以Nb_2O_5·nH_2O为助剂的甲醇氧化电催化剂的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲醇燃料电池由于原料来源广泛、噪音低、对环境污染小、可靠性高等特点,成为研究的热点和重点。影响直接甲醇燃料电池商业化的主要技术难点来自于电催化剂材料,甲醇氧化的电化学极化和Pt催化剂受“CO”毒化现象是导致电池性能下降的主要原因。根据甲醇电化学氧化机理,在甲醇氧化过程中活性“-OH”的存在能改善Pt催化剂的“CO”毒化现象,因此在催化剂制备中引入能提供表面活性含氧物种的组分是有效的措施。铌酸和氧化铌具有独特的固体酸性质,特别是在有水分子参与或生成的反应中表现出优异的催化性能。本文以氧化铌作为Pt/C和PtRu/C的助催化剂,研究了水合氧化铌的制备工艺及其性能,重点分析了以水和氧化铌为助剂的Pt/C和PtRu/C催化剂的结构和性能,并对其在甲醇氧化中的电化学活性进行了研究。
     以草酸铌为前驱体,分别在水溶剂、乙二醇-水混合溶剂的体系中,采用氨水沉淀法制备水合氧化铌。利用XRD、TG、IR、SEM等分析了产物的结构、组成和形貌,结果表明:采用不同的反应体系,制备的水合氧化铌具有不同的组成和形貌,但是都在600-700℃之间转化为氧化铌晶体。根据对反应过程的分析,以水为溶剂的体系中,Nb2O5·nH2O的生成以成核-凝并生长为主,而以乙二醇-水为混合溶剂的体系中,Nb2O5·nH2O的生成以外延与表面反应生长方式为主。循环伏安(CV)测试表明,采用乙二醇-水混合溶剂制备的Nb2O5·nH2O,700℃热处理后对氧气还原为过氧化氢的电化学反应表现出一定的活性。。
     通过优化工艺参数,制备了20%Nb2O5·nH2O/Co 20%Nb2O5·nH2O/C在Ar气氛中700℃对热处理后,TEM分析表明,Nb205的晶粒大小约10nm,比较均匀的分布在C黑表面。CV测试表明,热处理后的20%Nb2O5·nH2O/C对氧气还原为过氧化氢的电化学反应表现出一定的活性。
     采用乙二醇-水混合溶剂为反应体系,制备了不同含量(5%、10%、20%)水合氧化铌的20%Pt/C催化剂,采用CV法比较了电化学比表面积,结果表明10%Nb2O5·nH2O-20%Pt/C具有最高的比表面积。进一步采用XRD和TEM分析10%Nb2O5·nH2O-20%Pt/C的结构和形貌特性,结果表明:随着热处理温度的升高,催化剂材料中水合氧化铌由无定形态转化为结晶态,但是氧化铌没有改变Pt的晶体结构和在C载体上的分布状态。比较不同温度热处理(Ar气氛中)的10%Nb2O5·nH2O-20%Pt/C催化剂,相对于20%Pt/C催化剂,10%Nb2O5·nH2O-20%Pt/C中Pt晶粒大小变化较小,说明添加水合氧化铌能阻碍Pt晶粒在热处理中的长大。利用]HRTEM分析700℃热处理的10%Nb2O5·nH2O-20%Pt/C催化剂,可以观察到Pt和Nb205的晶格相分布在载体C上Pt和Nb205相互接触。采用XPS对10%Nb2O5·nH2O-20%Pt/C进行分析,结果表明:随着热处理温度的升高,催化剂中零价Pt含量降低,而且氧化铌没有改变Pt的化学态,但是相对于20%Pt/C,10%Nb2O5·nH2O-20%Pt/C催化剂中“-OH”含量明显增加。CV测试表明,无热处理的20%Pt/C和10%Nb2O5·nH2O-20%Pt/C对甲醇的催化氧化活性基本一样,10%Nb2O5·nH2O-20%Pt/C催化剂对甲醇的催化氧化活性随着热处理温度的升高而增强;700℃热处理的10%Nb2O5·nH2O-20%Pt/C对甲醇的氧化峰电流,是无热处理10%Nb2O5·nH2O-20%Pt/C的349倍,是700℃热处理20%Pt/C的2.59倍。计时电流测试表明,10%Nb2O5·nH2O-20%Pt/C的抗“CO”中毒能力随着热处理温度的升高而增强。
     采用乙二醇-水混合溶剂为反应体系,制备了10%Nb2O5·nH2O-20%Pt10%Ru/C催化剂。利用XRD和TEM分析10%Nb2O5·nH2O-20%Pt10%Ru/C的结构和形貌,结果表明:随着热处理温度的升高,20%Pt10%Ru/C和10%Nb2O5·nH2O-20%?Pt10%Ru/C催化剂中Pt、Ru合金化的程度都增强;比较同温度热处理的两种催化剂,发现10%Nb2O5·nH2O-20%Pt10%Ru/C中Pt、Ru合金化程度较差,而且活性组分颗粒较小说明Nb2O5·nH2O能阻碍热处理过程中活性颗粒的长大和Pt、Ru的合金化。对10%Nb2O5·nH2O-20%Pt10%Ru/C进行XPS分析,结果表明:氧化铌基本没有改变催化剂中Pt的化学态,但是随着热处理温度的升高,催化剂中氧化钉含量增加。CV测试表明,700℃热处理的10%Nb2O5·nH2O-20%Pt10%Ru/C对甲醇的催化氧化活性最好,300℃热处理的20%Pt10%Ru/C对甲醇的催化氧化活性最好,而且前者的氧化峰电流是后者的1.45倍。计时电流测试表明,同温度热处理的10%Nb2O5·nH2O-20% Pt10%Ru/C和20%Pt10%Ru/C催化剂,前者具有较好的抗“CO”中毒能力。
     总之,对于甲醇氧化电催化剂Nb2O5·nH2O-Pt/C和Nb2O5·nH2O-PtRu/C, Nb2O5·nH2O是一种良好的助催化剂。
Direct methanol fuel cells(DMFCs) have been attracted much attention due to easy storage and supply of fuel, low noise pollution, little environment pollution and high security. The widely used Pt-based electro-catalysts for DMFC anodes were hampered the development of commercial DMFCs, electrochemistry polarization of methanol oxidation and Pt easily poisoned by the intermediates of methanol oxidation were the main reason what lead to descend of DMFCs performance. According to the mechanism of methanol electro-oxidation, the methanol oxidation reaction rate and anti-poisoning ability of electro-catalysts could be improve if "-OH" existed in methanol electro-oxidation process. A effective method is provide activity "-OH" in catalysts prepared process. Niobium oxide was a typical solid acid, and was very stability when H2O as reactant or product in chemical reaction. In this paper, we used Nb2O5·nH2O as cocatalyst for Pt/C and PtRu/C, the preparation and properties of Nb2O5·nH2O was study. Further, emphaticaly analyzes the structure and properties of 10%Nb2O5·nH2O-20%Pt/C and 10%Nb2O5·nH2O-20%Pt10%Ru/C, and their performance for methanol oxidatio were study, too.
