Ⅷ簇元素基混合团簇的结构,稳定性和磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米团簇已经成为研制具有特殊性能的新型功能纳米材料的基础,金属团簇由于其在现代工业生产中的实用价值,越来越受到研究者的普遍关注,尤其是过渡金属团簇。对它们的结构和性质的研究是开发高新技术材料的基础。本论文主要采用基于第一性原理的密度泛函理论系统研究了纯Nin、Pdn、Ptn(n=1-9)团簇的结构、电子性质及磁性。并研究了Al元素掺杂小的Nin、Pdn、Ptn团簇的结构和磁性等性质。主要内容如下:
     1.第Ⅷ族Ni、Pd、Pt团簇的结构演化和磁性
     本章中我们运用密度泛函理论(DFT)方法系统研究了Nin、Pdn、Ptn小团簇的结构演化规律、稳定性和磁性。结果表明:通过在Nin-1、Pdn-1、Ptn-1团簇的稳定结构上增加相应的原子可以方便快捷地找到Nin、Pdn、Ptn团簇的一系列稳定结构。小的Ni-Pd-Pt系团簇的稳定结构具有相似的演化规律。n=2-6时,团簇的较稳定构型都是在三角和四角的基础上增加原子得到,且不能显著改变原有团簇的构型。n>6以后团簇的结构都是在八面体和十面体结构的基础上增加原子得到的,并逐渐具有笼的构型。
     Ni-Pd-Pt系团簇的平均键长和平均配位数都随团簇尺寸的增加而增加,表明团簇的结构是在键长和配位数共同作用下达到平衡的结果。随着团簇尺寸的增大Ni团簇的平均键长最小,而Pd和Pt团簇的平均键长较接近,除了n=3,4时Pd团簇的平均键长比Pt略小外,其余尺寸均大于Pt团簇。
     Ni-Pd-Pt系团簇的平均结合能都随团簇尺寸的增大而增大,在n=2-9的尺寸内,Pd团簇的平均结合能最小,Ni团簇的平均结合能比Pd团簇的略大,而Pt团簇具有较大的结合能。Ni-Pd-Pt系团簇的能量二阶差分、分裂能、HOMO-LUMO能隙随团簇尺寸的演化都没有表现出明显的奇偶振荡行为,但Nin团簇在n=5、7时有较大的值,说明相对应的团簇具有较高的稳定性、较低的化学活性。Pdn团簇的能量二阶差分、分裂能在n=4时有较大的值,说明相对应的团簇具有较高的稳定性。Ptn团簇的能量二阶差分、分裂能、HOMO-LUMO能隙和费米能级在n=2、5、8时均有较大的值,说明相对应的团簇具有较高的稳定性、较低的化学活性和较为封闭的电子壳层结构。
     对团簇磁性的研究表明随着团簇尺寸的增大,Ni和Pt团簇的平均每原子磁矩都大于Pd团簇的,Ni团簇的比Pt团簇的略大,平均每原子磁矩都随团簇尺寸的增大有减小的趋势,但Pd和Pt团簇减小较快。
     2.A1元素掺杂小的Nin、Pdn、Ptn团簇的结构和磁性
     本部分主要运用密度泛函理论(DFT)方法系统研究了A1元素掺杂第Ⅷ族基混合团簇NinAl、PdnAl、PtnAl(n=1-8)及其阳离子团簇的结构、稳定性、电子性质和磁性。结果表明:通过用Al原子替换Nin+1、Pdn+1、Ptn+1团簇的稳定结构中不同位置上的Ni、Pd、Pt原子可以方便快捷地找到相应掺杂团簇的稳定结构。除n=6外,Ni,,A1团簇的最稳定几何结构都具有与纯Nin+1团簇基态结构相似的框架。除n=3、6、8外,中性PdnA1团簇和纯Pdn+1团簇具有完全相同的基态构型。除n=2和8外,Pt,,A1团簇也得到了和Ptn+1团簇相同的基态构型。表明用一个Al原子置换第Ⅷ族基团簇相应原子后,对原有团簇构型的影响较小。得到的基态结构在n=3时都从平面结构转变为三维结构,且n较小时团簇的结构都是在三角和四角的基础上增加原子得到,随着团簇的增大,n>6以后团簇的结构都是在八面体和十面体的基础上增加原子得到的。阳离子NiAl+、PdnAl+、PtnA1+(n=1-8)团簇的稳定结构均保持了中性团簇的框架,仅个别团簇的能量排序发生了变化,表明正电荷对这一簇团簇的结构影响较小。
     对团簇键长和配位数的分析表明团簇稳定结构的形成是强的Ni-Ni、Pd-Pd、Pt-Pt及Ni-Al、Pd-Al、Pt-Al键共同作用达到平衡的结果。强的Ni-Ni、Pd-Pd、Pt-Pt键决定了NinAl、PdnAl、PtnAl团簇的Ni、Pd、Pt框架结构,强的Ni-Al、Pd-Al、Pt-Al键使A1原子处于一个高的配位点。
     对混合团簇平均结合能的分析表明A1原子的加入增强了Ni和Pd团簇的稳定性,但降低了Pt团簇的稳定性,总体上没有改变Ni-Pd-Pt系团簇结合能的变化趋势。对团簇稳定性的分析表明Ni5Al和Ni7Al团簇,及阳离子Ni4Al+、Ni5Al+、Ni6Al+团簇的稳定性较其它团簇高,与Nin团簇的幻数为5和7不同。对PdnAl及其阳离子团簇稳定性的分析表明:Pd3Al及Pd3Al+团簇具有较高的稳定性,没有改变Pd4团簇的幻数特性。PdnAl及其阳离子团簇的能隙和电离势的分析也表明对于具有幻数特征的团簇Pd3Al及Pd3Al+团簇,具有较高的能隙,较高的稳定性。对A1元素掺杂Pt基混合团簇的稳定性的研究表明:Pt2Al、Pt4Al和Pt6Al团簇及阳离子Pt3Al+团簇具有较高的稳定性,对能隙及电离势的分析也表明Pt4Al和Pt3Al+团簇具有较高的稳定性。Pt4Al团簇具有较高的稳定性,也没有改变Pt5团簇的幻数特性。
     对混合团簇磁性的分析表明单个Al原子的加入对Nin、Pdn、Ptn团簇的平均每原子磁矩随尺寸的变化趋势没有影响,但总体上降低了团簇的平均磁矩,表明A1原子有电荷转移到相应Ni、Pd、Pt原子上。
Nanocluster have became the foundation of developing new nanometer materials, while metal clusters are becoming a matter of concern for more and more people because the practical use in modern industry, especially for transition metal cluster. The base of high and new technological material is study for their structures and properties. In this paper we mainly perform an extensive study the structures and electronic properties as well as magnetism for Nin、Pdn、Ptn、clusters up to n=9, the neutral and cationic clusters of Al-doped Nin、Pdn、Ptnup to n=8 by using a density-functional-theory(DFT).
     1.Theoretical study of geometrical evolution and magnetism of group-Ⅷclusters
     In this chapter, we take up an extensive study on the evolution of structures, electronic properties and magnetism for Nin, Pdn, Ptn, clusters up to n=9 by using a density-functional-theory(DFT). The calculated results show that we can quickly find a series of stable structures of Nin, Pdn, Ptn clusters by adding corresponding atom on the stable structures of Nin-1, Pdn-1, Ptn-1 clusters. Nin、Pdn、Ptn clusters have the same evolution of structure.We can get the stable structures of clusters by adding atoms on triangle and tetragon when n=2-6, the stable structures of clusters can be found by adding an atom on octahedron and decahedron when n>6, and the structures have gradually the cage configuration with the increase of size.
