, the phenazines substituted with electron-donating groups and those with electron-withdrawing groups interacted with different protonated water clusters, attributed to the proximity effect of water molecules on proton transfer. Thus, high energy conversion efficiency could be achieved by controlling electron flow route with appropriate substituted phenazines to reduce the biological energy acquisition. This study provides useful information for designing efficient redox mediators to promote electron transfer between microbes and terminal acceptors, which are essential to bioenergy recovery from wastes and environmental bioremediation.
     4. Interfacial electron transfer involves in photocatalytic nitrification and denitrification. Nitrate could be formed from abundant atmospheric nitrogen and oxygen on nano-sized titanium dioxide surfaces under ultraviolet or sunlight irradiation. This is an undiscovered nitrate formation process that occurs universally. We suggest that nitric oxide is an intermediate product in this process, and elucidate its formation mechanisms using first-principles density functional theory (DFT) calculations. The results indicate that the conduction band mechanism with a low energy barrier (Ea) can be the dominant pathway for the NO formation, and the valence band mechanism can also possibly occur with h+at a low reaction rate. However, nitrate causes severe ecological and health risks, and nitrate contamination of drinking water sources has become one of the most important water quality concerns all over the world. Photocatalytic reduction of nitrate to molecular nitrogen presents a promising approach to remove nitrate from drinking water sources. We have found an efficient, selective and sustainable bioelectro-photocatalytic nitrate-reducing system by utilizing TiO2nanoparticles as the photocatalyst and bio-electrons from microbial metabolism as the hole scavenger. Compared with the conventional denitrification mechanism, such a bioelectro-photocatalytic reaction pathway has a lower Ea, suggesting that the complete photocatalytic reduction of nitrate to N2without accumulation of toxic intermediates is energetically feasible. The mechanisms of the highly-selective nitrate reduction were elucidated by DFT calculations. The scavenging of holes by the bio-electrons avoids the occupation of extra adsorption competition anions onto the active surface, resulting in the selective and efficient photocatalytic denitrification.
     5. Crystal surface of TiO2photocatalyst can be tuned to promote the degradation of pollutants in the practical applications. TiO2-based materials have been widely investigated for the photocatalytic degradation of various persistent pollutants. Especially, modification of TiO2surface with nanosized metallic clusters is found to accelerate the degradation process, but the underlying mechanism and the effective crystal surface for pollutant degradation remain unclear. Photodegradation of nitrobenzene (NB), a model pollutant, on the surface of Pt cluster-loaded anatase TiO2(Pt/TiO2) catalyst is investigated by combining DFT quantum chemistry calculations with experimental studies. The configurations of absorbed organic molecules, the active sites of the composite catalysts as well as the interactions in the NB photodegradation in aqueous phase are elucidated. The mechanism of the oxidative and reductive reactions on the TiO2(001) and (101) surface is proposed, which is found to be appropriate to explain the improved light adsorption and electron-hole separation of anatase TiO2and accelerated NB photodegradation by loading Pt clusters. Furthermore, the thermodynamic analysis and liquid chromatography mass spectrometry results reveal that an oxidative degradation of NB on (001) surface is favored for the Pt/TiO2. Thus, the efficiency of NB degradation in aqueous solution might be enhanced by exposing large ratio of (001) surface in the synthesis of Pt/TiO2. This work provides implications for designing contaminant-targeted photocatalytic nanomaterials.
引文
[1]Shinde, D. B.; Pillai, V. K., Electrochemical resolution of multiple redox events for graphene quantum dots. Angew. Chem. Int. Ed.2013,52,2482-2485.
    [2]Lovley, D. R.; Nevin, K. P., Electrobiocommodities:Powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr. Opin. Biotechnol.2013,24,1-6.
    [3]Hsieh, C. C.; Jiang, C. M.; Chou, P. T., Recent experimental advances on excited-state intramolecular proton coupled electron transfer reaction. Acc. Chem. Res.2010,43,1364-1374.
    [4]Logan, B. E., Exoelectrogenic bacteria that power microbial fuel cells. Nature Rev. Microbiol. 2009,7,375-381.
    [5]Pirbadian, S.; El-Naggar, M. Y., Multistep hopping and extracellular charge transfer in microbial redox chains. Phys. Chem. Chem. Phys.2012,14,13802-13808.
    [6]Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G M., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev.2005,105, 1103-1169.
    [7]Nakahata, M.; Takashima, Y.; Hashidzume, A.; Harada, A., Redox-generated mechanical motion of a supramolecular polymeric actuator based on host-guest interactions. Angew. Chem. Inter. Ed. 2013,52,5731-5735.
    [8]Fukushima, M.; Sawada, A.; Kawasaki, M.; Ichikawa, H.; Morimoto, K.; Tatsumi, K.; Aoyama, M., Influence of humic substances on the removal of pentachlorophenol by a biomimetic catalytic system with a water-soluble iron (Ⅲ)-Porphyrin complex. Environ. Sci. Technol.2003,37, 1031-1036.
    [9]Alexander, M., Environmental and microbiological problems arising from recalcitrant molecules. Microb. Ecol.1975,2,17-27.
    [10]Wackett, L. P. C.; Hershberger, D., Biocatalysis and biodegradation:Microbial transformation of organic compounds. ASM press:2001.
    [11]Larcher, S.; Yargeau, V., Biodegradation of sulfamethoxazole by individual and mixed bacteria. Appl. Microbiol. Biotechnol.2011,91,211-218.
    [12]George, K. W.; Haggblom, M. M., Microbial O-methylation of the flame retardant tetrabromobisphenol-A. Environ. Sci. Technol.2008,42,5555-5561.
    [13]Helbling, D. E.; Hollender, J.; Kohler, H. P. E.; Singer, H.; Fenner, K., High-throughput identification of microbial transformation products of organic micropollutants. Environ. Sci. Technol.2010,44,6621-6627.
    [14]Chen, Z.; Zhang, J.; Stamler, J. S., Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc. Natl. Acad. Sci. USA 2002,99,8306-8311.
    [15]Lu, P.; Li, Q.; Liu, H.; Feng, Z.; Yan, X.; Hong, Q.; Li, S., Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by Cupriavidus sp. DT-1. Bioresour. Technol.2013,127,337-342.
    [16]Qin, J.; Lehr, C. R.; Yuan, C.; Le, X. C.; McDermott, T. R.; Rosen, B. P., Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc. Natl. Acad. Sci. USA 2009, 106,5213-5217.
    [17]Wahidullah, S.; Naik, D. N.; Devi, P., Fermentation products of solvent tolerant marine bacterium moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion. PLoS One 2013,8.
    [18]Malandain, C.; Fayolle-Guichard, F.; Vogel, T. M., Cytochromes P450-mediated degradation of fuel oxygenates by environmental isolates. FEMS Microbiol. Ecol.2010,72,289-296.
    [19]Haritash, A. K.; Kaushik, C. P., Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs):A review. J. Hazard. Mater.2009,169,1-15.
    [20]Ye, D. Y.; Siddiqi, M. A.; Maccubbin, A. E.; Kumar, S.; Sikka, H. C., Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. Environ. Sci. Technol.1996,30,136-142.
    [21]Tas, D. O.; Pavlostathis, S. G, Occurrence, toxicity, and biotransformation of pentachloronitrobenzene and chloroanilines. Crit. Rev. Environ. Sci. Technol.2014,44,473-518.
    [22]Tao, X. Q.; Lu, G. N.; Dang, Z.; Yang, C.; Yi, X. Y, A phenanthrene-degrading strain Sphingomonas sp GY2B isolated from contaminated soils. Process Biochem.2007,42,401-408.
    [23]Suzuki, K.; Katagiri, M., Mechanism of salicylate hydroxylase-catalyzed decarboxylation. Biochim. Biophys. Acta 1981,657,530-534.
    [24]Nelson, D. R., A world of cytochrome P450s. Phil. Trans. R. Soc. B 2013,368.
    [25]von Buehler, C. J.; Urlacher, V, Novel P450-based biocatalyst for the selective production of chiral 2-alkanols. Chem. Comm.2014, DOI:10.1039/C1034CC00647J.
    [26]Cai, P. J.; Xiao, X.; He, Y. R.; Li, W. W.; Chu, J.; Wu, C.; He, M. X.; Zhang, Z.; Sheng, G. P.; Lam, M. H.; Xu, F.; Yu, H. Q., Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1.Appl. Microbiol. Biotechnol.2012,93,1769-1776.
    [27]Bretschger, O.; Obraztsova, A.; Sturm, C. A.; Chang, I. S.; Gorby, Y. A.; Reed, S. B.; Culley, D. E.; Reardon, C. L.; Barua, S.; Romine, M. F.; Zhou, J.; Beliaev, A. S.; Bouhenni, R.; Saffarini, D.; Mansfeld, F.; Kim, B. H.; Fredrickson, J. K.; Nealson, K. H., Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl. Environ. Microbiol.2007, 73,7003-7012.
    [28]Coursolle, D.; Baron, D. B.; Bond, D. R.; Gralnick, J. A., The Mtr respiratory pathway Is essential for reducing flavins and electrodes in Shewanella oneidensis. J. Bacteriol.2010,192, 467-474.
    [29]Cai, P. J.; Xiao, X.; He, Y. R.; Li, W. W.; Yu, L.; Lam, M. H. W.; Yu, H. Q., Involvement of c-type cytochrome CymA in the electron transfer of anaerobic nitrobenzene reduction by Shewanella oneidensis MR-1. Biochem. Eng. J.2012,68,227-230.
    [30]Lovley, D. R., Microbial fuel cells:Novel microbial physiologies and engineering approaches. Curr. Opin. Biotechnol.2006,17,327-332.
    [31]Logan, B. E.; Rabaey, K., Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 2012,337,686-690.
    [32]Pant, D.; Van Bogaert, G.; Diels, L.; Vanbroekhoven, K., A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol.2010,101, 1533-1543.
    [33]He, Y. R.; Xiao, X.; Li, W. W.; Cai, P. J.; Yuan, S. J.; Yan, F. F.; He, M. X.; Sheng, G P.; Tong, Z. H.; Yu, H. Q., Electricity generation from dissolved organic matter in polluted lake water using a microbial fuel cell (MFC). Biochem. Eng. J.2013,71,57-61.
    [34]Li, W. W.; Sheng, G P.; Liu, X. W.; Cai, P. J.; Sun, M.; Xiao, X.; Wang, Y. K.; Tong, Z. H.; Dong, F.; Yu, H. Q., Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells. Biosens. Bioelectron.2011,26,3987-3992.