     Nb2O5·nH2O was prepared by ammonia precipitation in the aqueous solvent system, and the aqueous and glycol mixed solvent system using niobium oxalate as precursor. The structure, composition and morphology of product were researched by XRD,TG, IR and SEM. The results showed:Nb2O5·nH2O have different composition and morphology which prepared in different reaction systems, and they would translate into crystal when heat treatment at 600~700℃. According to analysis of reaction process, in aqueous solvent system, Nb2O5·nH2O grain was formed by nucleation-coagulation mode. In aqueous and glycol mixed system, Nb2O5·nH2O grain was formed by addition-surface reaction mode. Cyclic voltammetry(CV) tseted show that the Nb2O5·nH2O which heat treatment at 700℃has reaction activity for reduced H2O2 by O2.
     Under the optimum conditions, we prepared 20%Nb2O5·nH2O/C.TEM results showed:when 20%Nb2O5·nH2O/C heat treatment at 700℃in inert atmosphere, the particle size of Nb2O5·nH2O is about 10nm which on C surface uniformly. CV tseted show that the 20%Nb2O5·nH2O/C which heat treatment has reaction activity for reduced H2O2 by O2.
     In aqueous and glycol mixed systems,5%Nb2O5·nH2O-20%Pt/C,10%Nb2O5·nH2O-20%Pt/C and 20%Nb2O5·nH2O-20%Pt/C were prepared. Their electrochemical surface area were study by CV method, the results showed:10%Nb2O5·nH2O-20%Pt/C have the biggest electrochemical surface area. Further, the structure and morphology of 10%Nb2O5·nH2O-20%Pt/C were study by XRD and TEM. The results showed:with the higher of heat treatment temperatur, Nb2O5 would translate in crystal from amorphous state, the crystal structure and distribution state on C surface of Pt were not change by Nb2O5. When 10%Nb205-nH20-20%Pt/C was heat treatment at different temperature, the Pt particle size was study. Compared with 20%Pt/C, the Pt size of 10%Nb2O5·nH2O-20% Pt/C was few change. When 10%Nb2O5·nH2O-20%Pt/C was heat treatment at 700℃,it morphology was study by HRTEM, we can see that the lattice phases of Nb2O5 and Pt on C surface, and they were contected. The surface chemical state of 10%Nb205·nH2O-20% Pt/C was study by XPS, the results showed:with the higher of heat treatment temperatur, the percentage content of Pt0 was decreased, the electro structure of Pt was not change by Nb2O5·nH2O. Compared with 20%Pt/C, the percentage content of "-OH" in 10%Nb2O5·nH2O-20%Pt/C was increased significantly. CV test results showed:the catalytic activity of 20%Pt/C and 10%Nb2O5·nH2O-20%Pt/C which no heat treatment were little different. With the higher of heat treatment temperatur, the catalytic activity of 10%Nb2O5-nH2O-20%Pt/C was increased. Compared with 10%Nb2O5-nH2O-20%Pt/C that no heat treatment, the oxidation peak current of 10%Nb2O5-nH2O-20%Pt/C that heat treatment at 700℃was increased to 3.49 times. Compared with 20%Pt/C that heat treatment at 700℃, the oxidation peak current of 10%Nb2O5-nH2O-20%Pt/C that heat treatment at 700℃was increased to 2.59 times.Chronoamperogram test results showed: with the higher of heat treatment temperatur, the performance of"CO" tolerance of 10%Nb2O5-nH2O-20%Pt/C was increased.
     10%Nb2O5-riH2O-20%Ptl0%Ru/C was prepared in aqueous and glycol mixed systems. The structure and morphology of catalysts were study by XRD and TEM. The results showed:with the higher of heat treatment temperatur, the alloying extent of Pt-Ru in 10%Nb2O5-nH2O-20%Pt10%Ru/C and 20%Pt10%Ru/C were increased. Compared 10%Nb205-nH20-20%Pt10%Ru/C with 20%Pt10%Ru/C when they were heat treatment at same temperature, the the alloying extent of Pt-Ru in 10%Nb2O5·nH2O-20% Ptz0%Ru/C was worse, and the size of activated particles in 10%Nb2O5·nH2O-20% Pt10%Ru/C was smaller. These showed that Nb2O5·nH2O could hinders the aggregation of activated particles and alloying extent of Pt-Ru in heat treatment process. The surface chemical state of 10%Nb2O5·nH2O-20%Pt10%Ru/C and 20%Pt10%Ru/C were study by XPS, the results showed:the binding energr of Pt was less effect by Nb2O5·nH2O. With the higher of heat treatment temperatur, the percentage content of RuOx was increased. CV test showed:20%Pt10%Ru/C has the best preformance when it was heat treatment at 300℃,10%Nb2O5·nH2O-20%Pt10%Ru/C has the best preformance when it was heat treatment at 700℃. Compared their oxidation peak current, the latter was 1.45 times than that of the former. Chronoamperogram test results showed:wten they heat treatment at same temperatur, the performance of "CO" tolerance of 10%Nb2O5·nH2O-20%Pt10% Ru/C was better than that of 20%Pt 10%Ru/C.
     Anyhow, Nb2O5·nH2O was a good cocatalyst for Nb2O5·nH2O-Pt/C and Nb2O5·nH2O-PtRu/C which were used to methanol oxidation.