     The average bond length and coordination number increase with the increase of size, this indicate that the stable structures of clusters get balance with the working together of bond length and coordination number. The average bond length of Ni is the smallest, and Pd and Pt are near with the increase of size, and the average bong length of Pd is greater than Pt in addition to n=3,4.
     The binding energies of Ni-Pd-Pt clusters increase with the increase of size. The binding energies of Pd cluster are lowest, Pt cluster is maximal, and Ni cluster is slightly larger than Pd. The second difference in energy, the first derivative of the energy and HOMO-LUMO gap of Ni-Pd-Pt clusters don't show obvious parity oscillatory behavior with the increase of size. The stabilization energies reveal that Ni5 and Ni7, Pd2 and Pd4, Pt2,Pt5 and Pt8 are the relatively most stable in this series.
     The study of magnetism for Nin, Pdn and Ptn clusters indicates that the average magnetic moment/atom of Nin and Ptn are larger than Pdn, but that of Nin, is more than slightly larger than Ptn. Magnetic moment/atom of Ni-Pd-Pt clusters has been trending down with the increase of size, but that of Pdn and Ptn clusters reduces quickly.
     2.Structures, stabilities and magnetism of Al-doped Nin, Pdn, Ptn, clusters
     The structural evolution, stabilities, electronic properties and magnetism of small neutral and cationic NinAl, PdnAl, PtnAl (n=1-8) clusters are investigated using DFT. Our study results predict the existence of a number of previously unknown isomers and structures. All structures may be derived from a substitution of a Ni (or Pd or Pt) atom by an Al atom in the stable structures Nin+1(Pdn+1 or Ptn+1) cluster. The most stable structures of NinAl cluster have the similar configurations with the ground state structures of Nin+1 cluster besides n=6. The most stable structures of the neutral PdnAl cluster have the same framework with the minimal-structures of Pdn+1 cluster besides n=3,6,8 and PtnAl cluster have the same structure with Ptn+1 cluster besides n=2,8. Compared with the neutral cluster, most of the corresponding structures of cationic clusters keep basically similar frameworks with the neutral clusters, while a few of the order of clusters energies has been changed. The findings indicate that the effect of the positive charge on NinAl, PdnAl, PtnAl are small.
     The study for bond length and coordination number of the impure clusters indicate that the stable structures of clusters get balance with the working together of Ni-Ni, Pd-Pd, Pt-Pt and Ni-Al, Pd-Al, Pt-Al bonds. The strong Ni-Ni, Pd-Pd, Pt-Pt bonds decide the framework of Ni, Pd, Pt, and the strong Ni-Al, Pd-Al, Pt-Al bonds make the Al atom in the high coordination number.
     The analysis for atomic averaged binding energies demonstrates that joining Al atom don't change the evolution trend of averaged binding energies of Ni-Pd-Pt clusters, which indicate that the stabilities of the neutral and cationic NinAl, PdnAl, clusters have been proved simultaneously as compared with the corresponding pure clusters, but the stabilities have been reduced for the neutral and cationic PtnAl clusters. The stabilities of neutral Ni5Al, Ni7Al and cationic Ni4Al+, Ni5Al+,Ni6Al+ clusters are higher than other clusters, which are different from the magic numbers 5 and 7 of pure Nin cluster. Pd3Al and Pd3Al clusters have more stabilities than other clusters, which are same with the magic cluster Pd4. The study for the Al-doped Pt clusters indicate that the stabilities of Pt2Al, Pt4Al, Pt6Al and Pt3Al+ are higher than other clusters, and the higher stability cluster Pt4Al don't change the magic number properties of Pt5.
     The study for magnetic properties of the impure clusters indicates that the Al-doped Nin, Pdn, Ptn clusters don't change the evolution trend of atomic magnetic moment of pure clusters, but decrease the magnetic moment of clusters which originate the effective charge transferring from Al to Ni(Pd or Pt) atoms.
引文
[1]Cotton F. A. Trantion-metal Compounds Containing Clusters of Matel Atoms[J]. Quarerly Review, Chemistry Society,1996,20:389
    [2]王广厚.团簇物理的新进展[J].物理学进展,1994,12(02):121-172
    [3]解士杰,韩圣.凝聚态物理[M].济南:山东教育出版社,2001:36-37
    [4]Becker E. W., Bier K., Henkes W. Strahlen aus Kondensierten Atomen and Molekeln im Hockvakuum[J]. Z. Phys.,1956,146:333.
    [5]Bentley P. G. Chemical Engineering Polymers of Carbon Dioxode[J]. Nature,1961,190: 432-438
    [6]Knight W. D., Clemenger K., et al. Electronic Shell Structure and Abundances of Sodium Clusters[J]. Phys. Rev. Lett,1984,54:2141
    [7]Kroto H. W., Heath T. R., et al. C60:Buck minster fullerene[J]. Nature,1985,162:318
    [8]Lee K., Callaway J. Electronic Structure and Magnetism of Small V and Cr Clusters[J]. Phys. Rev. B,1993,48:15358
    [9]Liu F., Khanna S. N., Jena P. Magnetism in Small Vanadium Clusters[J]. Phys. Rev. B, 1991,43:8179
    [10]Cheng H., Wang L. S. Dimer Growth, Structural Transition, and Antiferromagnetic Ordering of Small Chromium Clusters[J]. Phys. Rev. Lett.,1996,77:51
    [11]Desmarais N., Jamorski C., Reuse F. A., et al. Atomic Arrangements in Ni7 and Nis Clusters [J]. Chem. Phys. Lett.,1998,294(1):480-486
    [12]Grigoyan V. G., Springborg M. Structural and Energetic Properties of Nickel Clusters: 2(?)50[J]. Phys. Rev. B,2004,70(20):205-215
    [13]孙厚谦,任云,王广厚.Nin(n=2-20)团簇的结构[J].原子与分子物理学报,2001,18(4):387-392
    [14]Futschek T., Hafner J. Marsman M. Stable Structure and Magnetic Isomers of Small Transition-Metal Clusters from the Ni Group:an ab initio Density-Functional Study[J]. J. Phys.:Condens. Matter,2006,18:9703-9748
    [15]Karabacak M., Ozcelik S., Guvenc Z. B. Structures and Energetics of Pdn(n=2-20) Clusters Using an Embedded Atom Model Potential[J]. Surface Science,2002,507:636-642
    [16]Kruger S., Vent S., NCOrtemann F., Staufer M., et al. A Density-Functional Case Study on the Scaling ofCluster Properties:Pdn,n=4-309[J]. Journal of Chemical Physics,2001, 115(5):2082-2087
    [17]Schebarchov D., Hendy S. C. Solid-Liquid Phase Coexistence and Structural Transitions in Palladium Clusters[J]. Phys. Rev. B,2006,73:121402-121407
    [18]Sebetci A., Guven Z. B. Energetics and Structures of Small Clusters:Ptn, n=2-21[J]. Surface Science,2003,525:66.
