低维碳负载金属团簇催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于低维碳具有稳定的光学、电学、磁学等特性,这成为了很多研究领域的热点。低维碳负载金属的复合体在很多应用领域提供了独特的性质,比如生物传感器和复合体的催化剂。低维碳有机械稳定性和大的比表面积,因而作为催化剂载体具有很有应用前景。事实上,许多实验结果表明:相对于金属氧化物载体,低维碳负载贵金属或过渡金属,在一系列的反应中,具有更好的催化活性。因此,本论文研究了低维碳(碳纳米管和石墨烯)负载金属的复合材料的性质和应用。
     我们用了密度泛函计算方法,系统地研究了Pt和Au团簇在缺陷或完美碳纳米管上的粘附作用。在Pt团簇体系中,计算结果表明:Pt团簇在缺陷碳纳米管上的粘附能是其在完美碳纳米管上的粘附能3-4倍。在Au团簇体系中, Au团簇粘附在C原子空缺位。通过态密度分析解释了点缺陷增强Pt或Au团簇与碳纳米管的相互作用机理;Pt或Au原子与碳原子具有更强的杂化作用,说明了金属与缺陷碳纳米管之间,有较多的电荷转移,这也解释了Pt和Au团簇与缺陷碳纳米管有很强的相互作用。
     我们,通过密度泛函方法,研究发现B、N掺杂可以调控贵金属(Au、Ag和Pt)单体与碳纳米管上的相互作用。但是,调控机理很强地依赖于掺杂元素及金属的类型。通过金属-B的离子键相互作用,B掺杂增强了Au、Ag与碳纳米管的相互作用。由于金属与多电子N掺杂碳纳米管的碳原子所形成的共价键强于金属与完美碳纳米管的碳原子所形成的共价键,N掺杂增强了金属与掺杂碳纳米管的相互作用。
     我们研究了Pd/CNTs催化剂和Pd/ACs催化剂在苯乙酮的氢化反应中的选择性的不同。并且基于密度泛函计算结果,不同吸附模型解释了, Pd/CNTs催化剂和Pd/ACs催化剂对于加氢反应中具有明显不同的选择性。
     我们研究表明:Al或Ga掺杂能有效提高N_2O与石墨烯的相互作用;并且,垂直电场能促进N_2O在Al或Ga掺杂石墨烯上的解离。而且,在强度适中的电场中,N_2O在Al掺杂石墨烯上,能容易被解离成N_2和O_2。
Low-dimensional carbon are attractive to a wide variety of research fields because of their unique optical, electrical, magnetic, and mechanical properties. The metal/low-dimensional carbon provide unique properties for many applications such as biosensors, nanodevices, and heterogeneous catalysis. Due to the mechanical stability and large surface area, Low-dimensional carbon have been regarded as a very promising catalyst support. Therefore, we investigate the properties and applications of metal/low-dimensional carbon (carbon nanotubes and graphene).
     The adhesion of various sizes of Pt or Au clusters on the carbon nanotubes (CNT) with and without the point defect has been investigated by means of density functional theory (DFT). For Pt clusters, our calculations show that the binding energies of Ptn clusters on the point defective CNT are more than three times than that on the point defective CNT. Likewise, for Au clusters, both experimental and theoretical studies show that point defects are the anchoring sites of Au nanoparticles. The mechanisms of enhanced bond between Pt or Au clusters and CNT via the point defects are explained mainly by the analysis of density of states. The stronger orbital hybridization between the Pt or Au atom and the carbon atom shows larger charge transfers on the defective CNT than on the defect free CNT, which allows the strong interaction between Pt or Au clusters and CNT.
     By means of density functional theory calculations, we demonstrate that the bonding between noble metal monomers and CNT can be modulated by the B-, N-doping. But the modulation mechanisms are strongly dependent on the doping element and metal. B-doping significantly enhances the adhesion of Au, Ag on CNT mainly via the formation the metal-B ionic bond. While N-doping enhance the adhesion of Au, Ag and Pt monomer on CNT due to the formation of stronger metal-carbon covalent bond than that on pristine CNT, which is caused by electron rich N-CNT.
     We investigate the selectivity difference between hydrogenation of acetophenone over CNT and commercial activated carbons (ACs) supported Pd catalysts, and its mechanistic study suggestes that the different adsorption modes of reaction intermediates on two kinds of catalysts are responsible for the dramatic selectivity difference.
     Our studies demonstrate that the doping of Al or Ga in graphene can more effectively enhance the interaction between N_2O and graphene than pristine grapheme; Meanwhile, it is found that a perpendicular electric field can promote dissociation of N_2O molecule adsorbing on the surface of Al or Ga doped grapheme. , Furthermore, the obtained result of N_2O/Al-doped graphene under different magnitude electric field suggests that N_2O molecule can be easily decomposed to N_2 and O_2 with appropriate electric field.
引文
[1] Franks A, Verbov JL. Unilateral Localized Idiopathic Lipoatrophy [J], Clinical and Experimental Dermatology, 1993, 18: 468-469
    [2] Iijima S. Helical Microtubules of Graphitic Carbon [J], Nature, 354: 56~58
    [3] Iijima S, Ichihashi T. Single-Shell Carbon Nanotubes of 1-nm Diameter [J], Nature, 1993, 363: 603-605
    [4] Bethune DS, Klang CH, De VM. Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls [J], Nature, 1993,363: 605-607
    [5]美国Rice大学RE Samlley研究小组
    [6] Henning T, Salama F. Carbon in the Universe.Science [J], Science, 1998, 282: 2204-2210
    [7]韦进全,张先锋,王昆林.碳纳米管宏观体.北京:清华大学出版社,2006.