引文
[1]张国朝,张毅,周绍英等.氢能与环境[J].全国第二次氢能学术会议论文集,北京,1992
    [2]衣宝廉,燃料电池的原理、技术与应用[M].北京:化学工业出版社,2003:5-8
    [3]黄倬,屠海令,张翼强等.质子交换膜燃料电池的研究开发与应用[M].北京:冶金工业出版社,2000
    [4]刘娟英.直接甲醇燃料电池PtRu基纳米电催化剂的制备和应用[D].上海,中国科学院上海微系统与信息技术研究所,2008
    [5]K.A. Adamson, P. Pearson. Hydrogen and methanol:a comparison of safety economics, efficiencies and emissions[J]. J. Power Sources,2000,86:548-555
    [6]R.Xen, M.S.Wilson, S.Gottesfeld. High performance direct methanol polymer electrolyte fuel cells[J]. J.Eletrochem.Soc,1996,143(1):12-15
    [7]A. Hamnett. Mechanism and electrocatalysis in the direct methanol fuel Cell[J], Catal Today,1997,38:445-457
    [8]M.Straumann, M.Dupont, D.Buttin, et al. Fuel cell test bench design and manufacture [J]. Fuel Cells Bull,2000,20:11-13
    [9]A.Heinzel, V.M.Barragan. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells[J], J. Power Sources,1999,84:70-74
    [10]J.S.C.Thomas, X.M.Ren, S.Gottsfeld, et al. Direct methanol fuel cells:progress in cell performance and cathode research[J]. Electrochim. Acta,2002,47:3741-3748
    [11]张淳.低温燃料电池电催化剂的制备及其应用研究[D].南京,中南大学,2007
    [12]周卫江.低温直接醇类燃料电池阳极催化剂研制[D].大连,中国科学院大连化学物理研究所,2003.
    [13]Hamnett A.Mechanism and Electrocatalysis in the Direct Methanol Fuel Cell[J]. Catalysis Today,1997,38:445-457
    [14]J.Prabhuram, R. Manoharan. Investigation of Methanol Oxidation on Unsupported Platinum Electrodes in Strong Alkali and Strong Acid [J]. Journal of Power Sources, 1998,74:54-61
    [15]贾梦秋,杨文胜主编.应用电化学[M].高等教育出版社,2004,145
    [16]H.Gasteiger, N.Markovic, P.Ross. H2 and CO Electrooxidation on Well-characterized Pt, Ru, and Pt-Ru Rotating-disk Electrod Studies of the Pure Gases including Temperature Effects[J]. Phys.Chem,1995,99(20):8290-8295
    [17]张向军,卢世刚,李文忠.碳载铂催化剂的制备与性能[J].有色金属(冶炼部分),2006,6:49-52
    [18]Zhengyu Bai, Lin Yang, Jiangshan Zhang, et al. High-efficiency carbon-supported platinum catalysts stabilized with sodium citrate for methanol oxidation[J]. Journal of Power Sources,2010,195:2653-2658
    [19]V.Di'az, M.Ohanian, C.F. Zinola. Kinetics of methanol electrooxidation on Pt/C and PtRu/C catalysts[J]. International journal of hydrogen energy,2010,15:10539-10546
    [20]贾荣利,王成扬,王素梅.炭载体前处理对Pt/C催化剂Pt分散性的影响[J].电源技术,2005,29(12):801-804
    [21]P.J.Britto, K.V.Santhanam, A.Rtlbio, et al. Improved Charge Transfer at Carbon Nanotube Electrodes[J]. Ady Mater,1999,11(2):154-157
    [22]T.Matsumoto, T.Komatsu, H.Nakano, et al. Efficient Usage of Highly Dispersed Pt on Carbon Nanotubes for Electrode Catalysts of Polymer Electrolyte Fuel Cells[J]. Cata Today,2004,90(3-4):277-281
    [23]C.Kim, Y.J.Kim, Y.A.Kim, et al. High Performance of Cup-Stacked-Type Carbon Nanotubes as a Pt-Ru Catalyst Support for Fuel Cell APPlications[J]. J APPI Phys, 2004,96(10):5903-5905
    [24]XS Zhao, WZLi, LH Jiang, et al. Multi-wall Carbon Nanotube Supported Pt-Sn Nanoparticles as an Anode Catalyst for the Direct Ethanol Fuel Cell[J]. Cabro,2004, 42(15):3263-3265
    [25]Aditi Haider, Sudhanshu Sharma, M.S.Hegde, et al. Controlled Attachment of Ultrafine Platinum Nanoparticles on Functionalized Carbon Nanotubes with High Electrocatalytic Activity for Methanol Oxidation[J]. J. Phys. Chem. C,2009,113: 1466-1473
    [26]Zheng-Qian Liu, Jun Ma, Yu-Hong Cui. Carbon nanotube supported platinum catalysts for the ozonation of oxalic acid in aqueous solutions[J]. Carbon,2008,46(6): 890-897
    [27]M. Sakthivel, A. Schlange, U. Kunz, et al. Microwave assisted synthesis of surfactant stabilized platinum/carbon nanotube electrocatalysts for direct methanol fuel cell applications[J]. Journal of Power Sources,2010,195:7083-7089
    [28]S.Takenaka, T.Arike, H.Matsune. Preparation of carbon nanotube-supported metal nanoparticles coated with silica layers[J]. Journal of Catalysis,2008,57(2):345-355
    [29]Sakae Takenaka, Takafumi Arike, Keizo Nakagawa. Synthesis of carbon nanotube-supported Pt nanoparticles covered with silica layers[J]. Carbon,2008,46(2):365-368
    [30]张俊松,李海涛,唐亚文.厚壁和薄壁碳纳米管载Pt催化剂制备和对甲醇氧化的电催化活性[J].应用化学,2008,25,(3):290-294
    [31]王建设,郭勋,宋成盈等.在Pt/CNTs催化层中预混-溶解La2O3颗粒来构筑孔结构促进甲醇电氧化[J].物理化学学报,2009,25(4):767-772
    [32]Sakae Takenaka, Takafumi Arike, Keizo Nakagawa. Synthesis of carbon nanotube-supported Pt nanoparticles covered with silica layers[J]. Carbon,2008,46(2):365-368
    [33]Bo Qu, Yi-Ting Xu, Su-juan Lin, et al. Fabrication of Pt nanoparticles decorated PPy-MWNTs composites and their electrocatalytic activity for methanol oxidation[J]. Synthetic Metals,2010,160:732-742
    [34]T Yoshitake, Y Shimakawa, S Kuroshima, et al. Preparation of Fine Platinum Catalyst Supported on Single-Wall Carbon Nanohorns for Fuel Cell Application[J]. Physica B, 2002,323(1-4):124-126
    [35]C A Bessel, K Luabernds, N M Rodriguez, et al. Graphite Nanofiers as an Electrode for Fuel Cell APPlications[J]. J Phys Chem B,2001,105(6):1115-1118.