    [19]Xiao L., Wang L. C. Structures of Platinum Clusters:Planar or Spherical?[J]. J. Phys. Chem. A,2004,108:8605-8614
    [20]W. Q. Tian, G. Maofa, Sahu B. R., et al. Geometrical and Electronic Structure of the Pt7 Cluster:A Density Functional Study[J]. J. Phys. Chem. A,2004,108:3806-3812
    [21]Ervin K. M., Ho J., Lineberger W. C. Electronic and Vibrational Structure of Transition Metal Trimers:Photoelectron Spectra of Ni3-, Pd3-, and Pt3-[J]. Journal of Chemical Physics, 1988,89(8):4514-4522
    [22]Ho J., Polak M. L., Ervin K. M., Lineberger W. C. Photoelectron Spectroscopy of Nickel group Dimers:Ni2-, Pd2-, and Pt2-[J]. Journal of Chemical Physics,1993,99(11):8542-8552
    [23]Lian L., Su C. X., Armentrout P. B. Collision-Induced Dissociation of Ni+n, (n=2-18) with Xe:Bond Energies, Geometrical Structures, and Dissociation Pathways[J].Journal of Chemical Physics,1992,96(10):7542-7555
    [24]Grushow A., Ervin K.M. Ligand and Metal Binding Energies in Platinum Carbonyl Cluster Anions:Collision-Induced Dissociation of Ptm- and Ptm(CO)n-[J]. Journal of Chemical Physics,1997,106(23):9580-9594
    [25]Reuse F. A., Khanna S. N. Geometry, Electronic Structure, and Magnetism of Small Nin (n=2-6,8,13) Clusters[J]. Chem. Phys. Lett.,1995,234(1):77-81
    [26]Reuse F. A., Khanna S. N., Bernel S. Electronic Structure and Magnetic Behavior of Ni13 Clusters[J]. Phys. Rev. B,1995,52(16):R11650-R11653
    [27]Apsel S. E., Emmer J. W., Deng J., et al. Surface-Enhanced Magnetism in Nickel Clusters [J]. Phys. Rev. Lett.,1996,76(9):1441-1444
    [28]Reddy B. V., Khanna S. N., Dunlap B. I. Giant Magnetic Moments in 4d Clusters[J]. Phys. Rev. Lett.,1993.70(21):3323-3326
    [29]Douglass D. C., Bucher J. P., Bloomfield L. A. Magnetic Studies of Free Nonferromagnetic Clusters[J]. Phys.Rev.B,1992,45:6341-6344
    [30]Sampedro B., Crespo P., Hernando A. Ferromagnetism in fcc Twinned 2.4 nm Size Pd Nanoparticles[J].Phys. Rev. Lett.,2003,91(11):237203-237207
    [31]Shinohara T., Sato T., Taniyama T. Surface Ferromagnetism of Pd Fine Particles[J]. Phys. Rev. Lett.,2003,91(19):197201-197204
    [32]Cox A. J., Louderback J. G., Bloomfield L. A. Experimental Observation of Magnetism in Rhodium Clusters[J].Phys. Rev.Lett.,1993,71(6):923-926; Cox A.J., Louderback J.G., Apsel S.E., Bloomfield L. A. Magnetism in 4d-Transition Metal Clusters[J].Phys.Rev. B., 1994,49:12295-12298
    [33]Taniyama T., Ohta E., Sato T. Observation of 4d Ferromagnetism in Free-Standing Pd FineParticles[J].Europhys. Lett.,1997,38(3):195
    [34]Cui Q., Djamaladdin G. M., Morokuma K. Molecular Orbital study of H2 and CH4 Activation on Small Metal Clusters. I.Pt, Pd, Pt2, and Pd2[J]. J. Chem. Phys.1998,108(20): 8418-8428
    [35]Trevor D. J., Cox D. M., Kaldor A. Methane Activation on Unsupported Platinum Clusters[J]. J. Am. Chem. Soc.,1990,112(10):3742-3749
    [36]Fayet P., Kaldor A., Cox D. M. Palladium Clusters:H2, D2, N2, CH4, CD4, C2H4, and C2H6 Reactivity and D2 Saturation Studies[J]. Journal of Chemical Physics,1990,92(1):254-261
    [37]Kiichirou K., Yasutomo N., Minoru A., et al. Photoelectron Spectroscopy of Binary Au Cluster Anions with Adoped Metal Atom:AunM-(n=2-7), M=Pd, Ni, Z, Cu, and Mg[J]. Chemical Physics Letters,2006,422:62-66
    [38]Hu C., Hu H., Li M., et al. Comparative Study of the Interaction of CO and CO2 with Ni2 Cluster[J]. Journal of Molecular Structure (Theochem),1999.491:155-160.
    [39]Zhang Z.X., Cao B.B., Duan H.M. Density-Functional Calculations of MnC(M=Fe, Co, Ni, Cu, n=1-6) Clusters[J]. Journal of Molecular Structure (Theochem),2008.863:22-27
    [40]Ricardo V.J. L., Pastor G. M. First Principles Calculations on Ni Impurities in Cu Clusters[J]. Journal of Molecular Structure (Theochem),2005,294:122-126
    [41]Nakazawa T., Igarashi T., Tsuru T., et al. Ab initio Calculations of Fe-Ni Clusters[J]. Computational Materials Science,2009,46:367-375
    [42]Guevara J., Llois A.M., Aguilera-Granja F., et al. Magnetic Properties of Bimetallic Ni-Pd Nanoclusters[J]. Physica B,2004,354:300-302
    [43]Wang Q., Sun Q., Yu J.Z., et al. First-Principles Studies on Magnetism of Ni Clusters Coated and Alloyed with Pd[J]. Physics Letters A,2000.267:394-402
    [44]Ren Z.Y., Li F., Guo P., et al. A Computational Investigation of the Ni-Doped Sin(n=1-8) Clusters by a Density Functional Method[J]. Journal of Molecular Structure (Theochem), 2005,718:165-173
    [45]Finetti M., Ottavianelli E. E., Pis Diez R., et al. A Density Functional Study of Small NixSn Clusters with x=1-4[J]. Computational Materials Science,2001.20:57-65.
    [46]Tristana S., Javier G. Magnetic Properties of Ni-Rh Clusters:Behavior in the Ni-rich Region[J]. Physica B,2004,354:303-306.
    [47]Majzoub E. H., Kima J.Y., Henniig R.G., et al. Cluster Structure and Hydrogen in Ti-Zr-Ni Quasicrystals and Approximants[J]. Materials Science and Engineering,2000, 294-296:108-111.
    [48]Li J. R., Yao C. H., Mu Y. W., et al. Structures and Magnetic Properties of SinNi(n= 1-17) Clusters[J]. Journal of Molecular Structure (Theochem),2009,916:139-146.
    [49]倪羽,蒋刚,朱正和,孙颖PdnY(n=1-9)团簇的结构和电子特性[J].物理化学学报,200525(4):13-15
    [50]倪羽,蒋刚,朱正和,孙颖PdnYH(n=1-9)团簇的结构和电子特性[J].化学学报,2005,25(6):132-134
    [51]Zhu J.,Jin R. A DFT Study of ZrnPdm (n+m(?)5) Mixed Clusters[J]原子与分子物理学报,2008.25(6):1328-1334
    [52]Koyasu K., Mitsui M., Nakajima A., et al. Photoelectron Spectroscopy of Palladium-Doped Gold Cluster Anions AunPd (n=1-24)[J].Chem Phys Lett,2002,358:224-230
    [53]Guo J. J., Yang J. X., Die D. Ab initio Study of Small AunPd2(n=1-4) Clusters[J]. Physica B.2005,367:158-164
    [54]Guo J. J., Shi J., Yang J. X., et al. Ab initio Study of small AunPd-(n=1-5) Cluster anions [J]. Physica B.2007,393:363-367.