    [35]Chen, Y. P.; Zhao, Y; Qiu, K. Q.; Chu, J.; Lu, R.; Sun, M.; Liu, X. W.; Sheng, G P.; Yu, H. Q.; Chen, J.; Li, W. J.; Liu, G; Tian, Y. C.; Xiong, Y, An innovative miniature microbial fuel cell fabricated using photolithography. Biosens. Bioelectron.2011,26,2841-2846.
    [36]Cheng, S.; Logan, B. E., Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc. Natl. Acad. Sci. USA 2007,104,18871-18873.
    [37]Sun, M.; Sheng, G P.; Zhang, L.; Xia, C. R.; Mu, Z. X.; Liu, X. W.; Wang, H. L.; Yu, H. Q.; Qi, R.; Yu, T.; Yang, M., An MEC-MFC-coupled system for biohydrogen production from acetate. Environ. Sci. Technol.2008,42,8095-8100.
    [38]Brillas, E.; Sires, I.; Oturan, M. A., Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry. Chem. Rev.2009,109,6570-6631.
    [39]Liu, X. W.; Sun, X. F.; Li, D. B.; Li, W. W; Huang, Y. X.; Sheng, G P.; Yu, H. Q., Anodic Fenton process assisted by a microbial fuel cell for enhanced degradation of organic pollutants. Water. Res.2012,46,4371-4378.
    [40]Wang, Y. K.; Sheng, G P.; Li, W. W.; Huang, Y. X.; Yu, Y. Y; Zeng, R. J.; Yu, H. Q., Development of a novel bioelectrochemical membrane reactor for wastewater treatment. Environ. Sci. Technol.2011,45,9256-9261.
    [41]Liu, X. W.; Wang, Y. P.; Huang, Y. X.; Sun, X. F.; Sheng, G. P.; Zeng, R. J.; Li, F.; Dong, F.; Wang, S. G.; Tong, Z. H.; Yu, H. Q., Integration of a microbial fuel cell with activated sludge process for energy-saving wastewater treatment:taking a sequencing batch reactor as an example. Biotechnol. Bioeng.2011,108,1260-1267.
    [42]Yuan, S. J.; Sheng, G P.; Li, W. W.; Lin, Z. Q.; Zeng, R. J.; Tong, Z. H.; Yu, H. Q., Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell. Environ. Sci. Technol.2010,44,5575-5580.
    [43]Lovley, D. R., Bug juice:harvesting electricity with microorganisms. Nature Rev. Microbiol. 2006,4,497-508.
    [44]Schroder, U., Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys.2007,9,2619-2629.
    [45]Torres, C. I.; Marcus, A. K.; Lee, H. S.; Parameswaran, P.; Krajmalnik-Brown, R.; Rittmann, B. E., A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol. Rev.2010,34,3-17.
    [46]Schroder, U., Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys.2007,9,2619-2629.
    [47]Li, R.; Tiedje, J. M.; Chiu, C. C.; Worden, R. M., Soluble electron shuttles can mediate energy taxis toward insoluble electron acceptors. Environ. Sci. Technol.2012,46,2813-2820.
    [48]Zhao, Y.; Watanabe, K.; Hashimoto, K., Hierarchical micro/nano structures of carbon composites as anodes for microbial fuel cells. Phys. Chem. Chem. Phys.2011,13,15016-15021.
    [49]Wen, D.; Xu, X. L.; Dong, S. J., A single-walled carbon nanohorn-based miniature glucose/air biofuel cell for harvesting energy from soft drinks. Energy Environ. Sci.2011,4,1358-1363.
    [50]Logan, B.; Cheng, S.; Watson, V.; Estadt, G, Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol.2007,41,3341-3346.
    [51]Lanas, V.; Logan, B. E., Evaluation of multi-brush anode systems in microbial fuel cells. Bioresource Technol.2013,148,379-385.
    [52]Huang, Y. X.; Liu, X. W.; Xie, J. F.; Sheng, G P.; Wang, G Y.; Zhang, Y. Y; Xu, A. W.; Yu, H. Q., Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems. Chem. Commun.2011,47,5795-5797.
    [53]Xie, X.; Hu, L. B.; Pasta, M.; Wells, G F.; Kong, D. S.; Criddle, C. S.; Cui, Y, Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano Lett.2011,11, 291-296.
    [54]Adachi, M.; Shimomura, T.; Komatsu, M.; Yakuwa, H.; Miya, A., A novel mediator-polymer-modified anode for microbial fuel cells. Chem. Comm.2008,2055-2057.
    [55]Xie, X.; Yu, G H.; Liu, N.; Bao, Z. N.; Criddle, C. S.; Cui, Y., Graphene-sponges as high-performance low-cost anodes for microbial fuel cells. Energy Environ. Sci.2012,5, 6862-6866.
    [56]Mink, J. E.; Hussain, M. M., Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode. ACS Nano 2013,7,6921-6927.
    [57]Liu, X. W.; Chen, J. J.; Huang, Y X.; Sun, X. F.; Sheng, G. P.; Li, D. B.; Xiong, L.; Zhang, Y. Y; Zhao, F.; Yu, H. Q., Experimental and theoretical demonstrations for the mechanism behind enhanced microbial electron transfer by CNT network. Sci. Rep.2014,4.
    [58]Chen, S.; Hou, H.; Harnisch, F.; Patil, S. A.; Carmona-Martinez, A. A.; Agarwal, S.; Zhang, Y.; Sinha-Ray, S.; Yarin, A. L.; Greiner, A.; Schroder, U., Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells. Energy Environ. Sci.2011,4,1417-1421.
    [59]Zhu, N.; Chen, X.; Zhang, T.; Wu, P.; Li, P.; Wu, J., Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes. Bioresource Technol.2011,102,422-426.
    [60]Yuan, Y.; Zhou, S. G.; Liu, Y.; Tang, J. H., Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells. Environ. Sci. Technol.2013,47,14525-14532.
    [61]Wang, H. Y; Wang, G. M.; Ling, Y. C.; Qian, F.; Song, Y; Lu, X. H.; Chen, S. W.; Tong, Y. X.; Li, Y., High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Nanoscale 2013,5,10283-10290.
    [62]Wolf, M.; Kappler, A.; Jiang, J.; Meckenstock, R. U., Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens. Environ. Sci. Technol.2009,43,5679-5685.
    [63]Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick, J. A.; Bond, D. R., Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 2008,105, 3968-3973.
    [64]Weinberg, D. R.; Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.; Kent, C. A.; Westlake, B. C.; Paul, A.; Ess, D. H.; McCafferty, D. G; Meyer, T. J., Proton-coupled electron transfer. Chem. Rev.2012, 112,4016-4093.
    [65]Chen, J. J.; Chen, W.; He, H.; Li, D. B.; Li, W. W.; Xiong, L.; Yu, H. Q., Manipulation of microbial extracellular electron transfer by changing molecular structure of phenazine-type redox mediators. Environ. Sci. Technol.2013,47,1033-1039.
    [66]Aulenta, F.; Catervi, A.; Majone, M.; Panero, S.; Reale, P.; Rossetti, S., Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ. Sci. Technol.2007,41,2554-2559.
    [67]von Canstein, H.; Ogawa, J.; Shimizu, S.; Lloyd, J. R., Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol.2008,74,615-623.
    [68]Baron, D.; LaBelle, E.; Coursolle, D.; Gralnick, J. A.; Bond, D. R., Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1.J. Biol. Chem.2009,284, 28865-28873.
    [69]Lies, D. P.; Hernandez, M. E.; Kappler, A.; Mielke, R. E.; Gralnick, J. A.; Newman, D. K., Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl. Environ. Microbiol.2005,71, 4414-4426.
    [70]Richardson, D. J.; Butt, J. N.; Fredrickson, J. K.; Zachara, J. M.; Shi, L.; Edwards, M. J.; White, G.; Baiden, N.; Gates, A. J.; Marritt, S. J.; Clarke, T. A., The 'porin-cytochrome' model for microbe-to-mineral electron transfer. Mol. Microbiol.2012,85,201-212.
    [71]Wang, K. P.; Liu, Y. W.; Chen, S. L., Improved microbial electrocatalysis with neutral red immobilized electrode. J. Power Sources 2011,196,164-168.
    [72]Okamoto, A.; Hashimoto, K.; Nealson, K. H.; Nakamura, R., Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proc. Natl. Acad. Sci. USA 2013,110,7856-7861.
    [73]Rabaey, K.; Boon, N.; Hofte, M.; Verstraete, W., Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol.2005,39,3401-3408.
    [74]Pham, T. H.; Boon, N.; Aelterman, P.; Clauwaert, P.; De Schamphelaire, L.; Vanhaecke, L.; De Maeyer, K.; Hofte, M.; Verstraete, W.; Rabaey, K., Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl. Microbiol. Biotechnol.2008,77,1119-1129.
    [75]Thygesen, A.; Poulsen, F. W.; Min, B.; Angelidaki, I.; Thomsen, A. B., The effect of different substrates and humic acid on power generation in microbial fuel cell operation. Bioresource Technol.2009,100,1186-1191.
    [76]Rhoads, A.; Beyenal, H.; Lewandowski, Z., Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol.2005, 39,4666-4671.
    [77]Sund, C. J.; McMasters, S.; Crittenden, S. R.; Harrell, L. E.; Sumner, J. J., Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl. Microbiol. Biotechnol.2007,76,561-568.
    [78]Watanabe, K.; Manefield, M.; Lee, M.; Kouzuma, A., Electron shuttles in biotechnology. Curr. Opin. Biotechnol.2009,20,633-641.
    [79]Matsuda, S.; Liu, H.; Kato, S.; Hashimoto, K.; Nakanishi, S., Negative Faradaic resistance in extracellular electron transfer by anode-respiring Geobacter sulfurreducens cells. Environ. Sci. Technol.2011,45,10163-10169.
    [80]Lovley, D. R.; Ueki, T.; Zhang, T.; Malvankar, N. S.; Shrestha, P. M.; Flanagan, K. A.; Aklujkar, M.; Butler, J. E.; Giloteaux, L.; Rotaru, A. E.; Holmes, D. E.; Franks, A. E.; Orellana, R.; Risso, C.; Nevin, K. P., Geobacter:The microbe electric's physiology, ecology, and practical applications. Adv. Microb. Physiol.2011,59,1-100.
    [81]Leys, D.; Meyer, T. E.; Tsapin, A. S.; Nealson, K. H.; Cusanovich, M. A.; Van Beeumen, J. J., Crystal structures at atomic resolution reveal the novel concept of "electron-harvesting" as a role for the small tetraheme cytochrome c.J. Biol. Chem.2002,277,35703-35711.
