介孔材料MCM-41组装体的光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土离子及有机配合物与介孔材料MCM-41形成的组装体,在催化、光开关、微传感器等领域有着广泛的应用,近年来受到众多研究者的关注。
     本文采用水热合成法在氨水体系室温条件下中合成了高度有序的介孔材料MCM-41,并将稀土离子、有机发光配合物等客体组装进MCM-41孔道中,制备出系列MCM41-水杨酸、MCM41-水杨酸与铽、MCM41-Eu(Bz)3、MCM41-Tb(Asal)3phen等样品。通过X射线衍射、红外光谱、氮气吸附脱附、差热-热失重、拉曼光谱等技术对样品结构进行了表征,并考察了其光致发光性能以及稀土离子与有机配体之间的能量传递,探讨了主体MCM-41与客体发光材料之间的相互影响。
     在MCM41-水杨酸体系中,水杨酸掺杂浓度为0.025g时发光最强。在MCM41-水杨酸与铽体系中,Tb3+对水杨酸的发光起到一定的敏化作用,Tb3+的发光强度与激发光强度有关,发射光强度与入射光强度呈非线性关系。在MCM-41与稀土二元有机配合物组装体MCM41-Eu(Bz)3体系中,组装体中主客体之间存在较强的相互作用,MCM-41的存在使Eu(Bz)3对激发光有更强的吸收,MCM41-Eu(Bz)3较Eu(Bz)3发光强度大幅度提高。
     在MCM-41与稀土三元有机配合物组装体MCM41-Tb(Asal)3phen体系中,MCM-41的表面晶格场对配体单重态和三重态能级有较大的影响,第二配体邻菲咯啉S1态吸收的能量向Tb3+转移的效率增加,使Tb3+荧光发射强度增强。当MCM-41骨架中掺杂Yb3+,再与发光客体Tb(Asal)3phen形成组装体MCM41/Yb-Tb(Asal)3phen,其发光强度比MCM41-Tb(Asal)3phen组装体提高了4倍,当Yb/Si=7.579x10-3时,发光强度最高。
Rare earth ions and organic materials with mesoporous MCM-41 assembled into assemblies, which has important applications in catalytic converter, optical switching and micro-sensors fields, were caused attention by researchers in recent years.
     High ordered mesoporous material MCM-41 was synthesized in ammonia medium at room temperature, and the rare earth complexes were incorporated into the one-dimensional channels of MCM-41. A series of MCM41-salicylic acid, and MCM41-salicylic acid-Tb3+ MCM41-Eu(Bz)3, MCM41-Tb(Asal)3phen were prepared in the ammonia system. The structure and properties were characterized by XRD, IR, Raman, TG-DTA, N2 absorption-desorption, excitation and emission spectrum. The property of photoluminescence and energy transfer between rare earth ion and complexes as well as the relationship between the organic host and the inorganic optical guest were also studied.
     As doping concentration of 0.025g, salicylic acid was the most luminous. The concentration of Tb3+ played a sensitization role to salicylic acid, and shown anti-transfer phenomenon. The ourgoing light intensity and the incidence light intensity assume non-linear relationship. In mesoporous assembly body of MCM-41 and binary rare-earth organic complexes MCM41-Eu(Bz)3 systerm, Eu(Bz)3 can be bonded with the hydroxyl in the channel, thus the vibration energy of hydroxyl is reduced, then the luminescence of Eu3+ is enhanced effectively. Eu(Bz)3 has a stronger absorption of the excitated light in the assembly since the existence of MCM-41,MCM41-Eu(Bz)3 has a more excellent luminescence property than that of Eu(Bz)3.
     In mesoporous assembly body of MCM-41 and ternary rare-earth organic complexes MCM41-Tb(Asal)3phen system, the MCM-41 surface crystal field has great effect on matching only important state of body and triple state energy level, the efficiency of the energy that second matches body phen S1 state to Tb3+ increases, and makes the intensity of fluorescence launch of Tb3+ strengthen. When Yb3+ in the inorganic base material MCM-41 framework, Tb(Asal)3 phen and MCM-41 assembling experience and observe glowing object Tb (Asal)3 phen competes with the MCM-41 assembling queen, whose luminescence intensity in Tb (Asal) having improved four times. Luminescence intensity of the assembling body is strengthened, as Yb/Si=7.579×10-3, the luminescence intensity is maximal.