    [55]Arratia P. R., Hern A. L. Relativistic Electronic Structure of an Icosahedral Au12Pd Cluster[J]. Chem.Phys.Lett,1999,303:641
    [56]Kilimis D. A., Papageorgiou D. G. Density Functional Study of Small Bimetallic Ag-Pd Clusters[J]. Journal of Molecular Structure (Theochem),2010,939:112-117
    [57]Efremenko I., Sheintuch M. DFT Study of Small Bimetallic Palladium-Copper Clusters[J]. Chem. Phys. Lett.2005,401:232-240
    [58]Calvo S. R., Balbuena P. B. Density Functional Theory Analysis of Reactivity of PtxPdy Alloy Clusters[J]. Surface Science 2007,601:165-171
    [59]Cui Q., Musaev D. G., Morokuma K. Molecular Orbital Study of H2 and CH4 Activation on Small Metal Clusters. I.Pt, Pd, Pt2, and Pd2[J]. J. Chem. Phys.1998,18(20):8418-8428
    [60]Grybos R., Benco L., Bucko T., et al. Molecular Adsorption and Metal-Support Interaction for Transition-Metal Clusters in Zeolites:NO Adsorption on Pdn, (n=1-6) Clusters in Mordenite[J]. J. Chem. Phys.2009,104501(130):1-20
    [61]Madhuri M., Subrata K., Tapan K. S., et al. Synthesis and Characterization of Superparamagnetic Ni-Pt Nanoalloy[J]. Chem. Mater.2003,15:3710-3715
    [62]Cheng D. J., Wang W. C., Huang S. P. The Onion-Ring Structure for Pd-Pt Bimetallic Clusters[J]. The Journal of Physical Chemistry B,2006,110,16193-16196
    [63]Xiao L., Wang L. C. Methane Activation on Pt and Pt4:A Density Functional Theory Study[J]. J. Phys. Chem. B,2007,111:1657-1663
    [64]Watwe R. M., Cortright R. D., Norskov J. K., et al. Theoretical Studies of Stability and Reactivity of C2 Hydrocarbon Species on Pt Clusters, Pt(111), and Pt(211)[J]. The Journal of Physical Chemistry,2000,104:2299-2310
    [65]Li H., Ding F., Wang J.1., et al. Structural Studies of Clusters in Melt of FeAl Compound[J]. J. Chem. Phys.2001,114(14):6413-6416
    [66]Zhao G. f., Zhang J. Q. A Density Functional Study of YnAl(n=1-14) Clusters[J]. J. Chem. Phys.2007,127(23):1-7
    [67]Yin Y. S., Yu S. Q., Zhang W. W., et al. Electronic and Magnetic Properties of Bimetallic FemAln Clusters with m+n<5[J]. Journal of Molecular Structure (Theochem),2009,902:1-4
    [68]Guo L. Computational Investigation of GanAl(n=15) Clusters by the Density-Functional-Theory[J]. Computational Materials Science,2009,45:951-958
    [69]Bai Q. G., Song B., Hou J. Y., et al. First Principles Study of Structural and Electronic Properties of AlnN (n=1-19) Clusters[J]. Physics Letters A,2008,372:4545-4552
    [70]Wei S. H., Huang L., Ji M., et al. Structural and Electronic Properties of Al7In(n=1,2,3) [J]. Chemical Physics Letters,2006,420:125-129
    [71]Zhao L. X., Cao, T. T., Feng X. J., Xiao-Liang, et al. A Theoretical Sudy of Neutral and Anionic Au5Al Clusters[J]. Journal of Molecular Structure (Theochem),2009,895:92-95
    [72]Xiang J., Wei S. H., Yan X. H., et al. A Density-Functional Study of Al-Doped Ti Clusters:TinAl (n=1-13)[J]. Journal of Chemical Physics,2004,120(9):4251-4256
    [73]Rexer E. F., Jellinek J., Krissinel E. B., et al. Theoretical and Experimental Studies of the Structures of 12, 13and 14-Atom Bimetallic Nickel/Aluminum Clusters[J]. Journal of Chemical Physics,2001,117:82-94
    [74]Rey C., Garci'a-Rodeja J., Gallego L. J. Omputer Simulation of the Ground-State Atomic Configurations of Ni-Al Cluster sing the Embedded-Atom Model[J]. Physical Review B, 1996,54:2942-2948
    [75]Calleja M., Rey C., Alemany M. M. G., et al. Self-Consistent Density-Functional Calculations of the Geometries, Electronic Structures, and Magnetic Moments of Ni-Al Clusters[J]. Physical Review B,1999,60:2020-2024
    [76]Hao F. Y., Zhao Y. F., Li X.Y., et al. A Density-Functional Study of Nickel/Aluminum Microclusters[J]. Journal of Molecular Structure(Theochem),2007,807:153-158
    [77]Zhu J. B., Wang S., Qiao M. H., et al. First-Principle Molecular Dynamics Study of the Structural and Electronic Properties of Liquid and Amorphous Ni-Al Alloys[J]. Journal of Non-Crystalline Solids,2007,353:2638-2645
    [78]Smontara A., Smiljani'c I., Bilusic A., et al. Complex ε-Phases in the Al-Pd-Transition-Metal Systems:Towards a Combination of an Electrical Conductor with a Thermal Insulator[J]. Journal of Alloys and Compounds,2008,450:92-102
    [79]Martin K., Martin Kusy, Emilia I., et al. Characterization of a Ternary Al-Pd-Rh Alloy[J]. Material Scharacterization,2008,59:1594-1599
    [80]Feuerbacher M., Balanetskyy S., Heggen M. Novel Metadislocation Variants in Orthorhombic Al-Pd-Fe[J]. Acta Materialia,2008,56:1852-1859
    [81]张建军,张红.A1吸附在Pt,Ir和Au的(111)面的低覆盖度研究[J].物理学报,2010,59(06):4143-4149
    [82]Michael W., Frank K., Tapan C., et al. On the Structure and Twinning of PtAl4 [J]. Journal of Alloys and Compounds,2008,455:130-136
    [83]Rodriguez J. A., Kuhn M. Electronic Properties of Pt in Bimetallic Systems: Photoemission and Molecular-Orbital Studies of Pt-Al Surface Alloys[J]. Chemical Physics letters,1995,240:435-441
    [84]Rodriguez J. A., Kuhn M. Electronic Properties of Pt in Bimetallic Systems: Photoemission and Molecular-Orbital Studies for Pt-Al Surface Alloys[J]. Chemical Physics Letters,1995.240:435-443
    [85]Michael W., Frank K., Tapan C., et al. On the Structure and Twinning of PtAl4[J]. Journal of Alloys and Compounds,2008,455:130-136
    [86]Fermi R. A Statistieal Method for Determiuing Some ProPerties of the Atom[J]. Atti Accad Lincei,1927,6:602; Thomas H. The Calculation of Atomic Fields[J]. Pro. Camb. Phil.Soc,1927,23:545
    [87]Vosko S. H., WiLk L., Nusair M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations:a Critical Analysis[J]. Canadian Journal of Physics,1980.58(8):1200-1211
    [88]CePerley D. M, Alder B. J. Ground State of the Electron Gas by a Stochastic Method[J]. Phys. Rev. Lert.,1980,45(7):566-569
    [89]Becke A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior[J].Phys. Rev. A.,1988,38(6):3098-3100
    [90]Adamo C., Barone V. Exchange Functionals with Improved Long-Range Behavior and Adiabatic Connection Methods Without Adjustable Parameters:The mPW and mPW1PW Models [J].The Journal of Chemical Physics,1998,108(2):664-675