    [82]Clarke, T. A.; Edwards, M. J.; Gates, A. J.; Hall, A.; White, G.F.; Bradley, J.; Reardon, C. L.; Shi, L.; Beliaev, A. S.; Marshall, M. J.; Wang, Z. M.; Watmough, N. J.; Fredrickson, J. K.; Zachara, J. M.; Butt, J. N.; Richardson, D. J., Structure of a bacterial cell surface decaheme electron conduit. Proc. Natl. Acad. Sci. USA 2011,108,9384-9389.
    [83]Shaik, S., Biomimetic chemistry:Iron opens up to high activity. Nature Chem.2010,2,347-349.
    [84]Shi, L.; Squier, T. C.; Zachara, J. M.; Fredrickson, J. K., Respiration of metal (hydr)oxides by Shewanella and Geobacter:a key role for multihaem c-type cytochromes. Mol. Microbiol.2007, 65,12-20.
    [85]Coursolle, D.; Gralnick, J. A., Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR.-1.Mol. Microbiol.2010,77,995-1008.
    [86]Ross, D. E.; Ruebush, S. S.; Brantley, S. L.; Hartshorne, R. S.; Clarke, T. A.; Richardson, D. J.; Tien, M., Characterization of protein-protein interactions involved in iron reduction by Shewanella oneidensis MR-1. Appl. Environ. Microbiol.2007,73,5797-5808.
    [87]Hartshorne, R. S.; Reardon, C. L.; Ross, D.; Nuester, J.; Clarke, T. A.; Gates, A. J.; Mills, P. C.; Fredrickson, J. K.; Zachara, J. M.; Shi, L.; Beliaev, A. S.; Marshall, M. J.; Tien, M.; Brantley, S.; Butt, J. N.; Richardson, D. J., Characterization of an electron conduit between bacteria and the extracellular environment. Proc. Natl. Acad. Sci. USA 2009,106,22169-22174.
    [88]McLean, J. S.; Pinchuk, G. E.; Geydebrekht, O. V.; Bilskis, C. L.; Zakrajsek, B. A.; Hill, E. A.; Saffarini, D. A.; Romine, M. F.; Gorby, Y. A.; Fredrickson, J. K.; Beliaev, A. S., Oxygen-dependent autoaggregation in Shewanella oneidensis MR-1. Environ. Microbiol.2008, 10,1861-1876.
    [89]Bucking, C.; Popp, F.; Kerzenmacher, S.; Gescher, J., Involvement and specificity of Shewanella oneidensis outer membrane cytochromes in the reduction of soluble and solid-phase terminal electron acceptors. FEMS Microbiol. Lett.2010,306,144-151.
    [90]Shi, L.; Chen, B. W.; Wang, Z. M.; Elias, D. A.; Mayer, M. U.; Gorby, Y. A.; Ni, S.; Lower, B. H.; Kennedy, D. W.; Wunschel, D. S.; Mottaz, H. M.; Marshall, M. J.; Hill, E. A.; Beliaev, A. S.; Zachara, J. M.; Fredrickson, J. K.; Squier, T. C., Isolation of a high-affinity functional protein complex between OmcA and MtrC:Two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J. Bacteriol.2006,188,4705-4714.
    [91]Clarke, T. A.; Cole, J. A.; Richardson, D. J.; Hemmings, A. M., The crystal structure of the pentahaem c-type cytochrome NrfB and characterization of its solution-state interaction with the pentahaem nitrite reductase NrfA. Biochem. J.2007,406,19-30.
    [92]Breuer, M.; Rosso, K. M.; Blumberger, J., Electron flow in multiheme bacterial cytochromes is a balancing act between heme electronic interaction and redox potentials. Proc. Natl. Acad. Sci. USA 2014,111,611-616.
    [93]Vondrasek, J.; Bendova, L.; Klusak, V.; Hobza, P., Unexpectedly strong energy stabilization inside the hydrophobic core of small protein rubredoxin mediated by aromatic residues: correlated ab initio quantum chemical calculations. J. Am. Chem. Soc.2005,127,2615-2619.
    [94]Zeng, X. C.; Hu, H.; Hu, X. Q.; Yang, W. T., Calculating solution redox free energies with ab initio quantum mechanical/molecular mechanical minimum free energy path method. J. Chem. Phys.2009,130,164111.
    [95]Shaw, D. E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Eastwood, M. P.; Bank, J. A.; Jumper, J. M.; Salmon, J. K.; Shan, Y.; Wriggers, W., Atomic-level characterization of the structural dynamics of proteins. Science 2010,330,341-346.
    [96]Wenger, O. S., Proton-coupled electron transfer with photoexcited metal complexes. Acc. Chem. Res.2013,46,1517-1526.
    [97]Concepcion, J. J.; House, R. L.; Papanikolas, J. M.; Meyer, T. J., Chemical approaches to artificial photosynthesis. Proc. Natl. Acad. Sci. USA 2012,109,15560-15564.
    [98]Meyer, T. J.; Huynh, M. H. V.; Thorp, H. H., The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem Ⅱ. Angew. Chem. Int. Ed.2007,46,5284-5304.
    [99]Howard, J. B.; Rees, D. C., How many metals does it take to fix N2? A mechanistic overview of biological nitrogen fixation. Proc. Natl. Acad. Sci. USA 2006,103,17088-17093.
    [100]Carey, J.; Lawrence, J.; Tosine, H., Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bull. Environ. Contam. Toxicol.1976,16,697-701.
    [101]Kochuveedu, S. T.; Jang, Y. H.; Kim, D. H., A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem. Soc. Rev.2013,42,8467-8493.
    [102]Jakob, M.; Levanon, H.; Kamat, P. V., Charge distribution between UV-irradiated TiO2 and gold nanoparticles:? Determination of shift in the Fermi level. Nano Lett.2003,3,353-358.
    [103]Subramanian, V.; Wolf, E. E.; Kamat, P. V., Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc.2004,126,4943-4950.
    [104]Liu, Y.; Chen, L. F.; Hu, J. C.; Li, J. L.; Richards, R., TiO2 nanoflakes modified with gold nanoparticles as photocatalysts with high activity and durability under near UV irradiation. J. Phys. Chem. C2010,114,1641-1645.
    [105]Xiao, F. X., Self-assembly preparation of gold nanoparticles-TiO2 nanotube arrays binary hybrid nanocomposites for photocatalytic applications. J. Mater. Chem.2012,22,7819-7830.
    [106]Su, R.; Tiruvalam, R.; He, Q.; Dimitratos, N.; Kesavan, L.; Hammond, C.; Lopez-Sanchez, J. A.; Bechstein, R.; Kiely, C. J.; Hutchings, G J.; Besenbacher, F., Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au-Pd nanoparticles. ACS Nano 2012,6, 6284-6292.
    [107]Kim, J.; Lee, J.; Choi, W., Synergic effect of simultaneous fluorination and platinization of TiO2 surface on anoxic photocatalytic degradation of organic compounds. Chem. Commun.2008, 756-758.
    [108]Lee, J. S.; Choi, W. Y., Photocatalytic reactivity of surface platinized TiO2:Substrate specificity and the effect of Pt oxidation state. J. Phys. Chem. B 2005,109,7399-7406.
    [109]Park, H. W.; Lee, J. S.; Choi, W. Y., Study of special cases where the enhanced photocatalytic activities of Pt/TiO2 vanish under low light intensity. Catal. Today 2006,111,259-265.
    [110]Young, C.; Lim, T. M.; Chiang, K.; Scott, J.; Amal, R., Photocatalytic oxidation of toluene and trichloroethylene in the gas-phase by metallised (Pt, Ag) titanium dioxide. Appl. Catal. B: Environ.2008,78,1-10.
    [111]Moonsiri, M.; Rangsunvigit, P.; Chavadej, S.; Gulari, E., Effects of Pt and Ag on the photocatalytic degradation of 4-chlorophenol and its by-products. Chem. Eng. J.2004,97, 241-248.
    [112]Chen, H.; Chen, S.; Quan, X.; Yu, H.; Zhao, H.; Zhang, Y, Fabrication of TiO2-Pt coaxial nanotube array Schottky structures for enhanced photocatalytic degradation of phenol in aqueous solution.J. Phys. Chem. C 2008,112,9285-9290.
    [113]Zhao, W.; Chen, C.; Li, X.; Zhao, J.; Hidaka, H.; Serpone, N., Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation: Influence of platinum as a functional co-catalyst. J. Phys. Chem. B 2002,106,5022-5028.
    [114]Bian, Z.; Zhu, J.; Cao, F.; Lu, Y; Li, H., In situ encapsulation of Au nanoparticles in mesoporous core-shell TiO2 microspheres with enhanced activity and durability. Chem. Commun.2009, 3789-3791.
    [115]Zhang, N.; Liu, S.; Fu, X.; Xu, Y.-J., Synthesis of M@TiO2 (M=Au, Pd, Pt) core-shell nanocomposites with tunable photoreactivity. J. Phys. Chem. C 2011,115,9136-9145.
    [116]Gomes Silva, C.; Juarez, R.; Marino, T.; Molinari, R.; Garcia, H., Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc.2010,133, 595-602.
    [117]Wu, Y.; Liu, H.; Zhang, J.; Chen, F., Enhanced photocatalytic activity of nitrogen-doped titania by deposited with gold.J.Phys. Chem. C 2009,113,14689-14695.
    [118]Furube, A.; Du, L.; Hara, K.; Katoh, R.; Tachiya, M., Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc.2007,129,14852-14853.
    [119]Sangpour, P.; Hashemi, F.; Moshfegh, A. Z., Photoenhanced degradation of methylene blue on cosputtered M:TiO2 (M=Au, Ag, Cu) nanocomposite systems:A comparative study. J. Phys. Chem. C 2010,114,13955-13961.
    [120]Linic, S.; Christopher, P.; Ingram, D. B., Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater.2011,10,911-921.
    [121]Li, H.; Bian, Z.; Zhu, J.; Huo, Y.; Li, H.; Lu, Y., Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J. Am. Chem. Soc.2007,129,4538-4539.
    [122]Huynh, M. H. V.; Meyer, T. J., Proton-coupled electron transfer. Chem. Rev.2007,107, 5004-5064.
    [123]Zwickl, J.; Shenvi, N.; Schmidt, J. R.; Tully, J. C., Transition state barriers in multidimensional Marcus theory. J. Phys. Chem. A 2008,112,10570-10579.