    [8] Dresselhaus MS, Dresselhaus G, Saito R. Physics of Carbon Nanotubes [J], Carbon, 1995, 33: 883-891
    [9] Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE. Catalytic Growth of Single-Walled Nanotubes by Laser Vaporization [J], Chemical Physics Letters, 243: 49-54
    [10] Endo M, Kroto HW. Formation of Carbon Nanofibers [J], Journal of Physical Chemistry, 1992, 96: 6941-6944
    [11] Feigney A, Laurent C, Dobigeon F. Carbon nanotubes grown in a novel catalytic method [J], Journal of Materials Research, 1997, 12: 613-615
    [12] Thess A, Lee R, Nikolaev P. Crystalline Ropes of Metallic Carbon Nanotubes [J], Science, 1996, 273: 483-487
    [13] Dai H, Rinzler AG, Nikolaev P. Single-Wall Nanotubes Produced by Metal-Catalyzed Disproportionation of Carbon Monoxide [J], Chemical Physics Letters, 1996, 260: 471-475
    [14] Cheng HM, Yang QH, Liu C, Hydrogen storage in carbon nanotubes [J], Carbon, 1996, 260: 471-475
    [15]碳纳米管/聚氨醋功能复合材料的制备与应用.中国化工信息网,2006年11月24日
    [16] Nevidomskyy AH, Csanyi G, Payne MC. Chemically active substitutional nitrogen impurity in carbon nanotubes [J], Physical Review Letters, 2003, 91
    [17] Droppa R, Ribeiro CTM, Zanatta AR, dos Santos MC, Alvarez F. Comprehensive spectroscopic study of nitrogenated carbon nanotubes [J], Physical Review B, 2004, 69
    [18] Jang JW, Lee CE, Lyu SC, Lee TJ, Lee CJ. Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes [J], Applied Physics Letters, 2004: 84: 2877-2879
    [19] Che RC, Peng LM, Wang MS. Electron side-emission from corrugated CNx nanotubes [J], Applied Physics Letters, 2004, 85: 4753-4755
    [20] Lu AJ, Pan BC. Nature of single vacancy in achiral carbon nanotubes [J], Physical Review Letters, 2004, 92
    [21] Zhao MW, Xia YY, Lewis JP, Zhang RQ. First-principles calculations for nitrogen-containing single-walled carbon nanotubes [J], Journal of Applied Physics, 2003, 94: 2398-2402
    [22] Czerw R, Terrones M, Charlier JC. Identification of electron donor states in N-doped carbon nanotubes [J], Nano Letters, 2001, 1: 457-460
    [23] Terrones M, Ajayan PM, Banhart F. N-doping and coalescence of carbon nanotubes: synthesis and electronic properties [J], Applied Physics a-Materials Science & Processing, 2002,74: 355-361
    [24] Yi JY, Bernholc J. Atomic-Structure and Doping of Microtubules [J], Physical Review B, 2002, 74: 1708-1711
    [25] Rubio A, Corkill JL, Cohen ML. Theory of Graphitic Boron-Nitride Nanotubes [J], Physical Review B, 1994, 47: 5081-5084
    [26] Golberg D, Bando Y, Han W. Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction [J], Chemical Physics Letters, 1999, 308: 337-342
    [27] Zhang H, Chu W, Zou CJ, Huang ZY, Ye ZB, Zhu L. Promotion Effects of Platinum and Ruthenium on Carbon Nanotube Supported Cobalt Catalysts for Fischer–Tropsch Synthesis [J], Catalysis Letters, 2011, 141,438-444
    [28] Cano M, Benito A, Maser WK, Urriolabeitia EP. One-step microwave synthesis of palladium–carbon nanotube hybrids with improved catalytic performance [J], Carbon, 2011, 49, 652-658
    [29] Guo Z, Chen YT, Li LS, Wang XM, Haller GL, Yang YH. Carbon nanotube-supported Pt-based bimetallic catalysts prepared by a microwave-assisted polyol reduction method and their catalytic applications in the selective hydrogenation [J], Journal of Catalysis, 2010, 276, 314-326
    [30] Chu HB, Shen YH, Lin LA, Qin XJ, et al. Ionic-Liquid-Assisted Preparation of Carbon Nanotube-Supported Uniform Noble Metal Nanoparticles and Their Enhanced Catalytic Performance [J], Advanced Functional Materials, 2010, 20, 3747-3752
    [31] Rao CNR, Biswas K, Subrahmanyam KS. Graphene, the new nanocarbon [J], Journal of Materials Chemistry, 2009, 19: 2457-2469
    [32] Castro Neto AH, Guinea F, Peres NMR. The electronic properties of grapheme [J], Reviews of Modern Physics, 2009, 81: 109-162
    [33] Novoselov KS, Geim AK, Morozov SV. Electric field effect in atomically thin carbon films [J], Science, 2004, 306: 666-669
    [34] Novoselov KS, Morozov SV, Mohinddin TMG. Electronic properties of grapheme [J], Physica Status Solidi B-Basic Solid State Physics, 2007, 244: 4106-4111
    [35] Lee CG, Parikh V, Itsukaichi T. Resetting the Drosophila clock by photic regulation of PER and a PER-TIM complex [J], Science, 1996, 271: 1740-1744
    [36] Stoller MD, Park SJ, Zhu YW. Graphene-Based Ultracapacitors [J], Nano Letters, 2008, 8: 3498-3502
    [37] Balandin AA, Ghosh S, Bao WZ. Superior thermal conductivity of single-layer grapheme [J], Nano Letters, 2008,8: 902-907
    [38] Borovikov V, Zangwill A. Step-edge instability during epitaxial growth of graphene from SiC(0001) [J], Physical Review B, 2009, 80
    [39] Sprinkle M, Soukiassian P, de Heer, WA. Epitaxial graphene: the material for graphene electronics [J], Physica Status Solidi-Rapid Research Letters, 2009, 3:A91-A94