引文
[1]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature,1992,359(22):710~712
    [2]Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. Am. Chem. Soc.,1992,114(27):10834~10843
    [3]Huo Q S, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis of mesoporous silica based materials[J]. Chem. Mater.,1996,8(5):1147~1160
    [4]Brunel D. Functionalized Micelle-Templated Silicates (MTS)and Their Use as Catalysts for Fine Chemicals. Microporous Mesoporous Mater.,1999,27(3):329~344
    [5]Agger J. R., Anderson M. W., Pemble M. E., et al. Growth of quantum-confined indium phosphide inside MCM-41. J. Phys[J]. Chem. B 2003,102(18):3345-3353
    [6]Zhou W. Z., Thomas J. M., Shephard D. S. et al. Ordering of ruthenium cluster carbonyls in mesoporous silica. Science,1998,280(5364):705~708
    [7]Yao Yun feng, Zhang Mai sheng, Yang Yan sheng. Synthesis of nanosized MCM-41 mesoporous molecular sieve by microwave radiation method. Acta[J]. Phys.Chim. Sin.,2001,17(2):1117~1121
    [8]Run Ming tao, Wu Si zhu, Wu Gang. Ultrasonic synthesis of mesoporous molecular sieve. Microporous and Mesoporous Materials,2004,74(1):37~47
    [9]Monnier A, Schuth F, Huo Q S. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science,1993,261(5126):1299~1303
    [10]Yanagisawa T, Shimizu T, Kuroda K, et al. The preparation of Alkyltrimethylammonium-Kanemite Complexes and Their Conversion to microporous Materials[J]. Bull Chem. Soc. Jpn.,1990,63(4): 988-992
    [11]Yang Pei dong, Zhao Dong yuan, Margolese D I, et al. Generalized syntheses of large pore mesoporous metal oxides with semicrystalline frameworks. Nature,1998,396(6707):152~155
    [12]Ayumu Fukuoka, Hirokatsu Miyata and Kazuyuki Kuroda. Alignment control of a cyanine dye using a mesoporous silica film with uniaxially aligned mesochannels[J]. Chem. Commun.,2003,284~285
    [13]A. Monnier, F. Schuth, Q. Huo, Cooperation formation of inorganic-organic interfaces in the synthesis of silicate mesostructure, Sci.,2003,261:1299-1303
    [14]Nicholas R. B., Coleman M. A., Trevor R. S., Justin D. H.. The formation of dimensionally ordered silicon nanowires within mesoporous silica[J]. J. Am. Chem. Soc.,2001,123(1):187~188
    [15]Lim M H, Blanford C F, Stein A. MCMs are readily functionalized with organic groups by post-synthetic graphting[J]. J. Am. Chem. Soc.,1997,119:4090~4091
    [16]Crosby G A. Luminescent organic complexes of the rare earth metals. Mol. Cryst.,1966,1(1):37~ 81
    [17]Bore M T, Pham H N, Switzer E. The role of pore size and structure on the thermal stability of gold nanoparticles within mesoporous silica[J].Phys Chem B,2005,109(7):2873~2880.
    [18]Vartuli J., Kresge C., Leonowicz M., et al. Synthesis of Mesoporous Materials:Liquid-Crystal Templating Versus Intercalation of Layered Silicates[J].Chem. Mater.,1994,6:2070~2077
    [19]Huo Yongqian, Li Jun, Wang Wei, et al. Electron spectra of Chemical assembly mesoporous MCM-41 with transition metal complexes. Spectroscopy and Spectral Analysis,2004,24(3):281~ 284
    [20]Ayyamperumal Sakthivel, Jin Zhao, Marianne Hanzlik and Fritz E. Kuhn, Heterogenisation of CpMo(CO)3Cl on mesoporous materials and its application as olefin epoxidation catalyst[J].Dalton Trans.2004,15:3338~3341.
    [21]A.Monnier, F.Shuth, Q.Huo, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructure[J].Science,261:1299~1303.