    [124]Venkataraman, C.; Soudackov, A. V.; Hammes-Schiffer, S., Theoretical formulation of nonadiabatic electrochemical proton-coupled electron transfer at metal-solution interfaces. J. Phys. Chem. C 2008,112,12386-12397.
    [125]Costentin, C.; Robert, M.; Saveant, J. M., Adiabatic and non-adiabatic concerted proton-electron transfers. Temperature effects in the oxidation of intramolecularly hydrogen-bonded phenols. J. Am. Chem. Soc.2007,129,9953-9963.
    [1]Seidel,J.;Luo,W.;Suresha,S.J.;Nguyen,P.K.;Lee,A.S.;Kim,S.Y;Yang,C.H.; Pennycook,S.J.;Pantelides,S.T.;Scott,J.F.;Ramesh,R.,Prominent electrochromism through vacancy-order melting in a complex oxide. Nature Commun.2012,3:799.
    [2]Lee, S. H.; Deshpande, R.; Parilla, P. A.; Jones, K. M.; To, B.; Mahan, A. H.; Dillon, A. C., Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv. Mater. 2006,18,763-766.
    [3]D'Arienzo, M.; Armelao, L.; Mari, C. M.; Polizzi, S.; Ruffo, R.; Scotti, R.; Morazzoni, F., Macroporous WO3 thin films active in NH3 sensing:Role of the hosted Cr isolated centers and Pt nanoclusters. J. Am. Chem. Soc.2011,133,5296-5304.
    [4]Liu, Y.; Luo, C.; Liu, H. C., Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Angew. Chem. Int. Ed.2012,51, 3249-3253.
    [5]Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S., Solar water splitting cells. Chem. Rev.2010,110,6446-6473.
    [6]Silambarasan, D.; Surya, V. J.; Vasu, V.; Iyakutti, K., Single walled carbon nanotube-metal oxide nanocomposites for reversible and reproducible storage of hydrogen. ACS Appl. Mater. Interfaces 2013, DOI:10.1021/am403662t.
    [7]Deng, Z. F.; Gong, Y. C.; Luo, Y. P.; Tian, Y., WO3 nanostructures facilitate electron transfer of enzyme:Application to detection of H2O2 with high selectivity. Biosens. Bioelectron.2009, 24,2465-2469.
    [8]Wang, F. G; Di Valentin, C.; Pacchioni, G, Electronic and structural properties of WO3:A systematic hybrid DFT study. J. Phys. Chem. C 2011,115,8345-8353.
    [9]Szilagyi, I. M.; Madarasz, J.; Pokol, G.; Kiraly, P.; Tarkanyi, G; Saukko, S.; Mizsei, J.; Toth, A. L.; Szabo, A.; Varga-Josepovitso, K., Stability and controlled composition of hexagonal WO3. Chem. Mater.2008,20,4116-4125.
    [10]Yuan, S. J.; Li, W. W.; Cheng, Y. Y.; He, H.; Chen, J. J.; Tong, Z. H.; Lin, Z. Q.; Zhang, F.; Sheng, G. P.; Yu, H. Q., A 96-well plate electrochromic approach for the high-throughput detection of electrochemically active bacteria. Nature Protoc.2013, In press.
    [11]Yuan, S. J.; He, H.; Sheng, G P.; Chen, J. J.; Tong, Z. H.; Cheng, Y. Y; Li, W. W.; Lin, Z. Q.; Zhang, F.; Yu, H. Q., A photometric high-throughput method for identification of electrochemically active bacteria using a WO3 nanocluster probe.Sci. Rep.2013,3,1315.
    [12]Ishii, S.; Suzuki, S.; Norden-Krichmar, T. M.; Tenney, A.; Chain, P. S. G; Scholz, M. B.; Nealson, K. H.; Bretschger, O., A novel metatranscriptomic approach to identify gene expression dynamics during extracellular electron transfer. Nature Commun.2013,4,1601.
    [13]Rittmann, B. E.; Krajmalnik-Brown, R.; Halden, R. U., Pre-genomic, genomic and postgenomic study of microbial communities involved in bioenergy. Nature Rev. Microbiol. 2008,6,604-612.
    [14]Liu, X. W.; Li, W. W.; Yu, H. Q., Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. Chem. Soc. Rev.2013, DOI:10.1039/C1033CS60130G
    [15]Kouzuma, A.; Hashimoto, K.; Watanabe, K., Roles of siderophore in manganese-oxide reduction by Shewanella oneidensis MR-1. FEMS Microbiol. Lett.2012,326,91-98.
    [16]Fredrickson, J. K..; Romine, M. F.; Beliaev, A. S.; Auchtung, J. M.; Driscoll, M. E.; Gardner, T. S.; Nealson, K. H.; Osterman, A. L.; Pinchuk, G; Reed, J. L.; Rodionov, D. A.; Rodrigues, J. L. M.; Saffarini, D. A.; Serres, M. H.; Spormann, A. M.; Zhulin, I. B.; Tiedje, J. M., Towards environmental systems biology of Shewanella. Nature Rev. Microbiol.2008,6,592-603.
    [17]Rosenbaum, M.; Zhao, F.; Schr(o|")der, U.; Scholz, F., Interfacing electrocatalysis and biocatalysis with tungsten carbide:A high-performance, noble-metal-free microbial fuel cell. Angew. Chem. Int. Ed.2006,45,6658-6661.
    [18]Biffinger, J.; Ribbens, M.; Ringeisen, B.; Pietron, J.; Finkel, S.; Nealson, K., Characterization of electrochemically active bacteria utilizing a high-throughput voltage-based screening assay. Biotechnol. Bioeng.2009,102,436-444.
    [19]Hou, H. J.; Li, L.; Cho, Y.; de Figueiredo, P.; Han, A., Microfabricated microbial fuel cell arrays reveal electrochemically active microbes. PLoS One 2009,4.
    [20]Wang, Y. Q.; Li, B.; Zeng, L. Z.; Cui, D.; Xiang, X. D.; Li, W. S., Polyaniline/mesoporous tungsten trioxide composite as anode electrocatalyst for high-performance microbial fuel cells. Biosens. Bioelectron.2013,41,582-588.
    [21]Chen, J. J.; Chen, W.; He, H.; Li, D. B.; Li, W. W.; Xiong, L.; Yu, H. Q., Manipulation of microbial extracellular electron transfer by changing molecular structure of phenazine-type redox mediators. Environ. Sci. Technol.2013,47,1033-1039.
    [22]White, G. F.; Shi, Z.; Shi, L.; Wang, Z.; Dohnalkova, A. C.; Marshall, M. J.; Fredrickson, J. K.; Zachara, J. M.; Butt, J. N.; Richardson, D. J.; Clarke, T. A., Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals. Proc. Natl. Acad. Sci. USA 2013, 110,6346-6351.
    [23]Malvankar, N. S.; Vargas, M.; Nevin, K. P.; Franks, A. E.; Leang, C.; Kim, B. C.; Inoue, K.; Mester, T.; Covalla, S. F.; Johnson, J. P.; Rotello, V. M.; Tuominen, M. T.; Lovley, D. R., Tunable metallic-like conductivity in microbial nanowire networks. Nature Nanotech.2011,6, 573-579.
    [24]Pfeffer, C.; Larsen, S.; Song, J.; Dong, M.; Besenbacher, F.; Meyer, R. L.; Kjeldsen, K. U.; Schreiber, L.; Gorby, Y. A.; El-Naggar, M. Y.; Leung, K. M.; Schramm, A.; Risgaard-Petersen, N.; Nielsen, L. P., Filamentous bacteria transport electrons over centimetre distances. Nature 2012,491,218-221.
    [25]Nielsen, L. P.; Risgaard-Petersen, N.; Fossing, H.; Christensen, P. B.; Sayama, M., Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 2010,463,1071-1074.
    [26]Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C; Fang, H.; Zhou, R., Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nature Nanotech.2013,8,594-601.
    [27]Martinez-Gil, M.; Yousef-Coronado, F.; Espinosa-Urgel, M., LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture. Mol. Microbiol.2010,77,549-561.
    [28]Delley, B., From molecules to solids with the DMol3 approach. J. Chem. Phys.2000,113, 7756-7764.
    [29]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Atoms, molecules, solids, and surfaces-applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992,46,6671-6687.
    [30]Gale, J. D.; Rohl, A. L., The General Utility Lattice Program (GULP). Mol. Simul.2003,29, 291-341.
    [31]Halgren, T. A.; Lipscomb, W. N., The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem. Phys. Lett.1977,49,225-232.
    [32]Lies, D. P.; Hernandez, M. E.; Kappler, A.; Mielke, R. E.; Gralnick, J. A.; Newman, D. K., Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl. Environ. Microbiol.2005,71, 4414-4426.
    [33]Bond, D. R.; Lovley, D. R., Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol.2003,69,1548-1555.
    [34]Inoue, K.; Qian, X.; Morgado, L.; Kim, B.-C; Mester, T.; Izallalen, M.; Salgueiro, C. A.; Lovley, D. R., Purification and characterization of OmcZ, an outer-surface, octaheme c-type cytochrome essential for optimal current production by Geobacter sulfurreducens. Appl. Environ. Microbiol.2010,76,3999-4007.
    [35]Bonanni, P. S.; Schrott, G. D.; Robuschi, L.; Busalmen, J. P., Charge accumulation and electron transfer kinetics in Geobacter sulfurreducens biofilms. Energy Environ. Sci. 2012,5, 6188-6195.
    [36]Xiong, Y; Shi, L.; Chen, B.; Mayer, M. U.; Lower, B. H.; Londer, Y.; Bose, S.; Hochella, M. F.; Fredrickson, J. K.; Squier, T. C., High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 outer membrane c-type cytochrome OmcA. J. Am. Chem. Soc.2006,128,13978-13979.
    [37]Hartshorne, R. S.; Reardon, C. L.; Ross, D.; Nuester, J.; Clarke, T. A.; Gates, A. J.; Mills, P. C.; Fredrickson, J. K.; Zachara, J. M.; Shi, L.; Beliaev, A. S.; Marshall, M. J.; Tien, M.; Brantley, S.; Butt, J. N.; Richardson, D. J., Characterization of an electron conduit between bacteria and the extracellular environment. Proc. Natl. Acad. Sci. USA 2009,106,22169-22174.
    [38]Shi, L.; Rosso, K. M.; Clarke, T. A.; Richardson, D. J.; Zachara, J. M.; Fredrickson, J. K., Molecular underpinnings of Fe(III) oxide reduction by Shewanella Oneidensis MR-1. Front. Microbiol.2012,3,50.