    [36]E S Steigewralt, G A Deluga, D E Clieffl, et al. A Pt-Ru/GraPhitic Carbon Nanofiber Nanocomposite Exhibiting High Relative Performance as aDirect-Methanol Fuel Cell Anode Catalyst[J]. J Phys Chem B,2001,105(34):8097-8101
    [37]T Hyeon, S Han, Y E Sung, et al. High-Perfomrance Direct Methanol Fuel Cell Electrodes Using Solid-Phase-Synthesized Carbon Nanocoils[J]. Angew Chem-Int Edit, 2003,42(36):4352-4356
    [38]L.Y.Bian, Y.H.Wang, J.B.Zang, et ai. Electrodeposition of Pt nanoparticles on undoped nanodiamond powder for methanol oxidation electrocatalysts[J]. Journal of Electroanalytical Chemistry,2010,644:85-88
    [39]S J Han, Y K Yun, K W Park,et al. Simple Solid-Phase Synthesis of Hollow GraPhitic Nanoparticles and Their Application to Direct Methanol Fuel Cell Electrodes[J]. Ady Mater,2003,15(22):1922-1925
    [40]杨民力.直接甲醇燃料电池铂基阳极催化剂碳载体发展[J].材料导报:综述篇,2010,24(4):1-5
    [41]党王娟,何建平,周建华等.介空碳负载铂催化剂的分散性和电催化活性[J].物理化学学报,2007,23(7):1085-1089
    [42]Meng-Liang Lin, Man-Yin Lo, Chung-Yuan Mou. PtRu Nanoparticles Supported on Ozone-Treated Mesoporous Carbon Thin Film As Highly Active Anode Materials for Direct Methanol Fuel Cells[J].J. Phys. Chem C,2009,113:16158-16168
    [43]Songli Wei,Dingcai Wu, Xuelong Shang, et al. Studies on the Structure and Electrochemical Performance of Pt/Carbon Aerogel Catalyst for Direct Methanol Fuel Cells[J]. Energy & Fuels,2009,23.908-911
    [44]原鲜霞,杜娟,夏小芸.载体制备工艺对Pt/CA催化剂甲醇氧化催化性能的影响[J].高校化学工程学报,2008,22(1):38-43
    [45]杨民力.直接甲醇燃料电池铂基阳极催化剂的非碳载体[J].稀有金属,2010,34(3):436-442
    [46]Shuangyin Wang, San Ping Jiang, Xin Wanga, et al. Enhanced electrochemical activity of Pt nanowire network electrocatalysts for methanol oxidation reaction of fuel cells[J]. Electrochimica Acta,2011,56:1563-1569
    [47]Esteban.A. Franceschini, Gabriel.A.Planes, Federico J. Williams, et al. Mesoporous Pt and Pt/Ru alloy electrocatalysts for methanol oxidation[J]. Journal of Power Sources, 2011,196:1723-1729
    [48]Zhao Fu, Weishan Li, Weiguang Zhang, et al. Preparation and activity of carbon-supported porous platinum as electrocatalyst for methanol oxidation[J]. International journal of hydrogen energy,2010,35:8101-8105
    [49]J. Kua, A. William. Oxidation of Methanol on 2"d and 3"d Row GouP VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru):Application to Direct Methanol Fuel Cells. J. ACS, 1999,121:10928-10941
    [50]I. avila-Garcia, C. Ramirez, J.M. Hallen Lopez, et al. Electrocatalytic activity of nanosized Pt alloys in the methanol oxidation reaction[J]. Journal of Alloys and Compounds,2010,495:462-465
    [51]王东田,魏杰.杂多酸修饰碳载铂钌电极的电催化性能[J].稀有金属材料与工程,2008,37(4):736-739
    [52]安筱莎,陈德俊,周志有等.稀土Eu掺杂PtRu/C催化剂及其对甲醇电氧化的性能[J].物理化学学报,2010,26(5):1207-1213
    [53]SONG J M, CHA S Y, LEE W M. Optimal composition of polymerelectrolyte fuel cell electrodes determined by the AC impedancemethod[J]. Journal of Power Sources, 2001,94:78-84
    [54]石伟玉,衣宝廉,侯明等.质子交换膜燃料电池新型抗CO阳极结构[J].电源技术,2007,31(2):113-115
    [55]王虎平,廖小珍,蒋淇忠等.质子交换膜燃料电池中抗CO中毒的PtM阳极催化剂[J].化工进展,2003,22(11):1186-1189
    [56]宋慧,张忠林,李一兵等.Pt掺杂纳米Ni-Pt/C的制备及其电催化氧化甲醇性能[J].太原理工大学学报,2010,41(4):332-337
    [57]Sungyool Bong, Yang-Rae Kim, In Kim, et al. Graphene supported electrocatalysts for methanol oxidation[J], Electrochemistry Communications,2010,12:129-131
    [58]D. R Rolison, P L. Hagaas, K E. Swider, et al, Role of hydrous rutheniumoxide in Pt-Ru direct methanol fuel cell anode electrocatalysts:The importance of mixed electron/proton conductivity[J]. Langmuir,1999,15:774-779
    [59]索春光,赵晓光,张鹏.直接甲醇燃料电池阳极抗CO催化剂的研究进展[J].贵金属,2008,29(3):66-69
    [60]Tao Huang, Jiali Liu, Ruoshi Li, et al. A novel route for preparation of PtRuMe (Me= Fe, Co, Ni) and their catalytic performance for methanol electrooxidation[J]. Electrochemistry Communications,2009,11(3):643-646
    [61]M.V. Martinez-Huertaa, N. Tsiouvaras, M.A. Pe-na, et al. Electrochemical activation of nanostructured carbon-supported PtRuMo electrocatalyst for methanol oxidation[J]. Electrochimica Acta,2010,55:7634-7642
    [62]Zhen-Bo Wang, Chun-Rong Zhao, Peng-Fei Shi, et al. Effect of a Carbon Support Containing Large Mesopores on the Performance of a Pt-Ru-Ni/C Catalyst for Direct Methanol Fuel Cells[J]. J. Phys. Chem. C,2010,114:672-677
    [63]N. Tsiouvaras, M.V. Marti'nez-Huerta, O. Paschos, et al. PtRuMo/C catalysts for direct methanol fuel cells:Effect of the pretreatment on the structural characteristics and methanol electrooxidation[J]. International journal of hydrogen energy,2010,35: 11478-11488
    [64]Cooper J S, Jeon M K, McGinn P J. Combinatorial screening of ternary Pt-Ni-Cr catalysts for methanol electro-oxidation[J]. Electrochem Commun,2008,10:1545-1547
    [65]Min Ku Jeon, Yuan Zhang, Paul J McGinn. Effect of reduction conditions on electrocatalytic activity of a ternary PtNiCr/C catalyst for methanol electro-oxidation[J]. Electrochimica Acta,2009,54:2837-2842
    [66]Min Ku Jeon, James S. Cooper, Paul J. McGinn. Investigation of PtCoCr/C catalysts for methanol electro-oxidation identified by a thin film combinatorial method[J]. Journal of Power Sources,2009,192(2):391-395
