低温直接醇类燃料电池阳极催化剂研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阳极催化剂研制是直接甲醇燃料电池研究中最具有挑战性的任务之一,催化剂的制备方法对催化剂的性能有显著的影响。采用三种方法—浸渍—甲醛还原方法、过氧化氢氧化分解亚硫酸钠盐方法和本论文发明的多元醇或混合醇为溶剂、还原剂和保护剂的新方法,以碳载铂钌和铂为主,兼顾其他铂基催化剂的制备,考察了制备过程中主要参数对催化剂性能的影响,优化制备过程,筛选更合适的制备方法。通过比较发现,本论文发明的新方法具有操作灵活、制备过程简单易行、可制备的催化剂种类多、金属担载量高、金属平均粒径小且粒子大小可控等优点。其中,金属前体溶液浓度、载体的加入顺序、混合体系中水的含量及其加入顺序、还原过程中的pH值、金属载量等对催化剂的制备具有程度不等的影响。催化剂的平均粒径和各组分间的相互作用对甲醇的电化学氧化反应具有关键性的影响。在此基础上制备其他铂基催化剂,进而扩展了各类铂基催化剂在直接醇类燃料电池中的应用。同时本论文还考察了氧化钛、氧化钨和氧化钼等过渡金属氧化物的调变方式及处理条件对铂和铂钌催化剂的性能的影响。
     在铂中添加钌或锡助剂均能促进甲醇和乙醇在铂催化剂上的电化学氧化反应,但催化效果却有着明显差别。铂钌催化剂更适合用作直接甲醇燃料电池的阳极催化剂,而采用铂锡阳极催化剂的直接乙醇燃料电池则展现出更好的放电性能,并且直接乙醇燃料电池在不同的操作温度下所需要的阳极催化剂中的铂锡原子比不同。即使仅在90℃时,采用铂锡阳极催化剂的直接醇类燃料电池无论使用甲醇还是乙醇作燃料其电池性能尤其是输出功率密度都极为接近。本论文对甲醇和乙醇反应机理以及影响因素也进行了探索和讨论。
A significant enhancement of electrocatalytic activities for the 6-electron transfer electro-oxidation of methanol has been, and still is, thought as the most challenging problem for the development of direct methanol fuel cells (DMFCs). PtRu and other Pt-based catalysts are extensively investigated and employed presently as anode catalysts for methanol electro-oxidation. Their nature and structure, which are significantly influenced by catalyst preparation or/and treatment procedure, play a key role in the adsorption and electro-oxidation of methanol, and consequently the performances of DMFCs. In this dissertation, three methods were employed to prepare carbon supported Pt-based catalysts. They are the impregnation-reduction of metal precursors by formaldehyde, the oxidative decomposition of sodium sulphites of platinum or/and ruthenium by H2C>2 and the novel method originated in this dissertation, respectively. Ethylene glycol and other glycols were used as reducing agents, solvents and protective agents
    in the novel catalyst preparation procedure. Carbon supported Pt, PtRu and other catalysts synthesized by different methods were characterized by several technologies such as XRD, XPS, TEM and pulse titration. The parameters such as pH, temperature and so on were also investigated for catalyst preparation. The catalytic activities of these catalysts for methanol electro-oxidation and CO tolerance were compared. It was found that particle sizes, parameter lattice and
    
    
    interaction between Pt and Ru play important roles in the electro-oxidation of methanol.
    Generally, particle sizes of Pt-based catalysts prepared by the method of impregnation-reduction of metal precursors by formaldehyde are relatively big and the interaction of Pt and Ru is also relatively weak. The catalyst types prepared by the second method are mainly restricted to Pt, Ru or PtRu. PtRu catalyst synthesized by the novel method, in comparison with its counterparts synthesized by other two methods, has smaller particle sizes and stronger interaction between Pt and Ru, and accordingly has improved electrocatalytic activity for methanol electro-oxidation. Consequently, the single direct methanol fuel cell employing the PtRu catalyst has demonstrated superior performances. The novel method, which is easy to control and operate, can be used to prepare various catalysts with nano-sized particle even in the presence of higher metal loadings. In addition, the particle size of catalysts can be controlled by the addition and sequence of water during this novel method.
    Titanium oxide, tungsten oxide and molybdena were used to modify Pt and PtRu catalysts in the present work. The modification mode and treatment condition have resulted in important effects on the activities of those catalysts toward methanol electro-oxidation and consequently the performances of single DMFCs with those catalysts. The addition of Tin to PtRu anode catalysts has showed no obvious improvement of DMFCs.