    [39]Leys, D.; Meyer, T. E.; Tsapin, A. S.; Nealson, K. H.; Cusanovich, M. A.; Van Beeumen, J. J., Crystal structures at atomic resolution reveal the novel concept of "electron-harvesting" as a role for the small tetraheme cytochrome c. J. Biol. Chem.2002,277,35703-35711.
    [40]Carlson, H. K.; Iavarone, A. T.; Gorur, A.; Yeo, B. S.; Tran, R.; Melnyk, R. A.; Mathies, R. A.; Auer, M.; Coates, J. D., Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. Proc. Natl. Acad. Sci. USA 2012,109,1702-1707.
    [41]Smith, D. M.; Dupuis, M.; Vorpagel, E. R.; Straatsma, T. P., Characterization of electronic structure and properties of a Bis(histidine) heme model complex. J. Am. Chem. Soc.2003,125, 2711-2717.
    [42]Shaik, S., Biomimetic chemistry:Iron opens up to high activity. Nature Chem.2010,2, 347-349.
    [43]Kerisit, S.; Rosso, K. M.; Dupuis, M.; Valiev, M., Molecular computational investigation of electron-transfer kinetics across cytochrome-iron oxide interfaces. J. Phys. Chem. C 2007,111, 11363-11375.
    [44]Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G, A smooth particle mesh Ewald method. J. Chem. Phys.1995,103,8577-8593.
    [45]Dauberosguthorpe, P.; Roberts, V. A.; Osguthorpe, D. J.; Wolff, J.; Genest, M.; Hagler, A. T., Structure and energetics of ligand binding to proteins:E. coli dihydrofolate reductase trimethoprim, a drug-receptor system. Proteins:Struct., Function and Genetics 1988,4, 31-47.
    [46]Andersen, H. C., Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys.1980,72,2384-2393.
    [47]Berendsen, H. J. C.; Postma, J. P. M.; Vangunsteren, W. F.; Dinola, A.; Haak, J. R., Molecular dynamics with coupling to an external bath. J. Chem. Phys.1984,81,3684-3690.
    [48]Faughnan, B. W.; Crandall, R. S.; Hyman, P. M., Electrochromism in tungsten(VI) oxide amorphous films. RCA Rev.1975,36,177-197.
    [49]Kopf, S. H.; Henny, C.; Newman, D. K., Ligand-enhanced abiotic iron oxidation and the effects of chemical versus biological iron cycling in anoxic environments. Environ. Sci. Technol.2013,47,2602-2611.
    [50]Hashimoto, K.; Morokuma, K., Ab-initio molecular-orbital study of Na(H2O)n (n=1-6) clusters and their ions-Comparison of electronic-structure of the surface and interior complexes. J. Am. Chem. Soc.1994,116,11436-11443.
    [51]Field, S. J.; Dobbin, P. S.; Cheesman, M. R.; Watmough, N. J.; Thomson, A. J.; Richardson, D. J., Purification and magneto-optical spectroscopic characterization of cytoplasmic membrane and outer membrane multiheme c-type cytochromes from Shewanella frigidimarina NCIMB400. J. Biol. Chem.2000,275,8515-8522.
    [52]Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick, J. A.; Bond, D. R., Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 2008,105,3968-3973.
    [53]Hartshorne, R. S.; Jepson, B. N.; Clarke, T. A.; Field, S. J.; Fredrickson, J.; Zachara, J.; Shi, L.; Butt, J. N.; Richardson, D. J., Characterization of Shewanella oneidensis MtrC:a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors.J. Biol. Inorg. Chem.2007,12,1083-1094.
    [54]Alvarez-Idaboy, J. R.; Mora-Diez, N.; Vivier-Bunge, A., A quantum chemical and classical transition state theory explanation of negative activation energies in OH addition to substituted ethenes. J. Am. Chem. Soc.2000,122,3715-3720.
    [55]Mozurkewich, M.; Benson, S. W., Negative activation-energies and curved Arrhenius plots.1. Theory of reactions over potential wells.J. Phys. Chem.1984,88,6429-6435.
    [56]Silverstein, T. P., Falling enzyme activity as temperature rises:Negative activation energy or denaturation? J. Chem. Edu.2012,89,1097-1099.
    [57]Summers, Z. M.; Gralnick, J. A.; Bond, D. R., Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes. mBio 2013,4, e00420-00412.
    [58]Beard, D. A.; Qian, H., Relationship between thermodynamic driving force and one-way fluxes in reversible processes. PLoS One 2007,2, el44.
    [59]Harada, E.; Kumagai, J.; Ozawa, K.; Imabayashi, S.; Tsapin, A. S.; Nealson, K. H.; Meyer, T. E.; Cusanovich, M. A.; Akutsu, H., A directional electron transfer regulator based on heme-chain architecture in the small tetraheme cytochrome c from Shewanella oneidensis. FEBS Lett.2002,532,333-337.
    [60]Einstein, A., Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Fliissigkeiten suspendierten Teilchen. Ann. Phys. (Leipzig) 1905,322, 549-560.
    [61]Meunier, M., Diffusion coefficients of small gas molecules in amorphous cis-1,4-polybutadiene estimated by molecular dynamics simulations. J. Chem. Phys.2005, 123,134906.
    [62]Cowley, A. B.; Kennedy, M. L.; Silchenko, S.; Lukat-Rodgers, G. S.; Rodgers, K. R.; Benson, D. R., Insight into heme protein redox potential control and functional aspects of six-coordinate ligand-sensing heme proteins from studies of synthetic heme peptides. Inorg. Chem.2006,45,9985-10001.
    [1]Rittmann, B. E.; Krajmalnik-Brown, R.; Halden, R. U., Pre-genomic, genomic and postgenomic study of microbial communities involved in bioenergy. Nature Rev. Microbiol.2008,6,604-612.
    [2]Logan, B. E.; Rabaey, K., Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 2012,337,686-690.
    [3]Yuan, S. J.; Li, W. W.; Cheng, Y. Y; He, H.; Chen, J. J.; Tong, Z. H.; Lin, Z. Q.; Zhang, F.; Sheng, G. P.; Yu, H. Q., A plate-based electrochromic approach for the high-throughput detection of electrochemically active bacteria. Nature Protoc.2014,9:112-119.
    [4]Wu, X. E.; Zhao, F.; Rahunen, N.; Varcoe, J. R.; Avignone-Rossa, C.; Thumser, A. E.; Slade, R. C. T., A Role for microbial palladium nanoparticles in extracellular electron transfer. Angew. Chem. Int. Ed.2011,50,427-430.
    [5]Schroder, U., From in vitro to in vivo--biofuel cells are maturing. Angew. Chem. Int. Ed. 2012,51,7370-7372.
    [6]Yehezkeli, O.; Tel-Vered, R.; Wasserman, J.; Trifonov, A.; Michaeli, D.; Nechushtai, R.; Willner, I., Integrated photosystem II-based photo-bioelectrochemical cells. Nature Commun. 2012,3,742.
    [7]Liu, X. W.; Li, W. W.; Yu, H. Q., Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. Chem. Soc. Rev.2013, DOI:10.1039/C1033CS60130G.
    [8]McMillan, D. G; Marritt, S. J.; Firer-Sherwood, M. A.; Shi, L.; Richardson, D. J.; Evans, S. D.; Elliott, S. J.; Butt, J. N.; Jeuken, L. J., Protein-protein interaction regulates the direction of catalysis and electron transfer in a redox enzyme complex. J. Am. Chem. Soc.2013,135, 10550-10556.
    [9]Rosenbaum, M.; Zhao, F.; Schroder, U.; Scholz, F., Interfacing electrocatalysis and biocatalysis with tungsten carbide:A high-performance, noble-metal-free microbial fuel cell. Angew. Chem. Int. Ed.2006,45,6658-6661.
    [10]Torres, C. I.; Marcus, A. K.; Lee, H. S.; Parameswaran, P.; Krajmalnik-Brown, R.; Rittmann, B. E., A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol. Rev.2010,34,3-17.
    [11]White, G F.; Shi, Z.; Shi, L.; Wang, Z.; Dohnalkova, A. C.; Marshall, M. J.; Fredrickson, J. K.; Zachara, J. M.; Butt, J. N.; Richardson, D. J.; Clarke, T. A., Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(Ⅲ) minerals. Proc. Natl. Acad. Sci. USA 2013,110,6346-6351.
    [12]Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick, J. A.; Bond, D. R., Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 2008,105,3968-3973.
    [13]Chen, J. J.; Chen, W.; He, H.; Li, D. B.; Li, W. W.; Xiong, L.; Yu, H. Q., Manipulation of microbial extracellular electron transfer by changing molecular structure of phenazine-type redox mediators. Environ. Sci. Technol.2013,47,1033-1039.
    [14]Reguera, G.; McCarthy, K. D.; Mehta, T.; Nicoll, J. S.; Tuominen, M. T.; Lovley, D. R., Extracellular electron transfer via microbial nanowires. Nature 2005,435,1098-1101.
    [15]Busalmen, J. P.; Esteve-Nunez, A.; Berna, A.; Feliu, J. M., C-type cytochromes wire electricity-producing bacteria to electrodes. Angew. Chem. Int. Ed.2008,47,4874-4877.
    [16]Liu, H. A.; Newton, G J.; Nakamura, R.; Hashimoto, K.; Nakanishi, S., Electrochemical Characterization of a Single Electricity-Producing Bacterial Cell of Shewanella by Using Optical Tweezers. Angew. Chem. Int. Ed.2010,49,6596-6599.
    [17]Liao, R. Z.; Yu, J. G.; Himo, F., Mechanism of tungsten-dependent acetylene hydratase from quantum chemical calculations. Proc. Natl. Acad. Sci. USA 2010,107,22523-22527.
    [18]Logan, B. E., Exoelectrogenic bacteria that power microbial fuel cells. Nature Rev. Microbiol. 2009,7,375-381.
    [19]Gao, F.; Viry, L.; Maugey, M.; Poulin, P.; Mano, N., Engineering hybrid nanotube wires for high-power biofuel cells. Nature Commun.2010,1,2.
    [20]Zebda, A.; Gondran, C.; Le Goff, A.; Holzinger, M.; Cinquin, P.; Cosnier, S., Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nature Commun.2011,2,370.
    [21]Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H.; Zhou, R., Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nature Nanotech.2013,8,594-601.
    [22]Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M., New insights into the structure and reduction of graphite oxide. Nature Chem.2009,1,403-408.
    [23]Senn, H. M.; Thiel, W., QM/MM methods for biological systems. Top. Cum Chem.2007, 268,173-290.