    [22]Hoppe R., Ortlam A., Rathousky J., et al. Synthesis of titanium-containing MCM-41 mesoporous molecular sieves in the presence of zinc phthalocyanine and rhodamine B. Microporous[J]. Mater., 1997,8:267~273
    [23]Xu Lei, Wang Guo wei, Wei Ying xu, et al. Study on synthesis of mesoporous molecular sieve MCM-41 Ⅱ. Microwave synthesis method. Chinese Journal of Catalysis,1999,20(3):251~255
    [24]Gallezot P.. Preparation of metal clusters in zeolites. Molecular Sieves. Berlin Heidelberg: Springer-Verlag,2002,3:257~298
    [25]Steel A., Carr S.W., Anderson M.W..14N NMR study of surfactant mesophases in the synthesis of mesoporous silicates[J]. J. Chem. Soc. Commun.,1994,13:1571~1572
    [26]Shi Jianlin, Hua Zile, Zhang Lingxia. Nanocomposites from ordered mesoporous materials[J]. J. Mater. Chem..,2004,14,795~806
    [27]Ding Y, Chen M, Erlebacher J. Metallic mesoporous nanocomposites for electrocatalysis[J]. J. Am. Chem. Soc.,2004,126:6876~6877
    [28]Christabel E. Fowler, Benedicte Lebeau, Stephen Mann. Covalent-coupling of an organic chromophore into functionalized MCM-41 mesophases by template-directed co-condensation. Chem. Commun.,1998,1825~1826
    [29]Anwander R., Nagl I., Widenmeyer M.. Surface characterization and functionalization of MCM-41 silicates via silazane silylation[J]. J. Phys. Chem. B,2000,104:3532~3544
    [30]Anderson P P.. Ionic clusters in zeolites. Molecular Sieves[J]. Berlin Heidelberg:Springer-Verlag, 2002,3:307
    [31]Chai G S, Yoon S B, Yu J S. Ordered Porous Carbons with Tunable Pore Sizes as Catalyst Supports in Direct Methanol Fuel Cell[J]. J. Phys. Chem. B.,2004,108:7074~7079
    [32]Crosby G A, Whan R E. Selective excitation of trivalent Tm via intramolecular energy transfer[J]. J. Chem. Phys.,1962,36(4):863~865
    [33]Benedicte Lebeau, Christabel E. Fowler, Simon R. Hall, et al. Transparent thin films and monoliths prepared from dye-functionalized ordered silica mesostructures[J]. J. Mater. Chem.,1999,9:2279~ 2281
    [34]Shephard D. S., Maschmeyer T., Johnson B. F. G., et al. Bimetallic nanoparticle catalysts anchored inside mesoporous silica[J]. Angew. Chem. Int. Ed.,1997,36(20):2242~2245
    [35]Vogel, R.; Meredith, P.; Kartini, I. et al. Mesostructured dye-doped titanium dioxide for micro-optoelectronic applications[J]. Chem. Phys. Chem.,2003,4(6):595~603
    [36]Tudor J, O' Hare D. Stereospecific propene polymerisation catalysis using an organometallic modified mesoporous silicate. Chem. Commun.,1997, (6):603~604
    [37]Han Y, Meng X, Guan H, et al. Stable iron-incorporated mesoporous silica materials prepared in stong acidic media[J]. Microporous and Mesoporous Materials,2003,57(2):191~196
    [38]游效曾,孟庆金,韩万书.配位化学进展[M].北京:高等教育出版社,2000,222
    [39]郑珊,高濂,郭景坤.金属Pt团簇在氧化钛修饰MCM-41中的组装[J].无机材料学报,2001,16(6):1235~1238.