    [67]Chen M, Wang Z B, Ding Y, Yin G P. Electrochem Commun,2008,10:443
    [68]Reddington E, Sapienza A, Gurau B, Viswarathan R,Sarangapansi S, Smotkin E S, MalloukTE. Science,1998,280:1735
    [69]Yousef M. Alyousef, Moni Kanchan Datta, Karan Kadakia,et al. Sol-gel synthesis of Pt-Ru-Os-Irbased anode electro-catalysts for direct methanol fuel cells[J]. Journal of Alloys and Compounds,2010,506:698-702
    [70]Jiang J H, Kucernak A. Electrochem Commun,2009,11:1005
    [71]Neburchilov V, Wang H J, Zhang J J. Electrochem Commun,2007,9:1788
    [72]Rongfang Wang, Hui Wang, Bangxing Wei, et al. Carbon supported Pt-shell modified PdCo-core with electrocatalyst for methanol oxidation[J]. International journal of hydrogen energy,2010,35:10081-10086
    [73]Hui Wang, Rongfang Wanga, Hao Li, et al. Facile synthesis of carbon-supported pseudo-core@shell PdCu@Pt nanoparticles for direct methanol fuel cells[J]. International journal of hydrogen energy,2010, xxx:l-10
    [74]Rongfang Wang, Hao Li, Hanqing Feng, et al. Preparation of carbon-supported core@shell PdCu@PtRu nanoparticles for methanol oxidation[J]. Journal of Power Sources,2010,195:1099-1102
    [75]Liang Maa, Xiao Zhaoa, Fengzhan Si, et al. A comparative study of Pt/C and Pt-MoOx/C catalysts with various compositions for methanol electro-oxidation[J], Electrochimica Acta,2010,55:9105-9112
    [76]Katlin I. B. Eguiluz, Geoffroy R. P. Malpass, Marilia M. S. Pupo, et al. Synthesis, Characterization, and Electrocatalytic Activity toward Methanol Oxidation of Carbon-Supported Ptx-(RuO2-M)i.x Composite Ternary Catalysts (M=CeO2, MoO3, orPbO.,)[J]. Energy Fuels.2010,24:4012-4024
    [77]Xiangzhi Cui, Fangming Cui, Qianjun He, et al. Graphitized mesoporous carbon supported Pt-SnCh nanoparticles as a catalyst for methanol oxidation[J], Fuel,2010,89: 372-377
    [78]Min Ku Jeon, Ki Rak Lee, Seong Ihl Woo. Enhancement in Electro-Oxidation of Methanol over PtRu Black Catalyst through Strong Interaction with Iron Oxide Nanocluster[J]. Langmuir,2010,26(21):16529-16533
    [79]Hongmei Zhang, Weiqiang Zhou, Yukou Du, et al. Enhanced electrocatalytic performance for methanol oxidation on Pt-TiO2/ITO electrode under UV illumination[J]. International journal of hydrogen energy,2010,35:13290-13297
    [80]Li Xing, Jianbo Jia, Yizhe Wang, et al. Pt modified TiO2 nanotubes electrode: Preparation and electrocatalytic application for methanol oxidation[J], International journal of hydrogen energy,2010,35:12169-12173
    [81]Hee-Joon Chun, Dong Baek Kim, Dong-Ha Lim, et al. A synthesisofCO-tolerant Nb2O5-promoted Pt/Ccatalyst for directmethanolfuelcell;itsphysicaland electrochemical characterization[J]. International journal of hydrogen energy,2010, (35):6399-6408
    [82]Chen Ling, Guo Min, Zhang Hongfei, et al. Characterization andelectrocatalytic properties of PtRu/C catalysts prepared by impregnation-reduction method using Nd2O3 as dispersing reagent[J]. Electrochimica Acta,2006,52(3):1191-1198
    [83]W.Vielstich,P.A.Christensen,S.A.WeeK,et al. Evidence for COH as an Absorbed Intermediate in the Anodic Oxidation of Methanol by DCDTMS and SNIFTIRS[J]. J.Electroanal.Chem,1988,242(6):327-333
    [84]Chen Yiwen, Lai Sukyin, Wu Zonghan. NO-Sensing Characteristics of Pure and Pt-Doped WO3 Films Prepared by Sol-Gel Technique [J]. Journal of Southeast University(English Edition),2001,17(2):1-5
    [85]初圆圆,邬冰,唐亚文等.甲醇在Pt/C和Pt/WO3/C电极上的电氧化[J].电化学,2008,14(2):155-158
    [86]杨红艳,郭盼盼,李伟善.抗CO中毒的Pt-H XWO3电沉积制备及其对甲醇氧化的催化作用[J].物理化学学报,2009,25(4):719-723
    [87]Huanqiao Song, Xinping Qiu, Fushen Li. Effect of heat treatment on the performance of TiO{sub}2-PtCNT catalysts for methanol electro-oxidation[J], Electrochimica Acta, 2008,53(10):3708-3713
    [88]陈玲,王新东,郭敏NdOx作为助催化剂对PtRu/C电催化氧化甲醇活性的影响[J].物理化学学报,2006,22(2):141-145
    [89]Chen Ling, Guo Min, Zhang Hongfei, et al. Characterization andelectrocatalytic properties of PtRu/C catalysts prepared by impregnation-reduction method using Nd2O3 as dispersing reagent [J]. Electrochimica Acta,2006,52(3):1191-1198
    [90]Tao Huang, Aishui Yu. Preparation of well-dispersed PtRuMOx by ultrasonic-asisted chemical reduction and properties for methanol electrooxidation[J].3rd Asian Conference on Electrochemical Power Sources, Seoul, Korea,2008:138-139
    [91]Z.H. Zhou, W.S. Li, Z. Fu, et al. Carbon nanotube-supported Pt-HxMoO3 as electrocatalyst for methanol oxidation[J], international journal of hydrogen energy, 2010,35:936-941
    [92]王建设,王留成,赵建宏,等.甲醇电氧化催化剂.Pt/CeO2-CNTs与PtRu/C的比较研究[J].化学学报,2009,67(5):361-366
    [93]MA Junhong FENG Yuanyuan, ZHANG Guirong, et al. Performance Improvement by Tungsten Oxides of the Pt-RuOxHy Electrocatalyst for Methanol Oxidation[J]. Chinese Journal of Catalysis,2010,31:521-524
    [94]Barnett C J,Burstein G T,Kucernak A R J,Williams K R.Electrocatalytic activity of some carburised nicked,tungsten and molybdenum compounds[J]. Electrochim.Acta, 1997,42(15):2381-2388
    [95]Burstein G T,Mcintyre D R,Vossen A..Relative activity of a base catalyst toward electro-oxidation of hydrogen and methanol[J]. Electrochemical and Solid-State Letters, 2002,5(4):A80-A83