    It was also found hi this dissertation that the addition of either Ru or Sn to Pt improved its catalytic activity for electro-oxidation of methanol and ethanol, although the reactivities of methanol and ethanol on PtRu or PtSn catalysts were different from each other.
    
    As demonstrated in the previous work, PtRu was proved by methanol CV and single DMFC experiments here to be a better anode catalyst for DMFC in comparison to other binary Pt-based catalysts. On the other hand, direct ethanol fuel cells (DEFCs) demonstrated significant performances when PtSn was employed as anode catalyst The optimized atomic ratio of Pt to Sn has been found to vary with the operation temperatures of DEFCs. The direct alcohol fuel cells (DAFCs) employing PtSn as anode, whenever fueled by either methanol or ethanol, have demonstrated the similar cell performances, especially the maximum output power density, even at the relatively low temperature of 90癈. The electro-oxidation mechanisms of methanol and ethanol on PtRu and PtSn have also been primarily studied.
引文
[1] J. O'M. Bockris, S. Srinivasan, Fuel Cells: Their Electrochemisty, McGraw-Hill Book Campany, New York, 1969.
    [2] K Kordesch, G Simader, Fuel Cells and Their Applications. VCH, Weinheim, 1996.
    [3] 衣宝廉,燃料电池—高效、环境友好的发电方式,化学工业出版社,2000年.
    [4] A. Psoma, G Sattler. Fuel Cell Systems for Submarine: From the First Idea to Serial Production. Seventh Grove Fuel Cell Symposium, London, UK, 11-13 Sept. 2001, O6.3.
    [5] 陈延禧.聚合物电解质燃料电池的研究进展.电源技术,1996(20),21.
    [6] G. T. Burstein, C. J. Barnett, A. R. Kucernak and K. R Williams. Aspects of the anodic oxidation of methanol. Catal. Today. 1997 (38), 425-437.
    [7] IC A. Adamson and P. Pearson. Hydrogen and methanol. a comparison of safety, economics, efficiencies and emissions. J. Power Sources. 2000 (86), 548-555.
    [8] T. Schultz, S. Zhou and K. Sundmacher. Current Status of and Recent Developments in the Direct Methanol Fuel Cell. Chem. Eng. & Tech. 2001 (24),1223-1233.
    [9] M.P. Hogarth and G. A. Hards. Direct Methanol Fuel Cells: Technological Advances and Further Requirements. Platinum Metals Rev., 1996 (40), 150-159.
    [10] A. Hamnett. Mechanism and electrocatalysis in the direct methanol fuel cell. Catal. Today. 1997 (38), 445-457.
    [11] B. D. McNicol, D. A. J. Rand and K. R Williams. Direct methanol-air fuel cells for road transportation. J. Power Sources. 1999 (83), 15-31.
    [12] G Sandstede, From Electrocatalysis to Fuel Cells, Battelle Seattle Research Center and the University of Washington Press, 1972.
    [13] M. W. Breiter, Electrochemical Processes in Fuel Cells, Springer-Verlag Berlin Heidelberg, 1969.
    [14] H. Dohle, H. Schmitz, T. Bewer, et al. Development of a compact 500 W class direct methanol fuel cell stack. J. Power Sources. 2002 (106), 313-322.
    [15] M. Straumann, M. Dupont, D. Buttin and J.-C. Dubios. Fuel cell test bench design and manufacture. Fuel Cells Bull. 2000 (20), 11-13.
    [16] A. Heinzel and V. M. Barragan. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J. Power Sources. 1999 (84), 70-74.
    [17] S.C. Thomas, X.M. Ren, S. Gottsfeld, P. Zelenay. Direct methanol fuel cells: progress in cell performance and cathode research. Electrochim. Acta. 2002 (47), 3741-3748.
    [18] C. Lamy, E. M. Belgsir and J. M. Leger. Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell (DAFC). J. Appl. Electrochem. 2001 (31), 799-809.
    [19] 周运鸿.燃料电池.电源技术.1996(20),161-164.
    
    
    [20] R. Parsons, T. VanderNoot. the oxidation of small Organic molecules: A survey of recent fuel cell related research. J. Electroanal. Chem., 1988(257), 9-45.