    [40]Wark M., Ortlam A., Ganschow M., et al. Monomeric encapsulation of phthalocyanine-dye molecules in the pores of Si-MCM-41 and Ti-MCM-41[J]. Ber. Bunsenges. Phys. Chem.,1998,102: 1548-1553
    [41]Xu Wei, Guo Haiquan, Akins Daniel L.. Aggregation and Exciton Emission of a Cyanine Dye Encapsulated within Mesoporous MCM-41[J]. J. Phys. Chem. B.,2001,105(32):7686~7689
    [42]Ganschow M., Wohrle D., Schulz-Ekloff G. Incorporation of differently substituted phthalocyanines in the mesoporous molecular sieve Si-MCM-41 [J]. J. Porphyrins Phthalocyanines,1999,3(4):299~ 309
    [43]Leon R., Margolese D., Stucky G., Petroff P. M.. Nanocrystalline Ge filaments in the pores of a mesosilicate[J]. Physical Review B.,1995,52(4):2285~2287
    [44]Yoshitake H, Tatsumi T, Yokoi T. Adsorption Behavior of Arsenate at Transition Metal Cations Captured by Amino-Functionalized Mesoporous Silicates. Chem. Mater.,2003,15(8):1713 ~ 1721
    [45]Yang H., Shi Q., Lu Q., Gao F., et al. One-Step Nanocasting Synthesis of Highly Ordered Single Crystalline Indium Oxide Nanowire Arrays From Mesostructured Frameworks[J]. J. Am. Chem. Soc., 2003,125(16):4724~4725
    [46]Huo, Q.; Margolese, D. I.; Ckiesla, U.; Demuth, d. G.; Feng, P.; Gier, T. E.; Sieger, P.; Firouzi, A. Chmelka, B. F.; Schuth, F.; Stucky, G. D., Chem. Mater.,1994,6,2317.
    [47]Crosby G A, Whan R E. Alire J. Intramolecular energy transfer in rare chelates-role of the triplet state[J]. J. Chem. Phys.,1961,34(3):743~748
    [48]Leontidis E. Hofmeister anion effects on surfactant self-assembly and the formation of mesoporous solids[J]. Curr. Opin. Colloid Interface Sci.,2002,7:81~91
    [49]A. Steel, W. S. Carrs, M. W. Anderson,14N NMR study of surfactant mesophases in the synthesis of mesoporous silicates, J. Chem. Soc., Chem. Commun.,2002,13:1571-1572
    [50]Albin Michae, Cader Beth M., Horrocks William D.Jr. Lanthanide complexes of ionophores.2. Spectroscopic characterization of lanthanide(Ⅲ) ion binding to lasalocid A in methanol[J]. Inorg. chem.,1984,23(10):3045-3050.
    [51]A. Matijasil, C. A. Aoegtlin, Room temperature synthesis of silicate mesoporous materials:An in situ study of the lamellar to hexagonal phase transition, J. Chem. Soc., Chem. Commun.,2001, 10:1123-1124
    [52]刘光焕,周峰,徐红,燃料化学学报,1997,25(6),539
    [53]Weissan S I. Intramolecular energy transfer the fluorescence of complexes of europium[J]. J chem. phys,1942,10:214-217.
    [54]Deter D L. A theory of sensitized luminescence in solids[J]. J chem. phys,1953,21(5):836-850.
    [55]Crosby G A, Whan R E. Intramolcular energy transfer in Yb organic chelates[J]. Spectrochim. Acta. 1958,10:377.
    [56]Filipescu N, Sager W F, Serafin F A. Substitutent effects on interamolecular energy transfer(Ⅱ) the fluorescence spectra of Eu and Tb β-dikeketone chelates[J]. J. Phys. Chem.1964,68:3324.
    [57]Bhaumik M L. Quenching and temption dependence of fluorescence in rare earth chelates[J]. J. Chem. Phys.1964,40:3711.
    [58]Bhaumik M L, Nugent L J. Time-resolved spectroscopy of Eu chelates[J]. J. Chem. Phys.1966, 43:1680.
    [59]Rose D, Blanc J, and Pressley R Interaction of electrons and nuclei in Li metal[J]. J. Appl. Phys. Lett. 1966,8:101.
    [60]Matsuda Y, Makishima S and Shionoya S. Mechanism of intramolecular energy transfer in rare earth chelates as revealed by infrared absorption measurements[J]. Bull. Chem. Soc. Jap.1969,42:356.
    [61]Sato S, Wada M. Relations between intramolecular energy efficiencies and triplet state energies in rare earth β-dikeketone chelates[J]. Bull. Chem. Soc. Jap.1970,43:1952-1962.
    [62]Horrocks Ir W D and Albin N Prog. Lanthanide ion luminescence in coordination chemistry and biochemistry [J]. Inorg chem.,1984,31(1):1-104.