    [91]Adamo C., Barone V. Toward Reliable Density Functional Methods Without Adjustable Parameters:The PBE Model[J], The Journal of Chemical Physics,1999,110(13):6158-6170
    [92]Perder J. P., Chevary J. A., Vosko S. H., et al. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation[J]. Phys. Rev.B.,1992,46(11):6671-6687
    [93]Stevens P. J., Devlin J. F., Chabalowski C. F., et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields[J]. The Journal of Physical Chemistry,1994,98(45):11623-11627
    [94]Parks E. K., Winter B. J., Klots T. D., et al. The Structure of Nickel Clusters[J]. J. Chem. Phys.,1991,94(3):1882-1902
    [95]Parks E. K., Zhu L., Ho J., et al. The Structure of Nickel Clusters. Ⅰ. Ni3-Ni5[J]. J. Chem. Phys.,1994,100(10):7206-7222
    [96]Parks E. K., Zhu L., Ho J., et al. The Structure of Nickel Clusters. Ⅱ. Ni16-Ni28[J]. J. Chem. Phys.,1995,102(19):7377-7389
    [97]Menon M., Connolly J., Lathiotakls N., et al. Tight-Bingding Molecular Dynamics Study of Transition-Metal Clusters[J]. Phys. Rev. B,1994,50(12):8903-8906
    [98]Nayak S. K., Reddy B., Rao B. K., et al. Structure and Properties of Ni7 Cluster Isomers[J]. Chem. Phys. Lett.,1996.253:390-396-
    [99]Gregorio L., Patrizia C. Assessment of Density Functional Theory Optimized Basis Sets for Gradient Corrected Functionals to Transition Metal Systems:The Case of Small Nin(n(?)5) Clusters[J]. The Journal of Chemical Physics,2007,126:194102
    [100]Liu S. R., Zhai H. J., Wang L. S. Evolution of the Electronic Properties of Small Ni-n (n=1-100). Clusters by Photoelectron Spectroscopy[J]. The Journal of Chemical Physics, 2002,117:9758-9765
    [101]Bayyari Z. E. Embryonic Forms of Nickel:a Molecular-Dynamics Computer Simulation[J]. Journal of Molecular Structure (Theochem),2005,716:165-174
    [102]Petkov P. S., Vayssilov G. N., Krulger S., et al. Influence of Single Impurity Atoms on the Structure, Electronic, and Magnetic Properties of Ni5 Clusters[J]. J. Phys. Chem. A,2007, 111:2067-2076
    [103]Michelini M. C., Pis Diez R., Jubert A. H. Density Function Study of Small Nin Cluster, with n=2-6,8, Using the Generalized Gradient Approximation[J]. International Journal of Quantum Chemistry,2001,85:22-33
    [104]Nayak S. K., Khanna S. N., Rao B. K., et al. Physics of Nickel Clusters:Energetics and Equilibrium Geometries[J].The Journal of Physical chemistry A,1997,101 (6):1072-1080
    [105]Bayyari Z. Embry onic Forms of Nickel:a Molecular-Dynamics Computer Simulation [J]. Journal of Molecular Structure (Theochem),2005.716:165-174
    [106]Amarillas A.P., GarzOn I. L.Vibrational Analysis of Nin Clusters[J].Phys. Rev. B,1996, 54:10362-10365
    [107]Vlachos D.G., Schmidt L. D., Aris R. Structures of Small Metal Clusters. I. Low Temperature Behavior[J]. Journal of Chemical Physics.1992,96(9):6880-6890
    [108]Uppenbrink J., Wales D. J. Structure and Energetics of Model Metal Clusters[J].Journal of Chemical Physics,1992,96(11):8520-8534.
    [109]Garcia R. J., Rey C, Gallego L. J., Alonso J. A. Molecular-Dynamics Study of the Structures, Binding Energies, and Melting of Clusters of fcc Transition and Noble Metals Using the Voter and Chen Version of the Embedded-Atom Model[J]. Phys.Rev. B,1994,49 (12):8495-8498
    [110]Sandell A., libuda J., Bruhwiler P. A., et al. Interaction of CO with Pd Clusters Supported on a Thin Alumina Film[J].J. Vac. Sci. Technol. A,1996,14(3):1546-1551
    [111]Maunuel P J., Kausala S., Volker T., et al. Vibrational Frequencies for NO Chemisorbed on Different Sites:DFT Calculations on Pd Clusters[J]. Surface Science,1997,380:83290
    [112]Gronbeck H., Tomanek D., kim S. G. phys. D,1997,40:469
    [113]Irena E, Moshe S. Quantum Chemical Study of Small Palladium Clusters[J]. Surface Science,1998,414:148-158.
    [114]Hansen k. H., Worren T., Stemoel S., et al. Palladium Nanocrystals on Al2O3:Structure and Adhesion Energy[J]. phys. Rev. Lett.,1999,83(20):4120-4123
    [115]Chapon H., Granjeaud S., Humbert A., et al., phys. J. Ap.,2001,13:23
    [116]Guo Xiang Yu,钯团簇形成和增长机理的Monte Carlo研究[J].物理化学学报,Acta, 2003,2:643
    [117]Jose R., Griselda G., Juan A. V., et al. Small Pd Clusters:A Comparison of Phenomenological and ab initio Approaches[J]. Phys. Rev. B,2005,72:115421-115425
    [118]Efremenko I., Sheintuch M. Surf. Sci.,1998,414:148
    [119]Balasubramanian K. Ten Low-Lying Electronic States of Pd3[J]. Journal of Chemical Physics,1989,91(1):307-314
    [120]Valerio G., Toulhoat H. Local, Gradient-Corrected, and Hybrid Density Functional Calculations on Pdn Clusters for n=1-6[J].The Journal of Physical Chemistry,1996,100 (26):10827-10830
    [121]Dai D., Balasubramanian K. Electronic Structures of Pd4 and Pt4[J]. Journal of Chemical Physics,1995,103(2):648-655
    [122]Meiyan N., Zhi Z. Density Functional Study of Hydrogen Adsorption and Dissociation on Small Pdn(n=1-7) Clusters[J]. Journal of Molecular Structure(Theochem),2009, 901:14-19
    [123]Campesia R., Cuevasa c, F., Gadioub R., et al. Hydrogen Storage Properties of Pd Nanoparticle/Carbon Template Composites[J], Carbon,2008,46:206-214
    [124]Kim H.S., Lee H., Han K.S., et al. Hydrogen Storage in Ni Nanoparticle-Dispersed Multiwalled Carbon Nanotubes[J]. The Journal of Physical Chemistry B,2005,109(18): 8983-8986
    [125]Callejas M. A., Anson A., Benito A. M., et al. Enhanced Hydrogen Adsorption on Single-Wall Carbon Nanotubes by Sample Reduction[J]. Materials Science and Engineering B,2004,108(1):120-123
    [126]Yoo E., Gao L., Komatsu T., et al. Atomic Hydrogen Storage in Carbon Nanotubes Promoted by Metal Catalysts[J]. The Journal of Physical Chemistry B,2004,108(49): 18903-18907
    [127]Anson A., Lafuente E., Urriolabeitia E., et al. Preparation of Palladium Loaded Carbon Nanotubes and Activated Carbons for Hydrogen Sorption[J].Journal of Alloys and Compounds,2007,436(1):294-297
    [128]Huang S.Y., Huang C.D., Chang B.T., et al. Chemical Activity of Palladium Clusters: Sorption of Hydrogen[J]. The Journal of Physical Chemistry B,2006,110(43):21783-21787
    [129]Yamauchi M., Ikeda R., Kitagawa H., et al. Nanosize Effects on Hydrogen Storage in Palladium[J]. The Journal of Physical Chemistry C,2008,112(9):3294-3299