    [40] Subrahmanyam KS, Panchakarla LS, Govindaraj A. Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method [J], Journal of Physical Chemistry C, 2009, 113: 4257-4259
    [41] Schniepp HC, Li JL, McAllister MJ. Functionalized single graphene sheets derived from splitting graphite oxide [J], Journal of Physical Chemistry B, 2006, 110: 8535-8539
    [42] Liu N, Luo F, Wu HX. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized grapheme sheets directly from graphite [J], Advanced Functional Materials, 2008, 18: 1518-1525
    [43] Obraztsov AN. CHEMICAL VAPOUR DEPOSITION Making graphene on a large scale [J], Nature Nanotechnology, 2009, 4: 212-213
    [44] Steurer P, Wissert R, Thomann R. Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide [J], Macromolecular Rapid Communications, 2009, 30: 316-327
    [45] Nhut JM, Pesant L, Tessonnier JP, Mesoporous carbon nanotubes for use as support in catalysis and as nanosized reactors for one-dimensional inorganic material synthesis [J], Applied Catalysis a-General, 2003, 254: 345-363
    [46] Zhang H, Fu Q, Yao YX. Size-dependent surface reactions of Ag nanoparticles supported on highly oriented pyrolytic graphite [J], Langmuir, 2008, 24: 10874-10878
    [47] Pan XL, Fan ZL, Chen W. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles [J], Nature Materials, 2007, 6: 507-511
    [48] Mastalir A, Kiraly Z, Patzko, A. Synthesis and catalytic application of Pd nanoparticles in graphite oxide [J], Carbon, 2008, 46: 1631-1637
    [49] Wehling TO, Novoselov KS, Morozov SV. Molecular doping of grapheme [J], Nano Letters, 2008, 8: 173-177
    [50] Schedin F, Geim AK, Morozov SV. Detection of individual gas molecules adsorbed on grapheme [J], Nature Materials, 2007, 6: 652-655
    [51] Xu C, Wang X, Zhu JW. Deposition of Co3O4 nanoparticles onto exfoliated graphite oxide sheets [J], Journal of Materials Chemistry, 2008, 112: 5625-5629
    [52] Yoo E, Okata T, Akita T. Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface [J], Nano Letters, 2009, 9: 2255-2259
    [53] Scheuermann GM, Rumi LG, Steurer P, Bannwarth W, Mulhaupt R. Palladium Nanoparticles on Graphite Oxide and Its Functionalized Graphene Derivatives as Highly Active Catalysts for the Suzuki?Miyaura Coupling Reaction [J], Journal of the American Chemical Society, 2009, 131, 8262-8270.
    [54] Kou R, Shao YY, Shao DH, Wang DH, et al. Enhanced Activity and Stability of Pt catalysts on Functionalized Graphene Sheets for Electrocatalytic Oxygen Reduction [J], Electrochem Comm, 2009, 5, 954-957
    [55] Jafri RI, Rajalakshmi N, Ramaprabhu, S. Nitrogen doped graphene nanoplatelets as catalyst support for oxygenreduction reaction in proton exchange membranefuelcell [J], Journal of Materials Chemistry, 2010, 20, 7114-7117
    [1]李国量碳纳米管吸附锉的第一性原理计算[硕士研究生学位论文]中国海洋大学2009
    [2]胡双林低维材料第一性原理计算研究[博士研究生学位论文]中国科技大学
    [3]赵成大固体量子化学高等教育出版社2002
    [4]B.M.Deb and 5.K.Ghosh,J.Chem.Phys.77,342(1982).
    [5]E.Runge and E.K.U.Gross,Phys.Rev.Lett.52,997(1984).
    [6]陈光巨黄元河量子化学华东理工大学
    [7]韦卫建异质掺杂碳纳米管的电子特性和运输性能的影响[研究生博士论文]湖南大学
    [1] Andrews R, Jacques D, Qian D. Multiwall Carbon Nanotubes: Synthesis and Application [J], Accounts of Chemical Research, 2002, 35: 1008-1017
    [2] Avouris P. Molecular Electronics with Carbon Nanotubes [J], Accounts of Chemical Research, 2002, 35: 1026-1034
    [3] Dai H. Carbon Nanotubes: Synthesis, Integration, and Properties [J], Accounts of Chemical Research, 2002, 35: 1035-1044
    [4] Dresselhaus MS, Dresselhaus G, Jorio A. Single Nanotube Raman Spectroscopy [J], Accounts of Chemical Research, 2002, 35: 1070-1078
    [5] Fischer JE. Chemical Doping of Single-Wall Carbon Nanotubes [J], Accounts of Chemical Research, 2002, 35: 1079-1086
    [6] Niyogi S, Hamon MA, Hu H. Chemistry of Single-Walled Carbon Nanotubes [J], Accounts of Chemical Research, 2002, 35: 1105-1113
    [7] Ouyang M, Huang JL, Lieber CM. Fundamental electronic properties and applications of single-walled carbon nanotubes [J], Accounts of Chemical Research, 2002, 35: 1018-1025
    [8] Rao CNR, Govindaraj A. Carbon Nanotubes from Organometallic [J], Accounts of Chemical Research, 2002, 35: 998-1007
    [9] Sloan J, Kirkland AI, Hutchison JL. Structural Characterization of Atomically Regulated Nanocrystals Formed within Single-Walled Carbon Nanotubes Using Electron Microscopy [J], Accounts of Chemical Research, 2002, 35: 1054-1062
    [10] Sun YP, Fu K, Lin Y, Huang W. Functionalized carbon nanotubes: properties and applications [J], Accounts of Chemical Research, 2002, 35: 1096-1104
    [11] Zhou O, Shimoda H, Gao B. Materials science of carbon nanotubes: fabrication, integration, and properties of macroscopic structures of carbon nanotubes [J], Accounts of Chemical Research, 2002, 35: 1045-1053