    [63]Albin Michael, Horrocks William D.Jr. Europium(Ⅲ) luminescence excitation spectroscopy. Quantitative correlation between the total charge on the ligands and the 7F0→5D0 transition frequency in europium(III) complexes[J]. Inorg chem.,1985,24(6):895-900.
    [64]Rey E S, Denoye I R.12thlnt. J. Zeol.Conf.Baltimore(USA) 1998:128.
    [65]Latva Mariti, Takalo Harri, Mukkala Veli-maiti. Correlation between the lowest triplet state energy level of the ligand and lanthanide(III)luminescence quantum yield[J]. J Lurnin.,1997 75 (2): 149-169.
    [66]B.Yan, H. J. Zhang, J. Z. Ni. Luminescence properties of the rare reath (Eu3+ and Tb3+) complexes with 1,10-Phenanthroline incorporated in silica matrix by a sol-gel method[J]. Materials Science and Engineering,1998, B52:123-128.
    [67]Qingguo Meng, Hongjie Zhang, Shunbin Wang, et al. Preparation and characterization of luminescent thin films doped with rare earth (Tb3+, Eu3+) complexes derived from a sol-gel process[J]. Materials Letters,2000,45:213-216.
    [68]Ronghu Wu, HUazhang Zhao, Qingde Su. Photoacoustic and fluorescencestudies of silica gels doped with rare earth salicylic acid complexes[J]. Journal of Non-Crystalline Solids,2000,278:223-227.
    [69]M. Elbanowski, Z. Hnatejko, Z, Stryla, et al. Luminescence study of complexation of Eu(Ⅲ) and Tb(III) with N-methyliminodiacetic acid[J]. Journal of Alloys and Compounds,1995,225:515-519.
    [70]H. R. Li, L. S. Fu, J. Lin, et al. Luminescence properties of transparent hybrid thin film covalently linked with lanthanide complexes[J]. Thin Solid Films,2002,416:197-200.
    [71]Whitesides G M, Mathias J P, Seto C T.Molecular self-assembly and nanochemistry[J]:a chemical strategy for the synthesis of nanostructures.Science,1991,254:1312-1319.
    [72]Whan R E, Crosby G A. Luminescence studies of rare earth complexes-benzoylacetonate and dibenzoylmethide chelates[J]. J. Mol. Spectrosc.,1962,8:315~327
    [73]Ng S M, Ogino S. Aida T. Free radical polymerization within mesoporous zeolite channels[J]. Macromol Rapid Commun,1997,18(12):991~996
    [74]Whitesides G M, Mathias J P, Seto C T.Molecular self-assembly and nanoch- emistry:a chemical strategy for the synthesis of nanostructures[J]. Science,1991,254:1312-1319.
    [75]Wu C.G., Bein T. Microwave synthesis of molecular sieve MCM-41[J].Chem.Commun.1996,9: 925~926
    [76]Ulrike Ciesla, Ferdi Schuth.Ordered mesoporous materials[J]. Microporous and Mesoporous Materials,1999,27:131~149
    [77]Sabbatin N., Grardigle M., Lehn J. M.. Luminescent lanthanide complexes as photochemical supramolecular devices. Coord[J]. chem. rev.,1993,123(1):201~208
    [78]黄春辉.稀土配位化学[M].北京:科学出版社,1999,363-380
    [79]张若桦.稀土元素化学[M].天津:天津科学技术出版社,1987,45~48
    [80]胡继明、陈观锉、曾云鹦.稀土配合物的发光机理和荧光分析特性研究[J].高等学校化学学报,1990,11(8):817-821
    [81]LI Hairong, Zhang Fujia, Zheng Daishun. Investigation on Structural Characteristics of Tris-(8-hydroxyquinoline) Aluminum[J]. Chin. J. Lumin.,2003,24(1):44~50
    [82]Xu C X, Xue Q H, Ba L, et al. Spectral Behaviors of 8-Hydroxyquinoline Aluminum in Nanometer-sized Holes of Porous Alumina[J]. Chin. Sci. Bui.,2001,46(21):1839~1841