    [130]Cui Q., Musaev D.G., Morokuma K. Molecular Orbital Study of H2 and CH4 Activation on Small Metal Clusters.2. Pd3 and Pt3[J]. The Journal of Physical Chemistry A, 1998,102(31):6373-6384
    [131]German E.D., Efremenko I., Sheintuch M. Hydrogen Interactions with a Pd4 Cluster: Triplet and Singlet States and Transition Probability[J].The Journal of Physical Chemistry A, 2001,105(50):11312-11326
    [132]Moc J., Musaev D.G., Morokuma K. Adsorption of Multiple H2 Molecules on Pd3 and Pd4 Clusters. A Density Functional Study[J]. The Journal of Physical Chemistry A,2000,104 (49):11606-11614
    [133]Moc J., Musaev D.G., Morokuma K. Activation and Adsorption of Multiple H2 Molecules on a Pd5 Cluster:A Density Functional Study[J]. The Journal of Physical Chemistry A,2003,107(24):4929-4939
    [134]Wang Y.J., Cao Z.X., Zhang Q. Chemical Physics Letters,2003,376(2):96
    [135]Janak J.F. Uniform Susceptibilities of Metallic Elements [J]. Phys. Rev. B,1977,16 (1):255-262
    [136]Blugel S. Magnetism of 4d and 5d Transition Metal Adlayers on Ag(001):Dependence on the Adlayer Thickness[J]. Phys. Rev. B,1995,51(3):2025-2028
    [137]Lee K. Possible Magnetism in Small Palladium Clusters[J]. Phys. Rev. B,1998.58 (5):2391-2394
    [138]Moseler M., Hakkinen H., Barnett R.N., et al. Structure and Magnetism of Neutral and Anionic Palladium Clusters[J]. Phys.Rev. Lett.,2001,86(12):2545-2548
    [139]Kumar V., Kawazoe Y. Icosahedral Growth, Magnetic Behavior, and Adsorbate-Induced Metal-Nonmetal Transition in Palladium Clusters[J]. Phys. Rev. B,2002,66(14): 144413-144425
    [140]Barretau C., Guirado-Lopez R., Spanjaard D., et al. Spd Tight-Binding Model of Magnetism in Transition Metals:Application to Rh and Pd Clusters and Slabs[J]. Phys. Rev. B,2000,61(11):7781-7794
    [14]]Zhang G. W.. Feng Y. P., Ong C. K. Local Binding Trend and Local Electronic Structures of 4d Transition Metals[J], Phys. Rev. B,1996,54 (23):17208-17214
    [142]Aguilera-Granja F., Montejano-Carrizales J. M., Vega A. Magnetism in Small Pd Clusters[J]. Phys. Lett. A,2004,332:107-114
    [143]Aguilera-Granja F., Montejano-Carrizales J. M., Berlanga-Ramirez E. O., et al. Magnetic Behavior of Pd Nanoclusters[J]. Physica B.,2004,354:271-277
    [144]Doye J. P. K., Wales D. J. Global Minima for Transition Metal Clusters Described by Sutton-Chen Potentials[J]. New J Chem,1998,22:733
    [145]Sebetci A., Guven Z. B., Kokten H. Thermodynamics of Small Platinum Clusters[J]. Computational Materials Science,2006,35:192-198
    [146]Sebetci A., Guven Z. B. Global Minima of Aln, Aun and Ptn,n(?)80, Clusters Described by the Voter-Chen Version of Embedded-Atom Potentials[J]. Modelling Simul Mater Sci Eng, 2005,13:683.
    [147]Yang S H., Drabold D. A., Adams J. B., et al. Density Functional Studies of Small Platinum Clusters[J]. Journal of Physics:Condensed Matter,1997,9:L39
    [148]Gronbeck H., Andreoni W. Gold and Platinum Microclusters and Their Anions: Comparison of Structural and Electronic Properties[J]. Chemical Physics,2000,262(1):1-14
    [149]Lin X., Ramer N. J., Rappe A. M., et al. Effect of Particle Size on the Adsorption of O and S Atoms on Pt:A Density-Functional Theory Study [J]. The Journal of Physical Chemistry B,2001,105(32):7739-7747
    [150]Li T., Balbuena P. B. Computational Studies of the Interactions of Oxygen with Platinum Clusters[J]. The Journal of Physical Chemistry B,2001,105(41):9943-9952
    [151]Majumdar D., Dai D., Balasubramanian K. Theoretical Study of Electronic States of Platinum Pentamer (Pt5)[J]. Journal of Chemical Physics,2000,113(18):7928-7939
    [152]Fortunelli A. Density Functional Calculations on Small Platinum Clusters:Ptnq(n=1-4, q=0,±1)[J]. Journal of Moleculer Structure (Theochem),1999,493(1):233-240
    [153]Watari N., Onishi S. Atomic and Electronic Structures of Pd13 and Pt13 Clusters[J]. Physical Review B,1998,58(3):1665-1677
    [154]Apra E., Fortunelli A. Density-Functional Calculations on Platinum Nanoclusters:Pt13, Pt38, and Pt55[J]. The Journal of Physical Chemistry A,2003,107(16):2934-2942
    [155]Tian W. Q., Ge M., Sahu B. R., et al. Geometrical and Electronic Structure of the Pt7 Cluster:A Density Functional Study[J]. The Journal of Physical Chemistry A,2004 108(17):3806-3812
    [156]张材荣,陈宏善,王广厚Rhn,Ptn(n=2-20)团簇基态结构的遗传算法研究[J].原子与分子物理学报,2004,5:235-239
    [157]尹红梅,段海明,赵新军.遗传算法研究Ptn(n=2-57)团簇的基态结构特性[J].四川大学学报(自然科学版),2008,45(3):605-611
    [158]Airola M. B., Morse M. D. Rotationally Resolved Spectrosco-py of Pt2[J].J. Chem Phys, 2002,116(4):1313-1317
    [159]Fabbi J.C., Langenberg J. D., Costello Q. D., et al. Dispersed Fluorescence Spectroscopy of Jet-Cooled AgAu and Pt2[J]. Journa of Chemical Physics,2001,115(16):7543-7549
    [160]Ponius N., Bechthold P. S., Neeb M., et al. Femtosecond Multi-photon Photoemission of Small Transition Metal Cluster Anions[J]. J. Electron Spectrosc Relat Phenom, 2000,106(2):107-116
    [161]Gupta S. K., Nappi B. M., Gingerich K. A. Mass Spectrometric Study of the Stabilities of the Gaseous Molecules Diatomic Platinum and Platinum-Yttrium[J]. Inorganic Chemistry, 1981,20(4):966-969
    [162]Taylor S., Lemire G. W., Hamrick Y. M., et al. Resonant Two-Photon Ionization Spectroscopy of Jet-Cooled Pt2[J]. Journal of Chemical Physics,1988,89(9):5517-5524
    [163]Pontius N., Bechthold P. S., Neeb M., et al. Femtosecond Multi-Photon Photoemission of Small Transition Metal Cluster Anions[J]. Electron Spectrosc Relat Phenom, 2000,106(2):107-116
    [164]Junko O. U., Obuchi A., Enomoto R., et al. Catalytic Performance of Pt Supported on Variousmetal Oxides in the Oxidation of Carbon Black[J]. Applied Catalysis B:Environ-ment, 2000,26(1):17-24
    [165]王译伟,李来才,田安民.甲醇在Pt-Fe(111)/C表面的吸附的理论研究[J].化学学报,2008,66(22):2457-2461.
    [166]唐智,熊锐,刘芳.甲烷在纳米材料Pt表面吸附的理论研究[J].广东工业大学学报,2010,27(2):47-50
    [167]Sautet P., Boequet M. L. STM and Chemistry:a Oualitative Molecular Orbital Understandin of the Image of CO on a Pt Surface[J]. Surf Sci,1996,360(1-3):128-136
    [168]Blyholder G. Molecular Orbital View of Chemisorbed Carbon Monoxide[J]. J. Phys. Chem,1964,68(10):2772-2778.