    [12] Liang ZX, Zhao TS. New DMFC anode structure consisting of platinum nanowires deposited into a Nafion membrane [J], Journal of Physical Chemistry C,2007, 111: 8128-8134
    [13] Xing YC. Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes [J], Journal of Physical Chemistry B, 2004, 108: 19255-19259
    [14] Mu Y, Liang H, Hu J, Jiang L. Controllable Pt Nanoparticle Deposition on Carbon Nanotubes as an Anode Catalyst for Direct Methanol Fuel Cells [J], Journal of Physical Chemistry B, 2005, 109: 22212-22216
    [15] Liu ZT, Wang CX, Liu ZW. Selective hydrogenation of cinnamaldehyde over Pt-supported multi-walled carbon nanotubes: Insights into the tube-size effects [J], Applied Catalysis A, 2008, 344: 114-123
    [16] Planeix JM, Coustel N, Coq B. Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis [J], Journal of the American Chemical Society, 1994, 116: 7935-7936
    [17] Corma A, Garcia H, Leyva A. Catalytic activity of palladium supported on single wall carbon nanotubes compared to palladium supported on activated carbon Study of the Heck and Suzuki couplings, aerobic alcohol oxidation and selective hydrogenation [J], Journal of Molecular Catalysis A, 2005, 230: 97–105
    [18] Pham-Huu C, Keller N, Charbonniere LJ. Carbon nanofiber supported palladium catalyst for liquid-phase reactions: an active and selective catalyst for hydrogenation of cinnamaldehyde into hydrocinnamaldehyde [J], Chemical Communications, 2001, 170: 155-163
    [19] Kongkanand A, Vinodgopal K, Kuwabata S. Highly Dispersed Pt Catalysts on Single-Walled Carbon Nanotubes and Their Role in Methanol Oxidation [J], Journal of Physical Chemistry B, 2006, 110: 16185-16188
    [20] Guo S, Dong S, Wang E, Synthesis and Bio-Imaging Application of Highly Luminescent Mercaptosuccinic Acid-Coated CdTe Nanocrystals [J], Journal of Physical Chemistry C, 2008,112: 2389
    [21] Kim YT, Mitani T, Surface thiolation of carbon nanotubes as supports: A promising route for the high dispersion of Pt nanoparticles for electrocatalysts [J], Journal of Catalysis, 2006, 238: 394-401
    [22] Lordi V, Yao N, Wei J, Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst [J], Chemistry of Materials, 2001, 13:733-737
    [23] Zhao JX, Ding YH, Chemical functionalization of single-walled carbon nanotubes (SWNTs) by aryl groups: A density functional theory study [J], Journal of Physical Chemistry C, 2008, 112:13141-13149
    [24] Maiti A, Ricca A. Metal-nanotube interactions-binding energies and wetting properties [J], Chemical Physics Letters, 2004, 395: 7-11
    [25] Yang SH, Shin WH, Lee JW, Kim SY, Woo SI, Kang JK. nteraction of a transition metal atom with intrinsic defects in single-walled carbon nanotubes [J], Journal of Physical Chemistry B, 2006, 110: 13941-13946
    [26] Delley B. An All-Electron Numerical-Method for Solving the Local Density Functional for Polyatomic-Molecules [J], Journal of Chemical Physics 1990, 92: 508-517
    [27] Delley B. From molecules to solids with the DMol(3) approach [J], Journal of Chemical Physics, 2000, 113: 7756-7764
    [28] Perdew JP, Wang Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation-Energy [J], Physical Review B, 1992, 45:13244-13249
    [1] Bianco A, Kostarelos K, Partidos CD. Biomedical applications of functionalised carbon nanotubes [J], Chemical Communications, 2005, 5: 571-577
    [2] Subramaniam C, Sreeprasad TS, Pradeep T. Visible fluorescence induced by the metal semiconductor transition in composites of carbon nanotubes with noble metal nanoparticles [J], Physical Review Letters, 2007, 99
    [3] Ye JS, Cui HF, Liu X. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors [J], Small, 2005, 1: 560-565
    [4] Kakade BA, Sahoo S, Halligudi SB. Highly selective catalytic hydrogenation of arenes using rhodium nanoparticles supported on multiwalled carbon nanotubes [J], Journal of Physical Chemistry C, 2008, 112: 13317-13319
    [5] Kong J, Chapline MG, Dai HJ. Functionalized carbon nanotubes for molecular hydrogen sensors [J], Advanced Materials, 2001, 13:1384-1386
    [6] Zhu J, Brink M, McEuen PL. Single-electron force readout of nanoparticle electrometers attached to carbon nanotubes [J], Nano Letters, 2008, 8:2399-2404
    [7] Goldsmith BR, Coroneus JG, Khalap VR. Conductance-controlled point functionalization of single-walled carbon nanotubes [J], Science, 2007, 315: 77-81
    [8] Daniel MC, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J], Chemical Reviews, 2004, 104: 293-346
    [9] Guo S, Dong SJ, Wang E. Constructing carbon-nanotube/metal hybrid nanostructures using homogeneous TiO_2 as a spacer [J], Small, 2008, 4: 1133-1138
    [10] Mahmoud KA, Hrapovic S, Luong JHT. Picomolar detection of protease using peptide/single walled carbon nanotube/gold nanoparticle-modified electrode [J], ACS Nano 2008, 2: 1051-1057