    [24]Sherwood, P.; de Vries, A. H.; Guest, M. F.; Schreckenbach, G.; Catlow, C. R. A.; French, S. A.; Sokol, A. A.; Bromley, S. T.; Thiel, W.; Turner, A. J.; Billeter, S.; Terstegen, F.; Thiel, S.; Kendrick, J.; Rogers, S. C.; Casci, J.; Watson, M.; King, F.; Karlsen, E.; Sjovoll, M.; Fahmi, A.; Sch(a|")fer, A.; Lennartz, C., QUASI:A general purpose implementation of the QM/MM approach and its application to problems in catalysis. J. Mol. Struct.:THEOCHEM 2003,632, 1-28.
    [25]Shaik, S., Biomimetic chemistry:Iron opens up to high activity. Nature Chem.2010,2, 347-349.
    [26]Garcia-Meseguer, R.; Marti, S.; Ruiz-Pernia, J. J.; Moliner, V.; Tunon, I., Studying the role of protein dynamics in an SN2 enzyme reaction using free-energy surfaces and solvent coordinates. Nature Chem.2013,5,566-571.
    [27]Harada, E.; Kumagai, J.; Ozawa, K.; Imabayashi, S.; Tsapin, A. S.; Nealson, K. H.; Meyer, T. E.; Cusanovich, M. A.; Akutsu, H., A directional electron transfer regulator based on heme-chain architecture in the small tetraheme cytochrome c from Shewanella oneidensis. FEBS Lett.2002,532,333-337.
    [28]Pham, T. H.; Aelterman, P.; Verstraete, W., Bioanode performance in bioelectrochemical systems:Recent improvements and prospects. Trends Biotechnol.2009,27,168-178.
    [29]Roberts, J. G.; Moody, B. P.; McCarty, G S.; Sombers, L. A., Specific oxygen-containing functional groups on the carbon surface underlie an enhanced sensitivity to dopamine at electrochemically pretreated carbon fiber microelectrodes. Langmuir 2010,26,9116-9122.
    [30]Kerisit, S.; Rosso, K. M.; Dupuis, M.; Valiev, M., Molecular computational investigation of electron-transfer kinetics across cytochrome-iron oxide interfaces.J. Phys. Chem. C 2007, 111,11363-11375.
    [31]Field, S. J.; Dobbin, P. S.; Cheesman, M. R.; Watmough, N. J.; Thomson, A. J.; Richardson, D. J., Purification and magneto-optical spectroscopic characterization of cytoplasmic membrane and outer membrane multiheme c-type cytochromes from Shewanella frigidimarina NCEMB400.J. Biol. Chem.2000,275,8515-8522.
    [32]Ertem, M. Z.; Konezny, S. J.; Araujo, C. M.; Batista, V. S., Functional role of pyridinium during aqueous electrochemical reduction of CO2 on Pt(111). J. Phys. Chem. Lett.2013,4, 745-748.
    [33]Kopf, S. H.; Henny, C.; Newman, D. K., Ligand-enhanced abiotic iron oxidation and the effects of chemical versus biological iron cycling in anoxic environments. Environ. Sci. Technol.2013,47,2602-2611.
    [34]Breuer, M.; Zarzycki, P.; Blumberger, J.; Rosso, K. M., Thermodynamics of electron flow in the bacterial deca-heme cytochrome MtrF. J. Am. Chem. Soc.2012,134,9868-9871.
    [35]Sedghi, G.; Garcia-Suarez, V. M.; Esdaile, L. J.; Anderson, H. L.; Lambert, C. J.; Martin, S.; Bethell, D.; Higgins, S. J.; Elliott, M.; Bennett, N.; Macdonald, J. E.; Nichols, R. J., Long-range electron tunnelling in oligo-porphyrin molecular wires. Nature Nanotech.2011,6, 517-523.
    [36]Millo, D.; Harnisch, F.; Patil, S. A.; Ly, H. K.; Schr(o|")der, U.; Hildebrandt, P., In situ spectroelectrochemical investigation of electrocatalytic microbial biofilms by surface-enhanced resonance Raman spectroscopy. Angew. Chem. Int. Ed.2011,50, 2625-2627.
    [37]Silverstein, T. P., Falling enzyme activity as temperature rises:Negative activation energy or denaturation? J. Chem. Edu.2012,89,1097-1099.
    [38]Alvarez-Idaboy, J. R.; Mora-Diez, N.; Vivier-Bunge, A., A quantum chemical and classical transition state theory explanation of negative activation energies in OH addition to substituted ethenes. J. Am. Chem. Soc.2000,122,3715-3720.
    [39]Mozurkewich, M.; Benson, S. W., Negative activation-energies and curved Arrhenius plots.1. Theory of reactions over potential wells.J. Phys. Chem.1984,88,6429-6435.
    [40]Summers, Z. M.; Gralnick, J. A.; Bond, D. R., Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes. mBio 2013,4, e00420-00412.
    [41]Beard, D. A.; Qian, H., Relationship between thermodynamic driving force and one-way fluxes in reversible processes. PLoS One 2007,2, el44.
    [1]Mavrodi, D. V.; Blankenfeldt, W.; Thomashow, L. S., Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu. Rev. Phytopathol 2006,44,417-445.
    [2]Laursen, J. B.; Nielsen, J., Phenazine natural products:biosynthesis, synthetic analogues, and biological activity. Chem. Rev.2004,104,1663-1686.
    [3]Hassan, H. M.; Fridovich, I., Mechanism of the antibiotic action pyocyanine. J. Bacteriol. 1980,141,156-163.
    [4]Ahuja, E. G.; Janning, P.; Mentel, M.; Graebsch, A.; Breinbauer, R.; Hiller, W.; Costisella, B.; Thomashow, L. S.; Mavrodi, D. V.; Blankenfeldt, W., PhzA/B catalyzes the formation of the tricycle in phenazine biosynthesis. J. Am. Chem. Soc.2008,130,17053-17061.
    [5]Hernandez, M. E.; Kappler, A.; Newman, D. K., Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl. Environ. Microbiol.2004,70,921-928.
    [6]Pierson, L. S., Ⅲ; Pierson, E. A., Metabolism and function of phenazines in bacteria:Impacts on the behavior of bacteria in the environment and biotechnological processes. Appl. Microbiol. Biotechnol.2010,86,1659-1670.
    [7]Rabaey, K.; Boon, N.; Hofte, M.; Verstraete, W., Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol.2005,39,3401-3408.
    [8]Huynh, M. H. V.; Meyer, T. J., Proton-coupled electron transfer. Chem. Rev.2007,107, 5004-5064.
    [9]Tan, S. L. J.; Webster, R. D., Electrochemically induced chemically reversible proton-coupled electron transfer reactions of riboflavin (vitamin B2). J. Am. Chem. Soc.2012,134, 5954-5964.
    [10]Miyashita, O.; Okamura, M. Y.; Onuchic, J. N., Interprotein electron transfer from cytochrome c2 to photosynthetic reaction center:tunneling across an aqueous interface. Proc. Natl. Acad. Sci. USA 2005,102,3558-3563.
    [11]Aeschbacher, M.; Graf, C.; Schwarzenbach, R. P.; Sander, M., Antioxidant properties of humic substances. Environ. Sci. Technol.2012,46,4916-4925.
    [12]Lovley, D. R.; Coates, J. D.; Blunt-Harris, E. L.; Phillips, E. J. P.; Woodward, J. C., Humic substances as electron acceptors for microbial respiration. Nature 1996,382,445-448.
    [13]Liu, C.; Zachara, J. M.; Foster, N. S.; Strickland, J., Kinetics of reductive dissolution of hematite by bioreduced anthraquinone-2,6-disulfonate. Environ. Sci. Technol.2007,41, 7730-7735.
    [14]Ratasuk, N.; Nanny, M. A., Characterization and quantification of reversible redox sites in humic substances. Environ. Sci. Technol.2007,41,7844-7850.
    [15]Hernandez-Montoya, V.; Alvarez, L. H.; Montes-Moran, M. A.; Cervantes, F. J., Reduction of quinone and non-quinone redox functional groups in different humic acid samples by Geobacter sulfurreducens. Geoderma 2012,183-184,25-31.
    [16]Wang, Y.; Newman, D. K., Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen. Environ. Sci. Technol.2008,42,2380-2386.
    [17]Schr(o|")der, U., Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys.2007,9,2619-2629.
    [18]Zeng, X. C.; Hu, H.; Hu, X. Q.; Yang, W. T., Calculating solution redox free energies with ab initio quantum mechanical/molecular mechanical minimum free energy path method. J. Chem. Phys.2009,130,164111.
    [19]Rauschnot, J. C.; Yang, C.; Yang, V.; Bhattacharyya, S., Theoretical determination of the redox potentials of NRH:Quinone oxidoreductase 2 using quantum mechanical/molecular mechanical simulations. J. Phys. Chem. B 2009,113,8149-8157.
    [20]North, M. A.; Bhattacharyya, S.; Truhlar, D. G, Improved density functional description of the electrochemistry and structure-property descriptors of substituted flavins. J. Phys. Chem. B 2010,114,14907-14915.
    [21]Mueller, R. M.; North, M. A.; Yang, C.; Hati, S.; Bhattacharyya, S., Interplay of flavin's redox states and protein dynamics:an insight from QM/MM simulations of dihydronicotinamide riboside quinone oxidoreductase 2.J. Phys. Chem. B 2011,115,3632-3641.
    [22]Marx, D.; Tuckerman, M. E.; Hutter, J.; Parrinello, M., The nature of the hydrated excess proton in water. Nature 1999,397,601-604.
    [23]Stoyanov, E. S.; Stoyanova, I. V.; Tham, F. S.; Reed, C. A., The nature of the hydrated proton H-(aq)(+) in organic solvents. J. Am. Chem. Soc.2008,130,12128-12138.
    [24]Miyazaki, M.; Fujii, A.; Ebata, T.; Mikami, N., Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages. Science 2004,304,1134-1137.
    [25]Zwier, T. S., The structure of protonated water clusters. Science 2004,304,1119-1120.
    [26]Wernet, P.; Nordlund, D.; Bergmann, U.; Cavalleri, M.; Odelius, M.; Ogasawara, H.; Naslund, L. A.; Hirsch, T. K.; Ojamae, L.; Glatzel, P.; Pettersson, L. G M.; Nilsson, A., The structure of the first coordination shell in liquid water. Science 2004,304,995-999.
    [27]McKinlay, J. B.; Zeikus, J. G., Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli. Appl. Environ. Microbiol.2004,70,3467-3474.