    [169]Yeo Y. Y., Vattuone L., King D. A. Energetics and Kinetics Of CO and NO Adsorption on Pt[110]:Restueturing and Lateral Interactions[J]. J Chem Phys,1996,104(10):3810-3821
    [170]Keller V., Bernhardt P., Garin F. Photocatalytic Oxidation of Butyl Acetate in Vaporphase on TiO2, Pt/TiO2 and WO3/TiO2 Catalysts[J]. Journal of Catalysis,2003,215 (1):129-138
    [171]Falconer J. L., Magrini K. A. Photocatalytic and Thermal Catalytic Oxidation of Acetaldehyde on Pt/TiO2[J]. Journal of Catalysis,1998,179(1):171-178
    [172]Pinegar J. C., Langenberg J. D., Arrington C. A., et al. Morse Ni2 Revisited: Reassignment of the Ground Electronic State[J]. Journal of Chemical Physics,1995,102(2): 666-674; Morse M. D., Hansen G. P., Landridge P. R., et al. Spectroscopic Studies of the Jet-Cooled Nickel Dimer[J]. Journal of Chemical Physics,1984,80(11): 5400-5405
    [173]Huber K. P., Herzberg G. Constants of Diatomic Molecules, Van Nostrand Reinhold, New York,1979
    [174]Lin S. S., Strauss B., Kant A. Dissociation Energy of Pd:[J]. Journal of Chemical Physics,1969,51(5):2282-2284
    [175]Ho J., Ervin K.M., Polak M.L. A Study of the Electronic Structures of Pd-2 and Pd2 by Photoelectron Spectroscopy[J].Journal of Chemical Physics,1991,95(7):4845-4853
    [176]Cox D. M., Trevor D. J., Whetten R. L., et al. Aluminum Clusters:Magnetic Properties [J]. The Journal of Chemical Physics,1986,84(8):4651-4656
    [177]Upton T. H. A Perturbed Electron Droplet Model for the Electronic Structure of Small Aluminum Clusters[J].The Journal of Chemical Physics,1987,86(12):7054-7061
    [178]Heer W. A. D., Milani P., Chatelain A. Nonjellium-to-Jellium Transition in Aluminum Cluster Polarizabilities[J]. Phys. Rev. Lett.,1989,63(26):2834-2836
    [179]Li X., Wu H. B., Wangd X.B.et al. s-p Hybridization and Electron Shell Structures in Aluminum Clusters:A Photoelectron Spectroscopy Study[J]. Phys. Rev. Lett.,1998,81(9): 1909-1912
    [180]Rao B. K., Jena P. Evolution of the Electronic Structure and Properties of Neutral and Charged Aluminum Clusters:A Comprehensive Analysis[J].The Journal of Chemical Physics, 1999,111(5):1890-1904
    [181]Chuang F. C., Wang C. Z., Ho K. H. Structure of Neutral Aluminum Clusters Aln (n=2-23):Genetic Algorithm Tight-Binding Calculations[J]. Phys. Rev. B,2006,73(12): 125431-125437
    [182]Upton T. H. Structural, Electronic, and Chemisorption Properties of Small Aluminum Clusters[J]. Phys. Rev. Lett,1986,56:2168-2171
    [183]Pettersson L. G. M., Bauschlicher C. W., Halicioglu T. Small Al Clusters. Ⅱ. Structure and Binding in Aln(n=2-6,13)[J]. J. Chem. Phys.,1987,87:2205
    [184]Yi J. Y., Oh D. J., Bernholc J., Car R. Structural Transitions in Aluminum Clusters [J].Chem. Phys. Lett,1990,174:461-466
    [185]Cheng H. P., Berry R. S., Whetten R. L. Electronic Structure and Binding Energies of Aluminum Clusters[J]. Phys. Rev. B.,1991,43:10647-10653
    [186]Jones R. O. Structure and Bonding in Small Aluminum Clusters[J]. Phys. Rev. Lett., 1991,67:224-227; Jones R. O. Simulated Annealing Study of Neutral and Charged Clusters: Aln and Gan[J]. J.Chem. Phys.,1993,9:1194-1206
    [187]Lloyd L. D., Johnston R. L. Modelling Aluminium Clusters with an Empirical Many-Body Potential [J]. Chem. Phys.,1998.236:107-121
    [188]Akola J., Hakkinen H., Manninen M. Ionization Potential of Aluminum Clusters[J]. Phys. Rev. B,1998,58:3601-3604
    [189]Ahlrichs R., Elliott S. D. Clusters of Aluminium, A Density Functional Study[J]. Physical Chemistry,1999,1:13-21
    [190]Akola J., Manninen M., Hakkinen H., et al. Photoelectron Spectra of Aluminum Cluster Anions:Temperature Effects and ab initio Simulations[J]. Phys. Rev.B,1999,60:R11297-R11300
    [191]Geske G.D., Boldyrv A. I. On the Origin of Planarity in Al5 and Al5 Clusters:The Importance of a Four-Center Peripheral Bond[J].Journal of Chemical Physics,2000,113: 5130-5133
    [192]Kawamura H.,Kumar V., Sun Q., Kawazoe Y. Magic Behavior and Bonding Nature in Hydrogenated Aluminum Clusters[J]. Phys. Rev. B.2001,65:045406
    [193]Deshpande M. D., Kanhere D. G., Vasiliev I., et al. Ab Initio Absorption Spectra of Aln(n=2-13) Clusters[J]. Phys. Rev. B,2003,68:035428
    [194]Yao C. H., Song B., Cao P. L. Structures of Al19 Cluster:A Full-Potential LMTO Molecular-Dynamics Study[J], Phys Rev B,2004,70:195431
    [195]Liu F. L., Zhao Y. F., Li X.Yi., et al. Ab initio Study of the Structure and Stability of MnTln (M=Cu, Ag, Au; n=1,2) Clusters[J]. Journal of Moleculer Structure(Theochem),2007, 809:189-194
    [196]Zhao Y. F., Jing X. G.,Su W. H. An Ab Initio Study of M2Fe(M=Cu, Ag, Au) Systems [J]. Journal of Moleculer Structure(Theochem),2002,587:43-48
    [197]Laxmikanth Rao J., Krishna Chaitanya G., Basavaraja S., et al. Density-Functional Study of Au-Cu Binary Clusters of Small Size[J]. Surface Science,2007,601:165-171
    [198]Deshpande M. D., Swapna R., Kanhere D. G. Equilibrium Geometries, Electronic Structure, and Magnetic Properties of NinSn Clusters (n=1-12)[J]. Phys. Rev. B,2007,76: 195423-195431
    [199]Natarajan S. V. Structures of Small NixTiy(x+y=6) Clusters:A DFT Study[J]. Journal of Moleculer Structure (Theochem),2008,856:9-15
    [200]Finetti M., Ottavianelli E. E., Pis Diez R., et al. A Density Functional Study of Ni5Sn and Ni6Sn Clusters[J]. Journal of Moleculer Structure (Theochem),2003.643:171-179
    [201]Yang Z. Q., Tirry W., Lamoen D., et al. Electron Energy-Loss Spectroscopy and First-Principles Calculation Studies on a Ni-Ti Shape Memory Alloy[J]. Acta Materialia, 2008,56:395-404
    [202]Natarajan S. V., Mohammad K., Ryoji S. Hiroshi First-Principles Study of Hydrogen Storage over Ni and Rh Doped BN Sheets[J]. Chemical Physics,2009,359:173-178
    [203]Natarajan S. V., Ambigapathy S., Ryunosuke., et al. Structures of Small YnAlm Clusters (n+m(?)6):A DFT Study [J]. Journal of Moleculer Structure (Theochem),2009,902:72-78
    [204]Billas I. M. L., Chatelain A., De Heer W. A. Magnetism from the Atom to the Bulk in Nickel, Cobalt and Iron Clusters[J]. Science,1994,265:1682-1684