    [83]Dexter D L. A theory of sensitized luminescence in solids[J]. J. Chem. Phys.,1953,21(5):836~850
    [84]Ge S X, He N Y. Photoluminescence of [Eu(bpy)2]3+dispersed in MCM-41 and HMS[J]. Journal of Southeast University(English Edition),2005,21(2):211~214
    [85]Wei Changping, Li Shuzeng, Zhou Bin, et al. Catalytic Synthesis of Isopropyl Benzene over SO4 2-/ZrO2-MCM-41[J]. Chem. Res. Chinese U.,2006,22(3):371~374
    [86]Wei Changping, Jiang Xinhua, Lin Kewen, et al. Mesoporous Material Assemblesing Sparse Soil Organism Material[J]. Journal of Changchun University of Science and Technology,2005,28(3): 89-91
    [87]Xu Jie, Wei Changping, Wan Chenglong. Assembly and Characterization of Mesoporous Material MCM-41 and Semiconductor[J]. Journal of Jilin University(Science Edition).2007,45(1):121 ~ 124
    [88]白妮,张萍,郭阳虹等.曙红Y在介孔分子筛MCM-41膜及粉体中的封装及发光性质研究[J].高等学校化学学报,2002,23(5):786~788
    [89]A. Fernandes, J. Dexpert-Ghys, A. Gleizes, et al. Grafting luminescent metal-organic species into mesoporous MCM-41 silica from europium(Ⅲ) tetramethylheptanedionate, Eu(thd)3[J]. Microporous and Mesoporous Materials,2005,83(1-3):35~46
    [90]Dong Yanfeng, Li Qingshan. Photoluminescent spectra of 8-hydroxyquinoline aluminum embedded in porous alumina[J]. Acta. Phys. Sin.,2002,51(7):1645~1648
    [91]Chang H J, Chen Y F, Lin H P, et al. Strong visible photoluminescence from SiO2 nanotubes at room temperature[J]. Appl. Phys. Lett.,2001,78(24):3791 ~3793
    [92]E. Geidel, H. Lechert, J. Dobler, et. al. Chatacterization of mesoporous materials by vibrational spectroscopic techniques[J]. Microporous and Mesoporous Materials,2003,65:31~42
    [93]David C. Calabro, Ernest W. Vslyocsik, Frank X.Ryan. In situ ATR/FTIR study of mesoporous silicate synthesis[J]. Microporous Materials,1996,7:243-259
    [94]Zheng Lingzhi, Zhou Zhongcheng, Shu Wangen. Spectra Analyses of Europium Complexes with Benzonic Acid and Its Derivatives[J]. Chin. J. Lumin.,2006,27(3):373~377
    [95]Sajanikumari Sadasivan, Deepa Khushalani, Synthesis and shape modification of organo-functionalised silica nanoparticles with ordered mesostructured interiors[J]. J. Mater. Chem.,2003, 13:1023-1029
    [96]Wang Zhengxiang, Chen Hong, Tan Meijun, et al. The Synthesis and Fluorescence Properties of Doping Europium-Benzonic Acid-Phenanthroline Complexes[J]. Spectroscopy and Spectral Analysis, 2005,25(7):1106~1109
    [97]Kruk M, Antochshuk V, Matos JR etal. Determination and tailoring the pore entrance size in ordered silica with cage-like mesoporous structures[J]. J Am Chem. Soc.2002,124:768-769
    [98]Xu Qinghong, Li Hongwu, Li Liansheng, et al. A Study on Assembly of a Rare Earth Complex [C5H5NC16H33][Eu(TTA)4] in the Channel of Si-MCM-41. Chemical Journal of Chinese Universities, 2003,24(10):1758~1760
    [99]张迈生,刘伟江,杨燕生等.MCM-41-罗丹明B超分子功能材料的组装及其发光[J].高等学校化学学报,2003,20(4):526~528
    [100]袁淑娟,李清山,潘志锋等.有机染料在多孔铝中的发光研究[J].半导体学报,2001,22(11):1406-1410
    [102]吴超,陈文,周静,等Eu/MCM-41介孔复合体系的制备与表征[J].中国稀土学报2005,23(2):175-178.