    [11] Goring P, Pippel E, Hofmeister H. Gold/carbon composite tubes and gold nanowires by impregnating templates with hydrogen tetrachloroaurate/acetone solutions [J], Nano Letters, 2004, 4: 1121-1125
    [12] Liu P, Sun Q, Zhu F. Measuring the work function of carbon nanotubes with thermionic method [J], Nano Letters, 2008, 8: 647-651
    [13] Mieszawska AJ, Jalilian R, Sumanasekera GU. Synthesis of gold nanorod/single-wall carbon nanotube heterojunctions directly on surfaces [J], Journal of the American Chemical Society, 2005, 127: 10822-10823
    [14] Carrillo A, Swartz JA, Gamba JM. Noncovalent functionalization of graphite and carbon nanotubes with polymer multilayers and gold nanoparticles [J], Nano Letters, 2003, 3: 1437-1440
    [15] Fullam S, Cottell D, Rensmo H. Carbon nanotube templated self-assembly and thermal processing of gold nanowires [J], Advanced Materials, 2000, 12: 1430-1432
    [16] Li J, Moskovits M, Haslett TL. Nanoscale electroless metal deposition in aligned carbon nanotubes [J], Chemistry of Materials, 1998, 10: 1963-1967
    [17] Azamian BR, Coleman KS, Davis JJ. Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes [J], Chemical Communications, 2002, 4: 366-367
    [18] Marsh DH, Rance GA, Whitby RJ. Assembly, structure and electrical conductance of carbon nanotube-gold nanoparticle 2D heterostructures [J], Journal of Materials Chemistry, 2008, 18: 2249-2256
    [19] Liu L, Wang TX, Li JX. Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker [J], Chemical Physics Letters, 2003, 367: 747-752
    [20] Lou XD, Daussin R, Cuenot S. Synthesis of pyrene-containing polymers and noncovalent sidewall functionalization of multiwalled carbon nanotubes [J], Chemistry of Materials, 2004, 16: 4005-4011
    [21] Gingery D, Buhlmann P. Formation of gold nanoparticles on multiwalled carbon nanotubes by thermal evaporation [J], Carbon, 2008, 46: 1966-1976
    [22] Zhang Y, Franklin NW, Chen RJ. Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction [J], Chemical Physics Letters, 2000, 331: 35-41
    [23] Bittencourt C, Felten A, Douhard B. Photoemission studies of gold clustersthermally evaporated on multiwall carbon nanotubes [J], Chemical Physics, 2006, 328: 385-391
    [24] Felten A, Bittencourt C, Colomer JF. Nucleation of metal clusters on plasma treated multi wall carbon nanotubes [J], Carbon, 2007, 45: 110-116
    [25] Bittencourt C, Felten A, Douhard B. Metallic nanoparticles on plasma treated carbon nanotubes: Nano(2)hybrids [J], Surface Science, 2007, 601: 2800-2804
    [26] Charlier JC, Terrones M, Baxendale M. Enhanced electron field emission in B-doped carbon nanotubes [J], Nano Letters, 2002, 2: 1191-1195
    [27] Cuong NT, Fujiwara A, Mitani T. Effects of carbon supports on Pt nano-cluster catalyst [J], Computational Materials Science, 2008, 44: 163-166
    [28] Durgun E, Dag S, Bagci VMK. Systematic study of adsorption of single atoms on a carbon nanotube [J], Physical Review B, 2003, 67
    [29] Yang CK, Zhao JJ, Lu JP. Binding energies and electronic structures of adsorbed titanium chains on carbon nanotubes [J], Physical Review B, 2002, 66
    [30] Maiti A, Ricca A. Metal-nanotube interactions - binding energies and wetting properties [J], Chemical Physics Letters 2004, 395: 7-11
    [31] Zhuang HL, Zheng GP, Soh AK. nteractions between transition metals and defective carbon nanotubes [J], Computational Materials Science, 2008, 43: 823-828
    [32] Delley B. An All-Electron Numerical-Method for Solving the Local Density Functional for Polyatomic-Molecules [J], Journal of Chemical Physics 1990, 92: 508-517
    [33] Delley B. From molecules to solids with the DMol(3) approach [J], Journal of Chemical Physics, 2000, 113: 7756-7764
    [34] Perdew JP, Wang Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation-Energy [J], Physical Review B, 1992, 45:13244-13249
    [35] Wang JG, Lv YA, Li XN, Dong MD. Point-Defect Mediated Bonding of Pt Clusters on (5,5) Carbon Nanotubes [J], Journal of Physical Chemistry C, 2009, 113: 890-893
    [1] Bianco A, Kostarelos K, Partidos CD. Biomedical applications of functionalised carbon nanotubes [J], Chemical Communications, 2005, 5:571-577
    [2] Subramaniam C, Sreeprasad TS, Pradeep T. Visible fluorescence induced by the metal semiconductor transition in composites of carbon nanotubes with noble metal nanoparticles [J], Physical Review Letters, 2007, 99
    [3] Ye JS, Cui HF, Liu X. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors [J], Small, 2005, 1: 560-565
    [4] Kakade BA, Sahoo S, Halligudi SB. Highly selective catalytic hydrogenation of arenes using rhodium nanoparticles supported on multiwalled carbon nanotubes [J], Journal of Physical Chemistry C, 2008, 112: 13317-13319
    [5] Kong J, Chapline MG, Dai HJ. Functionalized carbon nanotubes for molecular hydrogen sensors [J], Advanced Materials, 2001, 13: 1384-1386