    [96]Jahan-Bakhsh Raoof, Mohammad Ali Karimi, Sayed Reza Hosseini, et al. Cetyltrimethyl ammonium bromide effect on highly electrocatalysis of methanol oxidation based on nickel particles electrodeposited into poly (m-toluidine) film on the carbon paste electrode[J]. Journal of Electroanalytical Chemistry,2010,638:33-38
    [97]V Raghuveer, B. Viswanathan, Can La2-xSrxCuO4 be used as anodes for direct methanol fuel cells[J]. Fuel,2002,81,2191-2197
    [98]S. Zafeiratos, T. Dintzer, D. Teschner, et al. Methanol oxidation over model cobalt catalysts:Influence of the cobalt oxidation state on the reactivity[J]. Journal of Catalysis,2010,269:309-317
    [99]Yi Wang, Zhao Min Sheng, Hongbin Yang, et al. Electrocatalysis of carbon black-or activated carbon nanotubes-supported Pd-Ag towards methanol oxidation in alkaline media[J], International journal of hydrogen energy,2010,35:10087-10093
    [100]Yi Wan, Xin Wang, Chang Ming Li. Electrocatalysis of Pd-Co supported on carbon black or ball-milled carbon nanotubes towards methanol oxidation in alkaline media[J], Applied Catalysis B:Environmental,2010,99:229-234
    [101]Enrico Verlato, Sandro Cartarin, Nicola Comisso, et al. Preparation of catalytic anodes for methanol oxidation by spontaneous deposition of Pd onto porous Ni or porous Co[J]. Electrochemistry Communications,2010,12:1120-1123
    [1021 M. Watanabe. Development of Electrocatalysts for PEFCs and the Electrocatalyses[J].3rd Asian Conference on Electrochemical Power Sources, Seoul, Korea,2008,31-32
    [103]林维明主编.燃料电池系统[M].北京:化学工业出版社,1996,162-154
    [104]Vandan H E, Bekkum H V. Preparation of platinum on activated carbon[J], J Catalysis,1991,131:335-349
    [105]Bonemann H, Brijour W, Brinkmann R, et al. Preparation, characterization, and application of fine metal particales and metal colloids using hydrotriorganorates[J]. J molecular catalysis,1994,86:129-177
    [106]S.Y.Yan,G.Q.Sun,J.Tian.et al.Polyol Synthesis of Highly Active PtRu/C Catalyst with High metal loading[J]. Electrochim. Acta,2006,29(52):1692-1696
    [107]Y. Verde, G. Alonso, V. Ramos, et al. Pt/C Obtained from Carbon with Different Treatments and (NH},)2PtC16 as a Pt Precursor. Appl[J], Catal. A-Gen,2004,277 (1-2):201-207
    [108]M. Peuckert, T. Yoneda, R. A D. Betta, et al. Oxygen Reduction on Small Supported Platinum Particles[J]. J Electrochem. Soc,1986,133 (5):944947
    [109]J.W.Guo, T.S.Zhao, J. Prabhuram, et.al. Preparation and the Physical/Electrochemical Properties of a Pt/C Nanocatalyst Stabilized by Citric Acid for Polymer Electrolyte Fuel Cells[J]. Electrochim. Acta,2005,50 (10):1973-1983
    [110]K. Kinoshita. Particle-size Effects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolytes[J], J. Electrochem. Soc,1990,137 (3):845-848
    [111]M. S Wilson, F. H. Garzon, K. E. Sickafus, et al. Surface-Area Loss of Supported Platinum in Polymer Electrolyte Fuel-Cells[J]. J. Electrochem. Soc.1993,140(10): 2872-2877
    [112]J. Xie, D. L. Wood, K. L. More, et al. Microstructural Changes of Membrane Electrode Assemblies during PEFC Durability Testing at High Humidity Conditions[J]. J. Electrochem. Soc,2005,152(5):A1011-A1020
    [134]D. A. Stevens, M. T. Hicks, G. M. Hau}en, et al. Ex situ and In situ Stability Studies ofPEMFC Catalysts[J]. J. Electrochem. Soc,2005,152(12):A2309-A2315
    [114]P. J. Ferreira, G. J. la O, Y. Shao-Horn, et al. Instability of Pt/C Electrocatalysts in Proton Exchange Membrane Fuel Cells-A Mechanistic Investigation^]. J.Electrochem. Soc,2005,152(11):A2256-A2271
    [115]F.Bruijn. The Current Status of Fuel Cell Technology for Mobile and Stationary Abblications[J]. Green Chem,2005,7 (3):132-150
    [116]K. H. Kan}asniemi, D. A. Condit, T. D. Jarvi. Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions[J]. J. Electrochem. Soc,2004,151(4):E125-E132
    [117]F. Coloma, A. Sepulvedaescribano, J. L. G. Fierro, et al. Preparation of Platinum Supported on Pre}raphitized Carbon-Blacks[J]. Langmui,1994,10(3):750-755
    [118]S.G.Sun, J.Clavilier. Electrochemical study on the poisoning intermediate formed from methanol dissociation at low index and stepped platinum surfaces[J]. J.Electrochem.Chem,1987,236:95
    [119]B.Beden, S Juanta. Infrared spectroscopic study of the methanol adsorb at a Platinum electrod part 3 structure sffects and behavior of a polycrystalline surface[J]. J. Electrochetn.Soc,1999,146:3750
    [120]Y.Morimoto, E.Yeager. CO oxidation on smooth and high area Pt> PtRu and PtSn electrodesfJ]. J.Electrochem.Chem,1998,441:77
    [121]孙翰君,丁良鑫,陈煜等Pt-Ru/C催化剂在甲醇氧化过程中的组成和结构变化[J].无机化学学报,2010,26(1):25-28
    [122]Chen W, Sun G, Liang Z, et al. The stability of a PtRu/C electrocatalyst at anode potentials in a direct methanol fuel cell[J]. J. Power Sources,2006,160(2):933-939
    [123]Thomas M. Arruda, Badri Shyam, Jamie S. Lawton, et al. Fundamental Aspects of Spontaneous Cathodic Deposition of Ru onto Pt/C Electrocatalysts and Membranes under Direct Methanol Fuel Cell Operating Conditions:An in Situ X-ray Absorption Spectroscopy and Electron Spin Resonance Study[J]. J.Phys.Chem.C,2010,114, 1028-1040
    [124]郭青蔚,王肇信,编著.现在铌钽冶金[M].冶金工业出版社,2009.