    [103]阳福,容建华,刘应亮等.罗丹明B在介孔二氧化硅中的发光研究[J].功能材料,2005,36(4):575-576
    [104]刘丰炜,符连社,林君,等.新型无机-有机杂化中孔发光材料(phen)2EuMCM-41的合成与表征[J].应用化学,2001,18(5):380-383
    [105]陈悦,李晓天,古丽米娜等.负载激光染料香豆素151的MCM-41粉体及其纤维的光学性质研究[J].高等学校化学学报,2006,27(3):397~400
    [106]Dieke G H. Spectra and Energy Levels of Rare Earth Ions in Crystals[J]. New York:Wiley Interscience.1984,2:59.
    [107]T. Moller. The Chemistry of Lanthanides, Pergamon Press,1973.
    [108]W.T.Carnall. Handbook of the Physics and Chemistry of Rare Earth, North-Holland[J]. Amsterdam, 1979,3171.
    [109]张思远,毕宪章.稀土光谱理论.吉林出版社,1991
    [110]何晓东,冯嘉春.稀土有机光转换剂技术概述[J].兰化科技,2003,15(3):202-204.
    [111]Balandin A, Wang K L, Kouklin N, et al. Raman spectroscopy of electrochemically selfassembl-ed CdS quantum dot [J]. Appl. Phys. Lett.,2000,76:137-139.
    [112]A.S. Araujo, M. Jaroniec. Termogravimetric monitoring of the MCM-41 synthesis[J]. Thermoch-imica Acta,2000,363:175-180
    [113]Alexander V. Neimark, Peter I. Ravikovitch, Michael Grun, et. al. Pore size analysis of MCM-41 type adsorbents by means of nitrogen and argon adsorption[J]. Journal of Colliod and Interfa-ce Science,1998,207:159-169
    [114]S. C. Laha, P. Mukherjee, S. R. Sainkar, et al.Cerium Containing MCM-41-Type Mesoporous Materials and their Acidic and Redox Catalytic Properties[J]. Journal of Catalysis,2002, 207:213-223
    [115]张立德,牟秀美.纳米材料与纳米结构[M].北京:科学出版社,2001.
    [116]Crosby G A, Whan R E. Selective excitation of trivalent Tm via intramolecular energy transfer. [J]. Chem.Phys.1962,36:863
    [117]Whan R E, Crosby G A. Luminescence studies of rare earth complexes-benzoylacetonate and dibenzoylmethide chelates[J]. J. Mol. Spectrosc.1962,8:315
    [118]Crosby G A.Luminescent organic complexes of the rare earth metals[J]. Mol Cryst,1966,1(1):37-81
    [119]乐洪咏,华伟明,唐颐,乐英红,高滋,Cr-HMS合成、表征及其在催化氧化反应中的应用,高等学校化学学报,2000 21(7):1101-1104
    [120]DiRenzo F, Cambon H, Dutartre R. A 28-years-old synthesis of micelle-templated mesoporous silica[J]. Microporous Mater.,1997,10:283~286
    [121]徐庆红.稀土配合物在多孔材料中的组装及光物理性质的研究:[博士学位论文].长春:吉林 大学,2001
    [122]B.R. Judd. Optical absorption intensities of rare-earth ions. Physical Review.1962,127:750~761
    [123]G.Adachi, K.Sorita, K. Kawata, K. Tomokiyo, J. Shiokawa. Luminescence of divalent europium complexes with 18-crown-6 derivatives Inorg[J]. Chim.Acta,1985,109:117~ 121
    [124]Meijerink A, Wegh R T. VUV Spectroscopy of Lanthanides:Extending the Horizon[J]. Materials Science Forum,1999,(315~317):11-26
    [125]CHEN C H, SHI J. Metal chelates as emitting materials for organic electroluminescence[J]. Coord. Chem. Rev.,1998,171(1):161~174.
    [126]LI Hai-Rong, ZHANG Fu-Jia, ZHENG Dai-Shun. Investigation on Structural Characteristics of Tris-(8-hydroxyquinoline) Aluminum[J]. Chin. J. Lumin.,2003,24(1):44~50. (in Chinese)
    [127]DONG Yan-Feng, LI Qing-Shan. Photoluminescent spectra of 8-hydroxyquinoline aluminum embedded in porous alumina[J]. Acta. Phys. Sin.,2002,51(7):1645~1648. (in Chinese)
    [128]XU C X, XUE Q H, BA L, et al. Spectral Behaviors of 8-Hydroxyquinoline Aluminum in Nanometer-sized Holes of Porous Alumina[J]. Chin. Sci. Bul.,2001,46(21):1839~1841.