    [6] Zhu J, Brink M, McEuen PL. Single-electron force readout of nanoparticle electrometers attached to carbon nanotubes [J], Nano Letters, 2008, 8: 2399-2404
    [7] Goldsmith BR, Coroneus JG, Khalap VR.. Conductance-controlled point functionalization of single-walled carbon nanotubes [J], Science, 2007, 315: 77-81
    [8] Lawson G, Gonzaga F, Huang J. Au-carbon nanotube composites from self-reduction of Au3+ upon poly(ethylene imine) functionalized SWNT thin films [J], Journal of Materials Chemistry, 2008, 18: 1694-1702
    [9] Daniel MC, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J], Chemical Reviews, 2004, 104: 293-346
    [10] Guo S, Dong SJ, Wang E. Constructing carbon-nanotube/metal hybrid nanostructures using homogeneous TiO_2 as a spacer [J], Small, 2008, 4: 1133-1138
    [11] Mahmoud KA, Hrapovic S, Luong JHT. Picomolar detection of protease using peptide/single walled carbon nanotube/gold nanoparticle-modified electrode [J], ACS Nano 2008, 2: 1051-1057
    [12] Goring P, Pippel E, Hofmeister H. Gold/carbon composite tubes and gold nanowires by impregnating templates with hydrogen tetrachloroaurate/acetone solutions [J], Nano Letters, 2004, 4: 1121-1125
    [13] Xiao XF, Liu RF, Tian T. Preparation of bioactive titania nanotube arrays in HF/Na2HPO4 electrolyte [J], Journal of Alloys and Compounds, 2008, 466: 356-362
    [14] Mieszawska AJ, Jalilian R, Sumanasekera GU. Synthesis of gold nanorod/single-wall carbon nanotube heterojunctions directly on surfaces [J], Journal of the American Chemical Society, 2005, 127: 10822-10823
    [15] Carrillo A, Swartz JA, Gamba JM. Noncovalent functionalization of graphite and carbon nanotubes with polymer multilayers and gold nanoparticles [J], Nano Letters, 2003, 3: 1435-1440
    [16] Pan XL, Fan ZL, Chen W. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles [J], Nature Materials, 2007, 6: 507-511
    [17] Chen W, Pan XL, Willinger MG. Facile autoreduction of iron oxide/carbon nanotube encapsulates [J], Journal of the American Chemical Society, 2006, 128: 3136-3137
    [18] Fullam S, Cottell D, Rensmo H. Carbon nanotube templated self-assembly and thermal processing of gold nanowires [J], Advanced Materials, 2000, 12: 1430-1432
    [19] Li J, Moskovits M, Haslett TL. Nanoscale electroless metal deposition in aligned carbon nanotubes [J], Chemistry of Materials, 1998, 10: 1963-1967
    [20] Azamian BR, Coleman KS, Davis JJ. Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes [J], Chemical Communications, 2002, 4: 366-367
    [21] Marsh DH, Rance GA, Whitby RJ. Assembly, structure and electrical conductance of carbon nanotube-gold nanoparticle 2D heterostructures [J], Journal of Materials Chemistry, 2008, 18: 2249-2256
    [22] Liu L, Wang TX, Li JX. Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker [J], Chemical Physics Letters, 2003, 367: 747-752
    [23] Kim YT, Mitani T. Surface thiolation of carbon nanotubes as supports: Apromising route for the high dispersion of Pt nanoparticles for electrocatalysts [J], Journal of Catalysis, 2006, 238: 394-401
    [24] Gingery D, Buhlmann P. Formation of gold nanoparticles on multiwalled carbon nanotubes by thermal evaporation [J], Carbon, 2008, 46: 1966-1972
    [25] Zhang Y, Franklin NW, Chen RJ. Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction [J], Chemical Physics Letters, 2000, 331: 35-41
    [26] Liu XM, Romero HE, Gutierrez HR. Transparent boron-doped carbon nanotube films [J], Nano Letters, 2008, 8: 2613-2619
    [27] Williams QL, Liu X, Walters W. Boron-doped carbon nanotube coating for transparent, conducting, flexible photonic devices [J], Applied Physics Letters, 2007, 91
    [28] Allen BL, Kichambare PD, Star A. Synthesis, characterization, and manipulation of nitrogen-doped carbon nanotube cups [J], ACS Nano, 2008, 2: 1914-1920
    [29] Yang QH, Hou PX, Unno M. Dual Raman features of double coaxial carbon nanotubes with N-doped and B-doped multiwalls [J], Nano Letters, 2005, 5: 2465-2469
    [30] Bandow S, Numao S, Iijima S. Variable-range hopping conduction in the assembly of boron-doped multiwalled carbon nanotubes [J], Journal of Physical Chemistry C, 2007, 111: 11763-11766
    [31] Gong KP, Du F, Xia ZH. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J], Science, 2009, 323: 760-764
    [32] Amadou J, Chizari K, Houlle M. N-doped carbon nanotubes for liquid-phase C=C bond hydrogenation [J], Catalysis Today, 2008, 138: 62-68
    [33] Cuong NT, Fujiwara A, Mitani T. Effects of carbon supports on Pt nano-cluster catalyst [J], Computational Materials Science 2008, 44: 163-166
    [34] Durgun E, Dag S, Bagci VMK. Systematic study of adsorption of single atoms on a carbon nanotube [J], Physical Review B, 2003, 67
    [35] Yang CK, Zhao JJ, Lu JP. Binding energies and electronic structures of adsorbed titanium chains on carbon nanotubes [J], Physical Review B, 2002, 66