    [125]H.T.Deng, K.P.Kerns, A.W.Castleman, et al. Structures, and Reactivities of Niobium Oxide Cluster Ions[J], J. Phys. Chem,1996,100(32):13386-13392
    [126]Takashi Ushikubo, Yasuo Koike, Keisuke Wada. et al. Study of the structure of niobium oxide by X-ray absorption fine structure and surface science techniques[J]. J.Catal Today,1996,28:59-69
    [127]J M Jehng, I E Wachs. The molecular structures and reactivity of supported niobium oxide catalysts[J]. Catal Today,1990,8:37-55
    [128]J MJehng, I E Wachs. Molecular structures of supported niobium oxide catalysts under in situ conditions[J], J. Phys. Chem,1991,95:7373-7379
    [129]李应成,岳斌,杨为民等.铌酸/氧化铌在多相催化反应中的应用[J].化学通报,2005,3:172-178
    [130]田部浩三,园生诚,小野嘉夫等.新固体酸和碱及其催化作用[M].北京:化学工业出版社,1992:64-65
    [131]K Tanabe. Application of niobium oxides as catalysts[J]. Catal. Today,1990,8:1-11.
    [132]C Guo, Z Qian. Acidic and catalytic properties of niobic acid crystallized at low temperature[J]. Catal. Today,1993,16:379-385
    [133]J MJehng, I E Wachs. Structural chemistry and Raman spectra of niobium oxides [J]. Chem. Mater,1993,3:100-107
    [134]伍志鲲.铌酸催化剂在有机合成中的应用[D].长沙,湖南师范大学,2001
    [135]Izumi Y. Hydration/Hydrolysis by Solid Acid Catalysts[J]. Catal Today,1997,33(4): 371-409
    [136]Okuhara T. Water-Tolerant Solid Acid Catalysts[J]. Chem Rev,2002,102(10): 3641-3666
    [137]Ushikubo T. Recent Topics of Research and Development of Catalysis by Niobium and Tantalum Oxides[J], Catal Today,2000,57(3-4):331-338
    [138]Nowak I, Ziolek M. Niobium Compounds:Preparation, characterization, and Application in Heterogeneous Catalysis[J], Chem Rev,1999,99(12):3603-3624
    [139]Tanabe M. Catalytic Application of Niobium Compounds[J], Catal Today,2003, 78(1-4):47-64
    [140]Takashi Ushikubo, Yasuo Koike, Keisuke Wada, Study of the structure of niobium oxide by X-ray absorpt structure and surface science techniques[J]. Catalysis Today, 1996,28:59-69
    [141]李跃文,刘名惠,邱衍嵩.电子陶瓷级五氧化二铌的生产工艺[J].材料研究与应用,2007,1(3):227-229
    [142]A Borgschulte, J H Rector, B Dam, et al. The role of niobium oxide as a surface catalyst for hydrogen absorption[J]. Journal of Catalysis,2005,235:353-358
    [143]Nobuko Hanada, Takayuki Ichikawa, Hironobu Fujii. Catalytic effect of niobium oxide on hydrogen storage properties of mechanically ball milled MgHb[J]. Physica B, 2006,49-50.
    [144]Oliver Friedrichs, Juan C Sanchez-Lopez, Carlos Lopea-cartes, et al. Nb2O5 "Pathway Effect" on Hydrogen Sorption in Mg[J]. J Phys Chem B,2006,110: 7845-7850
    [145]Oliver Friedrichs, Diego Martinez-Martinez, Gemma Guilera, et al. In Situ Energy-Dispersive XAS and XRD Study of the Superior Hydrogen Storage System MgH2/Nb205[J]. J Phys Chem C,2007,111:10700-10706.
    [146]Radoslav Adzic, Junliang Zhang, Kotaro Sasaki, et al. V.C.4 Low Pt Loading Fuel Cell Electrocatalysts. FY 2006 Annual Progress Report, DE-AC02-98CH10886
    [147]Qing Sun, Yuchan Fu, Haixia Yang, et al. Dehydration of methanol to dimethyl ether over Nb2O5and NbOPO4 catalysts:Microcalorimetric and FI-IR studies[J]. Journal of Molecular Catalysis A:Chemical,2007,275(1-2):183-193
    [148]Donato A. G. Aranda, AndreL. D. Ramos, Fabio B. Passos, et al. Characterization and dehydrogenation activity of Pt/Nb2O4 catalysts[J]. Catalysis Today,1996,28(1-2): 119-125
    [149]Yasuhiko Higashio, Toshio Nakayama. One-step synthesis of methyl isobutyl ketone catalyzed by palladium supported on niobic acid[J]. Catalysis Today,1996,28(1-2): 127-131
    [150]NUekawa, TKudo, F Mori, et. al. J. Colloid Interface Sci,2003,264:378-384.