    [21] T. Iwasita. Electrocatalysis of methanol oxidation. Eleetroehim. Acta. 2002 (47), 3663-3674.
    [22] A. S. Aric(?), S. Srinicasan and V. Antonucci. DMFCs: From Fundamental Aspects to Technology Development. Fuel Cells, 2001 (1), 1-29.
    [23] S. K. Desai, M. Neurock and K. Kourtakis. A periodic density functional theory study of the dehydrogenation of methanol over Pt(Ⅲ). J. Phys. Chem. B, 2002 (106) 2559-2568.
    [24] K. L. Ley, R. X. Liu, C. Pu, Q.B. Fan, et al. Methanol oxidation on single-phase Pt-Ru-Os ternary alloys. J. Electrochem. Soc., 1997 (144), 1543-1548.
    [25] B. Beden and C. LamyA. Bewick, K. Kunimatsu. Electrosorption of methanol on a platinum electrode, ir spectroscopic evidence for adsorbed CO species. J. Electroanal. Chem. 1981 (121), 343-347.
    [26] J. Willsau, J. Heitbaum. Mass spectroscopic detection of the hydrogen in methanol-adsorbate. J. Electroanal. Chem., 1985 (185), 181-183.
    [27] S. Sriramulu, T. D. Jarvi, and E. M. Stuve. A kinetic analysis of distinct reaction pathways in methanol electrocatalysis on Pt(Ⅲ). Electrochim. Acta, 1998 (44), 1127-1134.
    [28] D. Kardash, J. Huang and C. Korzeniewski. Surface Electrochemistry of CO and Methanol at 25-75℃ Probed in Situ by Infrared Spectroscopy. Langmuir. 2000 (16), 2019-2023.
    [29] Q. J. Huang, X. Q. Li, J. L. Yao et al. Extending surface Raman spectroscopic studies to transition metals for practical application. (3)Effects of surface roughening procedure on surface-enhanced Raman spectroscopy from nickel and platinum electrodes. Surf. Sci., 1999 (427), 162-166.
    [30] S. Wilhelm, T. Iwasita, W. Vielstich. COH and CO as adsorbed intermediates during methanol oxidation on platinum. J. Electroanal. Chem. 1987 (238), 383-391.
    [31] T. Iwasita, F. C. Nart Identification of methanol adsorbates On platinum: An in situ FT-IR investigation. J. Electroanal. Chem., 1991 (317), 291-298.
    [32] J. Willsau, O. Wolter, J. Heitbaum. On the nature of the adsorbate during methanol oxidation at platinum : A DEMS study. J. Electroanal. Chem., 1985 (185), 163-170.
    [33] T. Iwasita, W. Vielstich, E. Santos. Identification of the adsorbate during methanol oxidation. J. Electroanal. Chem., 1987 (229), 367-376.
    [34] B. Beden, A. Bewick, C. Lamy. A study by electrochemically modulated infrared reflectance spectroscopy of the electrosorption of formic acid at a platinum electrode. J. Electroanal. Chem. 1983 (148), 147-160.
    [35] M. I. Lopes, I. Fonseca, P. Olivi,et aL Integrated electromodulated IR reflectance spectroscopy bands: Part 2: Methanol adsorbates at polycrystalline platinum and Pt(Ⅲ)
    
    single-crystal electrodes in acid medium. J. Electroanal. Chem, 1993 (346), 415-432.
    [36] T. Iwasita, F.C. Nart, B. Lopez, W. Vielstich On the study of adsorbed species at platinum from methanol, formic acid and reduced carbon dioxide via in Situ FT-ir spectroscopy. Electrochim. Acta, 1992 (37(12)), 2361-2367.
    [37] S. G. Sun, J. Clavilier. Electrochemical study on the poisoning intermediate formed from methanol dissociation at low index and stepped platinum surfaces. J. Electroanal. Chem. 1987 (236), 95-112.
    [38] T. Iwasita, F.C. Nart, B. Lopez, W. Vielstich On the study of adsorbed species at platinum from methanol, formic acid and reduced carbon dioxide via in situ FT-ir spectroscopy. Electrochim. Acta, 1992 (37(12)), 2361-2367.
    [39] S. Wasmus, J.-T. Wang, R. F. Savinell. Real-Time Mass Spectrometric Investigation of the Methanol Oxidation in a Direct Methanol Fuel Cell. J. Electrochem. Soc. 1995 (142(11)), 3825-3833.