    [36] Maiti A, Ricca A. Metal-nanotube interactions - binding energies and wetting properties [J], Chemical Physics Letters, 2004, 395: 7-11
    [37] Wang KP, Shi CS, Zhao NQ. First-principles study of the B- or N-doping effects on chemical bonding characteristics between magnesium and single-walled carbon nanotubes [J], Chemical Physics Letters, 2009, 469: 145-148
    [38] Delley B. An All-Electron Numerical-Method for Solving the Local Density Functional for Polyatomic-Molecules [J], Journal of Chemical Physics 1990, 92: 508-517
    [39] Delley B. From molecules to solids with the DMol(3) approach [J], Journal of Chemical Physics, 2000, 113: 7756-7764
    [40] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J], Physical Review Letters, 1996, 77: 3865-3868
    [41] Wang JG, Lv YA, Li XN, Dong MD. Point-Defect Mediated Bonding of Pt Clusters on (5,5) Carbon Nanotubes [J], Journal of Physical Chemistry C, 2009, 113: 890-893
    [1] Auer E, Freund A, Pietsch J. Carbons as supports for industrial precious metal catalysts [J], Applied Catalysis a-General, 1998, 173: 250-271
    [2] Serp P, Corrias M, Kalck, P. Carbon nanotubes and nanofibers in catalysis [J], Applied Catalysis a-General, 2003, 253: 337-358
    [3] Wang JG, Lv YA, Li XN, Dong MD. Point-Defect Mediated Bonding of Pt Clusters on (5,5) Carbon Nanotubes [J], Journal of Physical Chemistry C, 2009, 113: 890-893
    [4] Onoe T, Iwamoto S, Inoue M. Synthesis and activity of the Pt catalyst supported on CNT [J], Catalysis Communications, 2007, 8: 701-706
    [5] Lordi V, Yao N, Wei J. Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst [J], Chemistry of Materials, 2001, 13: 733-737
    [6] Qin F, Shen W, Wang CC. Selective hydrogenation of citral over a novel platinum/MWNTs nanocomposites [J], Catalysis Communications, 2008, 9: 2095-2098
    [7] Villa A, Wang D, Dimitratos N, Su DS, Trevisan V, Prati L. Pd on carbon nanotubes for liquid phase alcohol oxidation [J], Catalysis Today, 2010, 150: 8-15
    [8] Chen XC, Hou YQ, Wang H. Facile deposition of Pd nanoparticles on carbon nanotube microparticles and their catalytic activity for Suzuki coupling reactions [J], Journal of Physical Chemistry C, 2008, 112: 8172-8176
    [9] Vu H, Goncalves F, Philippe R. Bimetallic catalysis on carbon nanotubes for the selective hydrogenation of cinnamaldehyde [J], Journal of Catalysis, 2006, 240: 18-22
    [10] Li Y, Ge CH, Zhao J. Influence of Preparation Modes on Pt-Ni/CNTs Catalysts Used in the Selective Hydrogenation of Cinnamaldehyde to Hydrocinnamaldehyde [J], Catalysis Letters, 2008, 126: 280-285
    [11] Qiu JS, Zhang HZ, Wang XN. Selective hydrogenation of cinnamaldehyde over carbon nanotube supported Pd-Ru catalyst [J], Reaction Kinetics and Catalysis Letters, 2006, 88: 269-275
    [12] Bauer K, Garbe D, Ullmann’s Encyclopedia. vol. A11, VCH [M], New York, 1988, p. 141.
    [13] Rylander P, Hydrogenation Methods [M], Academic Press Inc., London, 1985, p. 66.
    [14] Santori GF, Moglioni AG, Vetere V. Hydrogenation of aromatic ketones with Pt- and Sn-modified Pt catalysts [J], Applied Catalysis a-General, 2004, 269: 215-223
    [15] Cerveny L, Belohlav Z, Hamed MNH. Catalytic hydrogenation of aromatic aldehydes and ketones over ruthenium catalysts [J], Research on Chemical Intermediates, 1996, 22: 15-22
    [16] Casagrande M, Storaro L, Talon A. Liquid phase acetophenone hydrogenation on Ru/Cr/B catalysts supported on silica [J], Journal of Molecular Catalysis a-Chemical, 2002, 188: 133-139
    [17] Aramendia MA, Borau V, Gomez JF. Reduction of Acetophenones over Pd Alpo4 Catalysts - Linear Free-Energy Relationship (Lfer) [J], Journal of Catalysis, 1993, 140: 335-343
    [18] Drelinkiewicza A, Waksmundzka A, Makowski W. Acetophenone hydrogenation on polymer-palladium catalysts. The effect of polymer matrix [J], Catalysis Letters, 2004, 94: 143-156
    [19] Bejblova M, Zamostny P, Cerveny L. Hydrogenation and hydrogenolysis of acetophenone [J], Collection of Czechoslovak Chemical Communications, 2003, 68: 1969-1984
    [20] Masson J, Vidal S, Cividino P. Selective Hydrogenation of Acetophenone on Chromium Promoted Raney-Nickel Catalysts .2. Catalytic Properties in the Hydrogenation of Acetophenone, Determination of the Reactivity Ratios as Selectivity Criteria [J], Applied Catalysis a-General, 1993, 99: 147-159
    [21] Delley B. An All-Electron Numerical-Method for Solving the Local Density Functional for Polyatomic-Molecules [J], Journal of Chemical Physics 1990, 92: 508-517
    [22] Delley B. From molecules to solids with the DMol(3) approach [J], Journal of Chemical Physics, 2000, 113: 7756-7764
    [24] Perdew JP, Wang Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation-Energy [J], Physical Review B, 1922, 45:13244-13249
    [1] Available from http://en.wikidipea.org/wiki/Nitrous_oxide.