    [151]Yuanyuan Zhou, Zifeng Qiu, Mengkai Lil, et al. Prepare and characterization of porous Nb2O5 nanoparticles[J]. Materials Research Bulletin,2008,46(3):1363-1368
    [152]J C Vedrine, G Coudurier, A Ouqour, et al. Niobium oxide based materials as catalysts for acidic and partial osidation type reactions[J]. Catalysis Today,1996,28: 3-15
    [153]千吉松,孙中齐,千载虎.氧化铌的性质及其催化特性[J].辽宁化工,1987,2:13-20
    [154]M.Ristic, S.Poppovic, S.Music. Sol-gel synthesis and characterization of Nb2O5 powders[J], Materials Lletters,2004,58:2658-2663
    [155]徐晓姝,苏婷婷,姜恒.草酸铌热分解过程研究[J].分析仪器,2009,5:75-77
    [156]傅献彩,沈文霞,姚天扬,等著.物理化学(下册)[M].高等教育出版社,北京,2006,第五版
    [157]J M Jehng, I E Wachs. Niobium oxide solution chemistry[J]. Journal of Raman Spectroscopy,1991,22(2):83-89
    [158]杨辉,卢庆文,编著.应用电化学[M].科学出版社,2001年
    [159]查全性等著.电极过程动力学导论[M].科学出版社,2002年第三版
    [160]S G Chen, S Chappel, Y Diamant, et al. Preparation of Nb2O5 Coated TiO2 Nanoporous Electrodes and Their Application in Dye-Sensitized Solar Cells[J], Chem Mater,2001,13,4629-4634
    [161]Alexandre G S Prado, Elaine A Faria, Jurandir R SouzaDe, et al. Ammonium complex of niobium as a precursor for the hydrothermal preparation of cellulose acetate/Nb2Os Photocatalyst[J]. Journal of Molecular Catalysis A:Chemical,2005,237: 115-119
    [162]周卫江,李文震,周振华等.直接甲醇燃料电池阳极催化剂PtRu/C的制备和表征[J].高等学校化学学报,2003,24:858-862
    [163]Kazuki Hirakawa, Mitsuhiro Inoue, Takayuki Abe. Methanol oxidation on carbon-supported Pt-Ru and TiO2(Pt-Ru/TiO2/C) electrocatalyst prepared using polygonal barrel-sputtering method[J]. Electrochimica Acta,2010,55:5874-5880
    [164]熊亮萍,胡胜,任兴碧,等.载体对铂基疏水催化剂活性的影响[J].无机材料学报,2010,25(3):279-284
    [165]徐柏庆,李莉PEMFC催化剂的研究:自制Pt/C电催化剂的性质[J].物理化学学报,2003,19(4):342
    [166]G.A.Camara, M.J.Giz, A.Paganin, et al. Correlation of electrochemical and physical properties of PtRu alloy electrocatalysts for PEM fuel Cells[J], Journal of Electroanalytical Chemistry,2002,537(1):21-29
    [167]A.S.Arico, A.K.Shukl, H.Kim, et al. An XPS study on oxidation ststes of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen[J]. Applied Surface Science,2001,172(1):33-40
    [168]Gan Lin, Du Hongda, Li Baohua, et al. The effect of particle size on the interaction of Pt catalyst particles with a carbon black support[J]. New Carbon Materials,2010, 25(1):53-59
    [169]Hee-Joon Chun, Dong Baek Kim, Dong-Ha Lim, et al. A synthesis of CO-tolerant NbaOs-promoted Pt/C catalyst for direct methanol fuel cell;its physical and electrochemical characterization[J]. International journal of hydrogenenergy,2010,35: 6399-6408
    [170]Liu Shibin,Wang Xiuguang,Li Yibing,et al. Performance of Pt-Ru/C Doped with Ho for Methanol Electro-Catalytic Oxidation[J].2008,37(5):909-913
    [171]马俊红,冯媛媛,张贵荣,等.氧化钨对Pt-RuOxHy电催化剂甲醇氧化性能的促进作用[J].催化学报,2010,31(5):521-524
    [172]Shan Zhu, Suli Wang, Yan Gao, et al. Effect of RuCb-xHiO in anode on the performance of direct methanol fuel cells[J].International journal of hydrogen energy, 2010,35:11254-11260
    [173]李莉,王恒秀,徐柏庆,等PEMFC催化剂的研究:自制抗CO中毒PtRuC电催化剂的性质[J].化学学报,2003,61(6):18-823
    [174]LLU Z L, LEE J Y, CHEN W X, et al. Physical and electrochemical characterizations of micro-wave-assisted polyol preparation of carbon-sup-ported Pt-Ru nanoparticles[J]. Langmuir,2004,20:181-187
    [175]胡胜,熊亮萍,古梅等Pt-Ru疏水催化剂制备及氢-水液相交换催化性能[J].原子能科学技术,2009,43(4):294-299
    [176]Frances J. Scott, Sanjeev Mukerjee, David E. Ramaker. Contrast in Metal-Ligand Effects on PtnM Electrocatalysts with M Equal Ru vs Mo and Sn As Exhibited by in Situ XANES and EXAFS Measurements in Methanol[J], J. Phys. Chem. C 2010,114: 442-453
    [177]闫世友,孙公权,齐静,等.热处理对多元醇法制备的PtRu/C电催化剂的影响[J].催化学报,2009,30(11):1109-1113
    [178]王晓刚,苏怡,刘长鹏,等.热处理对甲醇电氧化催化剂Pt Ru/C性能的影响[J].高等学校化学学报,2009,30(9):1819-1823
    [179]Yu-Chen Wei, Chen-Wei Liu, Wei-Jung Chang,et al. Promotion of Pt-Ru/C catalysts driven by heat treated induced surface segregation for methanol oxidation reaction[J]. Journal of Alloys and Compounds,2011,509:535-541
    [180]Venkataraman R, Kunz H R, Fenton J M. Development of New CO Tolerant Ternary Anode Catalysts for Proton Exchange Membrane Fuel Cells[J], Journal of Electronchemical Society,2003,150(3):A278-A284

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700