    [129]CHANG H J, CHEN Y F, LIN H P, et al. Strong visible photoluminescence from SiO2 nanotubes at room temperature[J]. Appl. Phys. Lett.,2001,78(24):3791~3793.
    [130]WANG Zheng-Xiang, CHEN Hong, TAN Mei-Jun, SHU Wan-Gen. The Synthesis and Fluorescence Properties of Doping Europium-Benzonic Acid-Phenanthroline Complexes[J]. Spectroscopy and Spectral Analysis,2005,25(7):1106~1109. (in Chinese)
    [131]赵丹,秦伟平,张继森等.罗丹明6G/MCM-41纳米复合物的发光蓝移.发光学报,2003,24(6):637-640
    [132]陈悦,李晓天,古丽米娜等.负载激光染料香豆素151的MCM-41粉体及其纤维的光学性质研究[J].高等学校化学学报,2006,27(3):397~400.
    [133]Chang HJ,Chen Y F,Lin H P,et al. Strong visible photoluminescence from SiO2 nanotubes at room emperature [J]. Applied Physics Letters 2001,78 (24):3791.
    [134]Ulrike Ciesla, Ferdi Schuth.Ordered mesoporous materials[J]. Microporous and Mesoporous Materials,1999,27:131~149
    [135]Alexander V. Neimark, Peter I. Ravikovitch, Michael Grun, et. al. Pore size analysis of MCM-41 type adsorbents by means of nitrogen and argon adsorption[J]. Journal of Colliod and Interfa-ce Science,1998,207:159~169
    [136]E. Geidel, H. Lechert, J. Dobler, et. al. Chatacterization of mesoporous materials by vibrational spectroscopic techniques[J]. Microporous and Mesoporous Materials,2003,65:31~42
    [137]David C. Calabro, Ernest W. Vslyocsik, Frank X.Ryan. In situ ATR/FTIR study of mesoporous silicate synthesis[J]. Microporous Materials,1996,7:243~259
    [138]S. C. Laha, P. Mukherjee, S. R. Sainkar, et al.Cerium Containing MCM-41-Type Mesoporous Materials and their Acidic and Redox Catalytic Properties[J].. Journal of Catalysis,2002, 207:213~223
    [139]Linsebigler A, Lu G, Yates J T. Chem. Rev.[J],1995,95:735-758
    [140]Gilani A G., Sariri R. Spectrochimica Acta Part A [J],2001,57:158-161
    [141]Yang P. J.Chem Mater,1999,11:2813
    [142]Ryoo R. J. Phys Chem,1996,100:17718
    [143]C.Y.Chen, S.L.Urkeet, H.X.Li. J. Micropor. Mater,1993,2,27.
    [144]Huo, Q., Margolese, D.I., Stucky, G. D. Surfactant control of phases in the synthesis of mesopo-rous silica-based materials[J]. Chem. Mater.1996,8:114~118
    [145]Lu W J, IuGZ, Lrio Y, et al. J. Molecular Catalysis A:Chem,2002,188:225
    [146]Ding Y, Chen M W, Ertebaeher J. J. Am. Chem. Soc.,2004,126:6876
    [147]Rey E S, Denoye I R.12thInt. J. Zeol.Conf.Baltimore(USA)1998:128.
    [148]Q.S. Huo, D.I. Margolese, U. Ciesla, et al. Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Array[J].Chem. Mater,1994,6(8),1176~1191
    [149]Whitesides G M, Mathias J P, Seto C T.Molecular self-assembly and nanoch-emistry:a chemical strategy for the synthesis of nanostructures[J]. Science,1991,254:1312-1319.
    [150]Bore M T, Pham H N, Switzer E. The role of pore size and structure on the thermal stability of gold nanoparticles within mesoporous silica[J].Phys Chem B,2005,109(7):2873~2880.
    [151]赵修松,王情遐,徐龙伢.一种新型中孔3.8nm沸石MCM-41的合成[J].科学通报,1995,40(16):1476-1479.
    [152]何农跃,鲍书林,须沁华.含La的SiMCM-41的合成及其水热稳定性[J].科学通报,1997,42(2):165~168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700