    [205]Knickelbein M. B. Magnetic Ordering in Manganese Clusters[J]. Phys. Rev. B,2004, 70(1):014424-014431
    [206]Cable J. W. Neutron Study of the Magnetic-Moment Distribution in Co Alloys[J]. Phys. Rev. B,1982,25:4670-4673
    [207]Mpourmpakis G, Froudakis G. E. Role of Co in Enhancing the Magnetism of Small Fe Clusters[J]. Phys. Rev. B,2005,72(7):104417
    [208]Wang L. S., Cheng H.S., Fan J. Photoelectron Spectroscopy of Size-Selected Transition Metal Clusters:Fen,n=3-24[J]. Journal of Chemical Physics,1995,102:9480-9493
    [209]Rodriguez-Lopez J. L., Aguilera-Granja F., Michaelian K., et al. Structure and Magnetism of Cobalt Clusters[J]. Phys. Rev. B,2003,67(9):174413
    [210]Kumar V., Kawazoe Y. Metal-Encapsulated Fullerenelike and Cubic Caged Clusters of Silicon[J] Phys.Rev.Lett.,2001.87(4):045503-045506
    [211]Sakurai M., Watanabe K., Sumiyama K., et al. Magic Numbers in Transition Metal(Fe,Ti,Zr,Nb,and Ta) Clusters Observed by Time-of-Flight Mass Spectrometry[J]. Journal of Chemical Physics,1999,111:235-238
    [212]Chen J. L., Wang C. S., Jackson K. A., et al. Theory of Magnetic and Structural Ordering in Iron Clusters[J]. Phys. Rev. B,1991,44:6558-6561
    [213]Castro M., Salahub D. R. Density-Functional Calculations for Small Iron Clusters:Fen, Fen+,and Fen- forn(?)5[J]. Phys. Rev. B,1994,49:11842-11852
    [214]Andriotis A. N., Menon M. Tight-Binding Molecular-Dynamics Study of Ferromagnetic Clusters[J]. Phys. Rev. B,1998,57:10069-10081
    [215]Bucher J. P., Douglass D. C., Bloomfield L. A. Magnetic Properties of Free Cobalt Clusters[J]. Phys. Rev. Lett.,1991,66(23):3052-3055
    [216]Rao B. K., Jena P., Manninen M., et al. Spontaneous Fragmentation of Multiply Charged Metal Clusters[J]. Phys.Rev.Lett,1987,58(12):1188-1191
    [217]Knickelbein M. B. Magnetic Moments of Small Bimetallic Clusters:Co,,Mn [J]. Phys. Rev. B,2007,75(6):014401
    [218]Sondon T., Guevara J., Saul A. Study of the Structure, Segregation, and Magnetic Properties of Ni-Rh Clusters[J]. Phys. Rev. B,2007,75(10):104426
    [219]Chen H., Yuan H. K., Kuang A. L., et al. Geometrical Evolution, Electronic Structures, and Magnetic Properties of Bi-Mn Binary Clusters[J]. Phys. Re. Rev. B,2008,77(14):184429
    [220]Douglass D. C., Cox A. J., Bucher J. P. Magnetic Properties of Free Cobalt and Gadolinium Clusters[J]. Phys. Rev. B,1993,47(19):12874-12889
    [221]Billas I. M. L., Chatelain A., De Heer W. A. Magnetism of Fe, Co and Ni Clusters in Molecular Beams[J]. J. Magn. Magn. Mater.,1997,168:64-84
    [222]Parks E. K., Klots T. D., Winter B. J., et al. Reaction of Cobalt Clusters with Water and Ammonia:Implications for Cluster Structure[J]. Journal of Chemical Physics,1993,99: 5831-5839
    [223]Vijay M., Selvarajan V. Characterization of Plasma Processed Ultra-Fine Ni-Al Powder[J]. Journal of Materials Processing Technology,2007,34:390-397
    [224]Stener M., Albert K., Roseh N. Relativistic Density Functional Study on the Bimetallic Cluster [Pt3Fe3(CO)15]n-(n=0,1,2)[J]. Inorg. Chim. Acta.,1999,286(1):30-36
    [225]Brolnley S. T., Catlow C. R. A. Magnetism and Energetics of the 4d Bimetallic Cluster Pd6Ru6[J]. International Journalof Quantum Chemistry,2003,91 (2):270-276
    [226]Link S., wang Z.L., El-Sayed M. A. Alloy Formation of Gold-Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition[J].The Journal of Physical Chemistry B,1999,103(18):3529-3533
    [227]Koszinowski K., Sehroder D., Sehwarz H. Additivity Effects in the Reactivities of Bimetallic Cluster Ions PtmAun+[J]. Chemical Physics,2003,4(11):1233-1237
    [228]David Z., Marc R., Marie-Claire F., et al. Magnetic Enhancement in Nanoscale CoRh Particles[J]. Phys. Rev. Lett.,2002,89:037203-037206
    [229]Berlanga R. E. O., Aguilera G. F., Montejano C. J. M., et al. Structural and Magnetic Properties of CoRh Nanoparticles[J]. Phys. Rev. B,2004,70(9):014410
    [230]Hay P.J., Wadt W.R. Ab initio Effective Core Potentials for Molecular Calculations Potentials for the Transition Metal Atoms Sc to Hg[J]. Journal of Chemical Physics,1985, 82(1):270-283
    [231]Corina M., Claude D., Daniel D., et al. Kinetic and Spectrscopic Characterization of Cluster-Derived Supported Pt-Au Catalysts[J]. J. Catal.,2002,212:125-219
    [232]Yuan D. W., Wang Y., Zeng Z. Geometric, Electronic and Bonding Properties of AunM(n=1-7, M=Ni, Pd, Pt) Clusters[J]. Journal of Physics,2005,122:114-310
    [233]Gou J. J., Yang J. X., Dong D. First Principle Calculation on AunPt2(n=1-4) Clusters[J] Journal of Moleculer Structure(Theochem),2006,764:117
    [234]郭建军,杨继先,许生林AunPt-阴离子小团簇的量子化学研究[J].原子与分子物理学报,2008,25(4):838-842
    [235]张秀荣,高从花,洪伶俐PtnNim(n+m=6,n,m≠0),团簇结构与性质的理论研究[J].光子学报,2009,38(12):3109-3115
    [236]张秀荣,洪伶俐,崔彦娜,张伟(PtnMn)±0(n=1-5)掺杂团簇结构与磁性的密度泛函研究[J].分子科学学报,2009,25(3):192-199
    [237]Mandal M., Kundu S., Sau T. K. Synthesis and Characterization of Superparamagnetic Ni-Pt Nanoalloy[J]. Chem. Mater.,2003,15:3710-3715
    [238]Xu Y., Ruban A. V., Mavrikakis M. Adsorption and Dissociation of O2 on Pt-Co and Pt-Fe Alloys[J]. J. Am. Chem. Soc.2004,126:4717-4725
    [239]Baletto F., Ferrando R., Fortunelli A., et al. Crossover Among Structural Motifs in Transition and Noble-Metal Clusters[J]. Journal of Chemical Physics,2002,16(9):3856-3863
    [240]Jacob T., Muller R. P., Goddard W. A. Chemisorption of Atomic Oxygen on Pt(111) from DFT Studies of Pt-Clusters[J]. The Journal of Physical Chemicstry B,2003,107(1):9465-9476
    [241]Wakabayashi N., Takeichi M., Uchida H. Temperature Dependence of Oxygen Reduction Activity at Pt-Fe, Pt-Co, and Pt-Ni Alloy Electrodes[J]. The Journal of Physical Chemicstry B,2005,109,(2):5836-5841
    [242]Yamagishi S., Fujimoto T, Inada Y., et al. Studies of CO Adsorption on Pt(100), Pt(410), and Pt(110) Surfaces Using Density Functional Theory[J]. The Journal of Physical Chemicstry B,2005,109(2):8899-8908
    [243]刘刚,王文,牛焱,吴维.Pt-A1涂层进展[J].腐蚀科学与防护技术,2001,13(2):106-108
    [244]庞英,管恒荣,孙晓峰,姜晓霞.Pt-A1涂层在两种熔盐中的高温热腐蚀行为[J].腐蚀科学与防护技术,1997, 9(1):34-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700