    [2] Kramlich JC, Linak WP. Nitrous-Oxide Behavior in the Atmosphere, and in Combustion and Industrial-Systems [J], Progress in Energy and Combustion Science, 1994, 20: 149-202
    [3] Perez-Ramirez J. Prospects of N_2O emission regulations in the European fertilizer industry [J], Applied Catalysis B-Environmental, 2007, 70: 31-35
    [4] Kapteijn F, RodriguezMirasol J, Moulijn JA. Heterogeneous catalytic decomposition of nitrous oxide [J], Applied Catalysis B-Environmental, 1996, 9: 25-64
    [5] Xia HA, Sun KQ, Liu ZM, Feng ZC, Ying PL, Li C. The promotional effect of NO on N_2O decomposition over the bi-nuclear Fe sites in Fe/ZSM-5 [J], Journal of Catalysis, 2010, 270: 103-109
    [6] Zhao XY, Cong Y, Lv F, Li L. Mullite-supported Rh catalyst: a promising catalyst for the decomposition of N_2O propellant [J], Chemical Communications, 2010, 46: 3028-3030
    [7] Parres-Esclapez S, Illan-Gomez MJ, de Lecea CSM. On the importance of the catalyst redox properties in the N_2O decomposition over alumina and ceria supported Rh, Pd and Pt [J], Applied Catalysis B-Environmental [J], 2010, 96: 370-378
    [8] Kumar S, Rayalu S, Russo N, Kanade GS, Kusaba H, Teraoka Y, Labhsetwar N. Metal Exchanged ZSM-5 Zeolite Based Catalysts for Direct Decomposition of N_2O [J], Catalysis Letters, 2009, 132: 248-252
    [9] Basahel SN, El-Maksod IHA, Abu-Zied BM, Mokhtar M. Effect of Zr4+ doping on the stabilization of ZnCo-mixed oxide spinel system and its catalytic activity towards N_2O decomposition [J], Journal of Alloys and Compounds, 2010, 493: 630-635
    [10] Campa MC, Indovina V, Pietrogiacomi D. The dependence of catalytic activity for N_2O decomposition on the exchange extent of cobalt or copper in Na-MOR, H-MOR and Na-MFI [J], Applied Catalysis B-Environmental, 2009, 91: 347-354
    [11] Sklenak S, Andrikopoulos PC, Boekfa B, Jansang B, Novakova J, Benco L, Bucko T, Hafner J, Dedecek J, Sobalik Z. N_2O decomposition over Fe-zeolites: Structure of the active sites and the origin of the distinct reactivity of Fe-ferrierite, Fe-ZSM-5, and Fe-beta. A combined periodic DFT and multispectral study [J], Journal of Catalysis, 2010, 272: 262-274
    [12] Sengupta D, Adams JB, Schneider WF, Hass KC. Theoretical analysis of N_2O to N-2 conversion during the catalytic decomposition of NO by Cu-zeolites [J], Catalysis Letters, 2001, 74: 193-199
    [13] Oviedo J, Sanz JF. N_2O decomposition on TiO2 (110) from dynamic first-principles calculations [J], Journal of Physical Chemistry B, 2005, 109: 16223-16226
    [14] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films [J], Science, 2004, 306: 666-669
    [15] Schwierz, F. Graphene transistors [J], Nature Nanotechnology, 2010, 5: 487-496 16 C. N. Rao. A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Angew. Chem., Int. Ed., 2009, 48, 7752; X. R. Wang, X. L. Li, L. Zhang, Y. K. Yoon, P. K. Weber, H. L. Wang, J. Guo, H. J. Dai, Science, 2009, 324, 768.
    [16] Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. Graphene: The New Two-Dimensional Nanomaterial [J], Angewandte Chemie-International Edition, 2009, 48: 7752-7777
    [17] Ao ZM, Yang J, Li S, Jiang Q. Enhancement of CO detection in Al doped grapheme [J], Chemical Physics Letters, 2008, 461: 276-279
    [18] He C, Zhang P, Zhu YF, Jiang Q. Structures and quantum conduction of copper nanowires under electric fields using first principles [J], Journal of Physical Chemistry C, 2008, 112: 9045-9049
    [19] Ao ZM, Peeters FM. Electric Field Activated Hydrogen Dissociative Adsorption to Nitrogen-Doped Graphene [J], Journal of Physical Chemistry C, 2010, 114: 14503-14509
    [20] Delley B. An All-Electron Numerical-Method for Solving the Local DensityFunctional for Polyatomic-Molecules [J], Journal of Chemical Physics 1990, 92: 508-517; Delley B. From molecules to solids with the DMol(3) approach [J], Journal of Chemical Physics, 2000, 113: 7756-7764
    [21] Perdew JP, Wang Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation-Energy [J], Physical Review B, 1992, 45: 13244-13249
    [22] Dai JY, Yuan JM, Giannozzi P. Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study [J], Applied Physics Letters, 2009, 95
    [23] Ao ZM, Peeters FM. Electric field: A catalyst for hydrogenation of grapheme [J], Applied Physics Letters, 2010, 150
    [24] Avaiable from http:// www. tutorvista. com /chemistry /nitrogen covalent - bond.
    [25] Avaiable from http://en.wikipedia.org/wiki/Oxygen.
    [26] Fellah MF, Onal I. N_2O decomposition on Fe- and Co-ZSM-5: A density functional study [J], Catalysis Today, 2008, 137: 410-417

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700