    [28]Tarcha, P. J.; Chu, V. P.; Whittern, D.,2,3-Diaminophenazine is the product from the horseradish peroxidase-catalyzed oxidation of o-phenylenediamine. Anal Biochem 1987,165, 230-233.
    [29]Soulis, T.; Sastra, S.; Thallas, V.; Mortensen, S. B.; Wilken, M.; Clausen, J. T.; Bjerrum, O. J.; Petersen, H.; Lau, J.; Jerums, G; Boel, E.; Cooper, M. E., A novel inhibitor of advanced glycation end-product formation inhibits mesenteric vascular hypertrophy in experimental diabetes. Diabetologia 1999,42,472-479.
    [30]Delley, B., An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys.1990,92,508-518.
    [31]Delley, B., From molecules to solids with the DMol3 approach. J. Chem. Phys.2000,113, 7756-7764.
    [32]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Atoms, molecules, solids, and surfaces-applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992,46,6671-6687.
    [33]Perdew, J. P.; Wang, Y., Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B Condens. Matter.1992,45,13244-13249.
    [34]Klamt, A.; Jonas, V.; Burger, T.; Lohrenz, J. C. W., Refinement and parametrization of COSMO-RS. J. Phys. Chem. A 1998,102,5074-5085.
    [35]Klamt, A.; Schuurmann, G., COSMO:a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc, Perkin Trans.2 1993,799-805.
    [36]Costentin, C.; Hajj, V.; Louault, C.; Robert, M.; Saveant, J. M., Concerted proton-electron transfers. Consistency between electrochemical kinetics and their homogeneous counterparts. J.Am. Chem. Soc.2011,133,19160-19167.
    [37]Watanabe, K.; Manefield, M.; Lee, M.; Kouzuma, A., Electron shuttles in biotechnology. Curr. Opin. Biotechnol.2009,20,633-641.
    [38]"Dissociation constants of organic acids and bases". In CRC Handbook of Chemistry and Physics, Internet Version 2007, (87th Edition), David R. Lide, Ed. Taylor and Francis, Boca Raton, FL.
    [39]He, Z.; Huang, Y.; Manohar, A. K.; Mansfeld, F., Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry 2008, 74,78-82.
    [40]Ludwig, R., Water:From clusters to the bulk. Angew. Chem. Int. Ed.2001,40,1808-1827.
    [41]Bard, A. J.; Faulkner, L. R., Electrochemical methods:Fundamentals and applications. In John Wiley:New York,2001.
    [42]Mann, S., Studies on identification and redox properties of the pigments produced by Pseudomonas aureofaciens and P. iodina. Arch Mikrobiol 1970,71,304-318.
    [43]Elema, B., Oxidation-reduction potentials of chlororaphine. Recueil Des Travaux Chimiques Des Pays-Bas 1933,52,569-583.
    [44]Thauer, R. K.; Jungermann, K.; Decker, K., Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev.1977,41,100-180.
    [45]Hernandez, M. E.; Newman, D. K., Extracellular electron transfer. Cell. Mol. Life Sci.2001, 58,1562-1571.
    [1]Galloway, J. N.; Townsend, A. R.; Erisman, J. W.; Bekunda, M.; Cai, Z.; Freney, J. R.; Martinelli, L. A.; Seitzinger, S. P.; Sutton, M. A., Transformation of the nitrogen cycle:recent trends, questions, and potential solutions. Science 2008,320,889-892.
    [2]Geng, L.; Alexander, B.; Cole-Dai, J.; Steig, E. J.; Savarino, J.; Sofen, E. D.; Schauer, A. J., Nitrogen isotopes in ice core nitrate linked to anthropogenic atmospheric acidity change. Proc. Natl. Acad. Sci. USA 2014,111,5808-5812.
    [3]Zhang, X.; Sigman, D. M.; Morel, F. M.; Kraepiel, A. M., Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia. Proc. Natl. Acad. Sci. USA 2014,111, 4782-4787.
    [4]Smil, V., Enriching the Earth:Fritz Haber, Carl Bosch and the Transformation of World Food Production. MIT Press, Cambridge, Massachusetts,2001.
    [5]Yuan, S. J.; Chen, J. J.; Lin, Z. Q.; Li, W. W.; Sheng, G. P.; Yu, H. Q., Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide. Nature Commun.2013,4,2249.
    [6]Su, R.; Tiruvalam, R.; He, Q.; Dimitratos, N.; Kesavan, L.; Hammond, C.; Lopez-Sanchez, J. A.; Bechstein, R.; Kiely, C. J.; Hutchings, G J.; Besenbacher, F., Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au-Pd nanoparticles. ACS Nano 2012,6, 6284-6292.
    [7]Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; von Goetz, N., Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol.2012,46,2242-2250.
    [8]Duce, R. A.; LaRoche, J.; Altieri, K.; Arrigo, K. R.; Baker, A. R.; Capone, D. G; Cornell, S.; Dentener, F.; Galloway, J.; Ganeshram, R. S.; Geider, R. J.; Jickells, T.; Kuypers, M. M.; Langlois, R.; Liss, P. S.; Liu, S. M.; Middelburg, J. J.; Moore, C. M.; Nickovic, S.; Oschlies, A.; Pedersen, T.; Prospero, J.; Schlitzer, R.; Seitzinger, S.; Sorensen, L. L.; Uematsu, M.; Ulloa, O.; Voss, M.; Ward, B.; Zamora, L., Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 2008,320,893-897.
    [9]Lundberg, J. O.; Weitzberg, E.; Cole, J. A.; Benjamin, N., Nitrate, bacteria and human health. Nature Rev. Microbiol.2004,2,593-602.
    [10]Chaudhuri, S. K.; Lovley, D. R., Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnol.2003,21,1229-1232.
    [11]Rabaey, K.; Rozendal, R. A., Microbial electrosynthesis-revisiting the electrical route for microbial production. Nature Rev. Microbiol.2010,8,706-716.
    [12]Yang, H. G; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G Q., Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008,453, 638-641.
    [13]Deiana, C.; Fois, E.; Coluccia, S.; Martra, G, Surface structure of TiO2 P25 nanoparticles: Infrared study of hydroxy groups on coordinative defect sites. J. Phys. Chem. C 2010,114, 21531-21538.
    [14]Hussain, A. A computational study of catalysis by gold in applications of CO oxidation. Technische Universiteit Eindhoven, Eindhoven,2010.
    [15]He, Y.; Tilocca, A.; Dulub, O.; Selloni, A.; Diebold, U., Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). Nature Mater.2009,8,585-589.
    [16]Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990,41,7892-7895.
    [17]Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C., First-principles simulation:ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 2002,14,2717-2744.
    [18]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Erratum:Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B Condens. Matter.1993,48, 4978.
    [19]Monkhorst, H. J.; Pack, J. D., Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976,13,5188-5192.
    [20]Halgren, T. A.; Lipscomb, W. N., The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem. Phys. Lett.1977,49,225-232.
    [21]Delley, B., Fast calculation of electrostatics in crystals and large molecules. J. Phys. Chem. 1996,100,6107-6110.
    [22]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B Condens. Matter.1992,46, 6671-6687.
    [23]Li, Y.; Liu, Z.; Liu, L.; Gao, W., Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous aurroundings. J. Am. Chem. Soc.2010,132,13008-13015.
    [24]Valdes, A.; Qu, Z. W.; Kroes, G J.; Rossmeisl, J.; Nerskov, J. K., Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C 2008,112,9872-9879.
    [25]Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Norskov, J. K., Electrolysis of water on oxide surfaces. J. Electroanal. Chem.2007,607,83-89.
    [26]Klamt, A.; Schuurmann, G, COSMO:a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc, Perkin Trans.2 1993,799-805.
    [27]Kelly, C. P.; Cramer, C. J.; Truhlar, D. G, Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J. Phys. Chem. B 2006,110,16066-16081.
    [28]Gong, X. Q.; Selloni, A.; Dulub, O.; Jacobson, P.; Diebold, U., Small au and pt clusters at the anatase TiO2(101) surface:Behavior at terraces, steps, and surface oxygen vacancies. J. Am. Chem. Soc.2008,130,370-381.
    [29]Aschauer, U.; Chen, J.; Selloni, A., Peroxide and superoxide states of adsorbed O2 on anatase TiO2 (101) with subsurface defects. Phys. Chem. Chem. Phys.2010,12,12956-12960.
    [30]Gong, X.-Q.; Selloni, A.; Batzill, M.; Diebold, U., Steps on anatase TiO2(101). Nature Mater. 2006,5,665-670.
    [31]Alvarez-Idaboy, J. R.; Mora-Diez, N.; Vivier-Bunge, A., A quantum chemical and classical transition state theory explanation of negative activation energies in OH addition to substituted ethenes. J. Am. Chem. Soc.2000,122,3715-3720.
    [32]Mozurkewich, M.; Benson, S. W., Negative activation-energies and curved Arrhenius plots.1. Theory of reactions over potential wells. J. Phys. Chem.1984,88,6429-6435.
    [33]Moura, I.; Moura, J. J. G, Structural aspects of denitrifying enzymes. Curr. Opin. Chem. Biol. 2001,5,168-175.
    [34]Zhang, F. X.; Pi, Y.; Cui, J.; Yang, Y. L.; Zhang, X.; Guan, N. J., Unexpected selective photocatalytic reduction of nitrite to nitrogen on silver-doped titanium dioxide. J. Phys. Chem. C 2007,111,3756-3761.
    [35]Zhang, R; Jin, R.; Chen, J.; Shao, C.; Gao, W.; Li, L.; Guan, N., High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters.J. Catal.2005,232,424-431.
    [36]Kormann, C.; Bahnemann, D. W.; Hoffmann, M. R., Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions. Environ. Sci. Technol.1991,25, 494-500.
    [1]Contreras, S.; Rodriguez, M.; Chamarro, E.; Esplugas, S., UV-and UV/Fe(III)-enhanced ozonation of nitrobenzene in aqueous solution. J. Photochem. Photobiol. A:Chem.2001,142, 79-83.
    [2]Wang, A. J.; Cheng, H. Y.; Liang, B.; Ren, N. Q.; Cui, D.; Lin, N.; Kim, B. H.; Rabaey, K., Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode. Environ. Sci. Technol.2011,45,10186-10193.
    [3]Liu, Z.; Cui, F.; Ma, H.; Fan, Z.; Zhao, Z.; Hou, Z.; Liu, D., Bio-reaction of nitrobenzene with Microcystis aeruginosa:Characteristics, kinetics and application. Water Res.2012,46, 2290-2298.
    [4]Luan, F.; Burgos, W. D.; Xie, L.; Zhou, Q., Bioreduction of nitrobenzene, natural organic matter, and hematite by Shewanella putrefaciens CN32. Environ. Sci. Technol.2010,44, 184-190.
    [5]Chamarro, E.; Marco, A.; Esplugas, S., Use of fenton reagent to improve organic chemical biodegradability. Water Res.2001,35,1047-1051.
    [6]Latifoglu, A.; Gurol, M. D., The effect of humic acids on nitrobenzene oxidation by ozonation and O3/UV processes. Water Res.2003,37,1879-1889.
    [7]Zhang, S. J.; Jiang, H.; Li, M. J.; Yu, H. Q.; Yin, H.; Li, Q. R., Kinetics and mechanisms of radiolytic degradation of nitrobenzene in aqueous solutions. Environ. Sci. Technol.2007,41, 1977-1982.
    [8]Hause, M. L.; Herath, N.; Zhu, R.; Lin, M. C.; Suits, A. G, Roaming-mediated isomerization in the photodissociation of nitrobenzene. Nature Chem.2011,3,932-937.
    [9]Mu, Y.; Rozendal, R. A.; Rabaey, K.; Keller, J., Nitrobenzene removal in bioelectrochemical systems. Environ. Sci. Technol.2009,43,8690-8695.
    [10]Tayade, R. J.; Kulkarni, R. G; Jasra, R. V., Photocatalytic degradation of aqueous nitrobenzene by nanocrystalline TiO2. Ind. Eng. Chem. Res.2006,45,922-927.
    [11]Surolia, P. K.; Tayade, R. J.; Jasra, R. V., Photocatalytic degradation of nitrobenzene in an aqueous system by transition-metal-exchanged ETS-10 zeolites. Ind. Eng. Chem. Res.2010, 49,3961-3966.
    [12]Chen, C. C.; Ma, W. H.; Zhao, J. C., Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev.2010,39,4206-4219.
    [13]Yang, H. G; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G; Smith, S. C.; Cheng, H. M.; Lu, G Q., Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008,453, 638-641.
    [14]Zhao, Y.; Ma, W.; Li, Y.; Ji, H.; Chen, C.; Zhu, H.; Zhao, J., The surface-structure sensitivity of dioxygen activation in the anatase-photocatalyzed oxidation reaction. Angew. Chem. Int. Ed.2012,51,3188-3192.
    [15]Donlon, B. A.; Razo-Flores, E.; Lettinga, G.; Field, J. A., Continuous detoxification, transformation, and degradation of nitrophenols in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol. Bioeng.1996,51,439-449.
    [16]Wahab, H. S.; Koutselos, A. D., Computational modeling of the adsorption and (*)OH initiated photochemical and photocatalytic primary oxidation of nitrobenzene. J. Mol. Model. 2009,15,1237-1244.
    [17]Huang, H.; Zhou, J.; Liu, H.; Zhou, Y.; Feng, Y, Selective photoreduction of nitrobenzene to aniline on TiO2 nanoparticles modified with amino acid. J. Hazard. Mater.2010,178, 994-998.
    [18]Cropek, D.; Kemme, P. A.; Makarova, O. V.; Chen, L. X.; Rajh, T., Selective photocatalytic decomposition of nitrobenzene using surface modified TiO2 nanoparticles. J. Phys. Chem. C 2008,112,8311-8318.
    [19]Makarova, O. V.; Rajh, T.; Thurnauer, M. C.; Martin, A.; Kemme, P. A.; Cropek, D., Surface modification of TiO2 nanoparticles for photochemical reduction of nitrobenzene. Environ. Sci. Technol.2000,34,4797-4803.
    [20]Ismail, A. A.; Bahnemann, D. W., Mesostructured Pt/TiO2 nanocomposites as highly active photocatalysts for the photooxidation of dichloroacetic acid. J. Phys. Chem. C 2011,115, 5784-5791.
    [21]Sakthivel, S.; Shankar, M. V.; Palanichamy, M.; Arabindoo, B.; Bahnemann, D. W.; Murugesan, V., Enhancement of photocatalytic activity by metal deposition:Characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res.2004,38, 3001-3008.
    [22]Liu, R.; Sen, A., Controlled synthesis of heterogeneous metal-titania nanostructures and their applications.J. Am. Chem. Soc.2012,134,17505-17512.
    [23]Tada, H.; Ishida, T.; Takao, A.; Ito, S., Drastic enhancement of TiO2-photocatalyzed reduction of nitrobenzene by loading Ag clusters. Langmuir 2004,20,7898-7900.
    [24]Tada, H.; Ishida, T.; Takao, A.; Ito, S.; Mukhopadhyay, S.; Akita, T.; Tanaka, K.; Kobayashi, H., Kinetic and DFT studies on the Ag/TiO2-photocatalyzed selective reduction of nitrobenzene to aniline. ChemPhysChem 2005,6,1537-1543.
    [25]Sun, C.; Smith, S. C., Strong interaction between gold and anatase TiO2(001) predicted by first principle studies. J. Phys. Chem. C 2012,116,3524-3531.
    [26]Cardenas-Lizana, F.; Gomez-Quero, S.; Idriss, H.; Keane, M. A., Gold particle size effects in the gas-phase hydrogenation of m-dinitrobenzene over Au/TiO2. J. Catal.2009,268, 223-234.
    [27]Kiyonaga, T.; Fujii, M.; Akita, T.; Kobayashi, H.; Tada, H., Size-dependence of Fermi energy of gold nanoparticles loaded on titanium(iv) dioxide at photostationary state. Phys. Chem. Chem. Phys.2008,10,6553-6561.
    [28]Gan, S.; Liang, Y.; Baer, D. R.; Sievers, M. R.; Herman, G. S.; Peden, C. H. F., Effect of platinum nanocluster size and titania surface structure upon CO surface chemistry on platinum-supported TiO2 (110). J. Phys. Chem. B 2001,105,2412-2416.
    [29]Wang, C. X.; Yin, L. W.; Zhang, L. Y.; Liu, N. N.; Lun, N.; Qi, Y. X., Platinum-nanoparticle-nodified TiO2 nanowires with enhanced photocatalytic property. ACS Appl. Mater. Inter.2010,2,3373-3377.
    [30]Li, Y. P.; Cao, H. B.; Liu, C. M.; Zhang, Y, Electrochemical reduction of nitrobenzene at carbon nanotube electrode. J. Hazard. Mater.2007,148,158-163.
    [31]Taing, J.; Cheng, M. H.; Hemminger, J. C., Photodeposition of Ag or Pt onto TiO2 nanoparticles decorated on step edges of HOPG. ACS Nano 2011,5,6325-6333.
    [32]Tada, H.; Kiyonaga, T.; Naya, S., Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(IV) dioxide. Chem. Soc. Rev.2009,38,1849-1858.
    [33]Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H., Towards the computational design of solid catalysts. Nature Chem.2009,1,37-46.
    [34]Peng, G. W.; Seo, S.; Ruther, R. E.; Hamers, R. J.; Mavrikakis, M.; Evans, P. G, Molecular-scale structure of a nitrobenzene monolayer on Si(001). J. Phys. Chem. C 2011, 115,3011-3017.
    [35]Gong, X. Q.; Selloni, A., Reactivity of anatase TiO2 nanoparticles: The role of the minority (001) surface. J. Phys. Chem. B 2005,109,19560-19562.
    [36]Ohno, T.; Sarukawa, K.; Matsumura, M., Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J. Chem.2002,26,1167-1170.
    [37]Hussain, A. A computational study of catalysis by gold in applications of CO oxidation. Technische Universiteit Eindhoven, Eindhoven,2010.
    [38]Roudgar, A.; Eikerling, M.; van Santen, R., Ab initio study of oxygen reduction mechanism at Pt4 cluster. Phys. Chem. Chem. Phys.2010,12,614-620.
    [39]Parreira, R. L. T.; Caramori, G. F.; Galembeck, S. r. E.; Huguenin, F., The nature of the interactions between Pt4 cluster and the adsorbates H, OH, and H2O. J. Phys. Chem. A 2008, 112,11731-11743.
    [40]Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990,41,7892-7895.
    [41]Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C., First-principles simulation:ideas, illustrations and the CASTEP code. J. Phys-Condens. Mat.2002,14,2717-2744.
    [42]Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett.1996,77,3865-3868.
    [43]Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. Phys. Rev. B 1976,13,5188-5192.
    [44]Halgren, T. A.; Lipscomb, W. N., The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem. Phys. Lett.1977,49,225-232.
    [45]Delley, B., Fast calculation of electrostatics in crystals and large molecules. J. Phys. Chem. 1996,100,6107-6110.
    [46]Delley, B., From molecules to solids with the DMol3 approach. J. Chem. Phys.2000,113, 7756-7764.
    [47]Vayssilov, G N.; Migani, A.; Neyman, K., Density functional modeling of the interactions of platinum clusters with CeO2 nanoparticles of different size. J. Phys. Chem. C 2011,115, 16081-16086.
    [48]Han, Y.; Liu, C. J.; Ge, Q. F., Interaction of Pt clusters with the anatase TiO2(101) surface:A first principles study. J. Phys. Chem. B 2006,110,7463-7472.
    [49]Roy, N.; Sohn, Y.; Pradhan, D., Synergy of low-energy (101) and high-energy (001) TiO2 crystal facets for enhanced photocatalysis. ACS Nano 2013,7,2532-2540.
    [50]Tanaka, A.; Sakaguchi, S.; Hashimoto, K.; Kominami, H., Preparation of Au/TiO2 with metal cocatalysts exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation under irradiation of visible light. ACS Catal.2013,3,79-85.
    [51]Tachikawa, T.; Wang, N.; Yamashita, S.; Cui, S.-C.; Majima, T., Design of a highly sensitive fluorescent probe for interfacial electron transfer on a TiO2 surface. Angew. Chem. 2010,122,8775-8779.
    [52]Tachikawa, T.; Yamashita, S.; Majima, T., Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J. Am. Chem. Soc.2011, 133,7197-7204.
    [53]Tachikawa, T.; Majima, T., Photocatalytic oxidation surfaces on anatase TiO2 crystals revealed by single-particle chemiluminescence imaging. Chem. Commun.2012,48, 3300-3302.
    [54]Yang, L.; Luo, S.; Li, Y.; Xiao, Y.; Kang, Q.; Cai, Q., High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst. Environ. Sci. Technol.2010,44,7641-7646.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700