    [40] C. L. Childers, H. L. Huang and C. Korzeniewski. Formaldehyde yields from methanol electrochemical oxidation on carbon-supported platinum catalysts. Langmuir 1999 (15),786-789.
    [41] J. G. Love, P. A. Brooksby, A. J. McQuillan. Infrared spectroelectrochemistry of the oxidation of absolute methanol at a platinum electrode. J. Electroanal. Chem. 1999 (464),93-100.
    [42] G. Q. Lu, W. Chrzanowski and A. Wieckowski. Catalytic methanol decomposition pathways on a platinum electrode. J. Phys. Chem. B 2000(104), 5566-5572.
    [43] Qinbai Pan, Cong Pu, E. S. Smotkin, J. Electrochem, Soc., 1996(143(10)), 3053-3057.
    [44] S. Sriramulu, T. D. Iarvi and E. M. Stuve. Reaction. mechanism and dynamics of inthanol electrooxidation on platinum(Ⅲ) J. Electroanal. Chem. 1999 (467), 132-142.
    [45] T. D. Jarvi, S. Sriramulu, E. M. Stuve, Colloids Surf. A, 1998 (134), 145-153.
    [46] T. D.. Jarvi, S. Sriramulu, E. M. Stuve, J. Phys. Chem. B 1997 (101), 3649-3652.
    [47] J. Clavilier, C. Lamy and L M. Leger, Electrocatalytic oxidation of methanol on single crystal platinum electrodes. Comparison with polycrystalline platinum. J. Electroanal. Chem. 1981 (125), 249-254.
    [48] C. Lamy, J. M. Leger, J. Clavilier, Structural effects in the electrooxidation of methanol in alkaline medium: Comparison of platinum single crystal and polycrystalline electrodes, J. Blectroanal. Chem. 1982 (135), 321-328.
    [49] S. Mukerjee, J. McBreen, Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts: an in situ XAS investigation. J. Electroanal. Chem., 1998(448), 163-171.
    [50] Watanabe, M.; Saegusa, S.; Stonehart, P. J. Electroanal.Chem. 1989(271) 213.
    [51] Kennedy, B. J.; Hanmett, A, J. Electroanal. Chem. 1990(283) 271.
    [52] H. A. Gastriger, N. Markovie, P.N. Ross, Jr.,E. J. Cairns, Temperature-Dependent
    
    Methanol Electro-oxidation on Well-Characterized Pt-Ru Alloys. J. Electrochem. Soc., 1994 (141),1795-1803. ':
    [53] T. Iwasita, H. Hoster, A. John-Anacker, W. F Lin, W. Vielstich, Methanol Oxidation on PtRu Electrodes. Influence of Surface Structure and Pt-Ru Atom Distribution. Langmuir, 2000 (16), 522-529.
    [54] M. Watanabe, M. Uchida, S. Motoo, Preparation of highly dispersed platinum + ruthenium alloy clusters and the activity for the electrooxidation of methanol. J. Electroanal. Chem., 1987 (229), 395-406.
    [55] A. S. Aric(?), A. K. Shukla, H. Kim, S. Park, M. Min and V. Antonucci, An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen. Applied Surface Science 2001 (172), 33-40.
    [56] G. J. K. Acres, J. C. Frost, G A. Hards et al Electrocatalysts for fuel cells. Catal. Today 1997 (38), 393-400.
    [57] H. N. Dinh, X. M. Ren, F. H. Garzon, P. Zelenay and S. Gottesfeld, Electrocatalysis in direct methanol fuel cells: in-situ probing of PtRu anode catalyst surfaces. J. Electroanal. Chem. 2000 (491), 222-233.
    [58] R. H. Borgwardt. Platinum, fuel cells, and future US road transport. Transportation Research Part D 2001 (6), 199-207.
    [59] T. Iwasita, F. C. Nart, W. Vielstich,An FTIR study of the catalytic activity of a 85:15 platinum-ruthenium alloy for methanol oxidation. Ber. Bunsenges. Phys. Chem., 1990 (94), 1030-1034.
    [60] T. Frelink, W. Visscher, The effect of Sn on Pt/C catalysts for the methanol electro-oxidation. J. Electrochim Acta, 1994 (39), 1871-1875.
    [61] B. J. Kennedy, A. Hamnett, Oxide formation and reactivity for methanol oxidation on platinized carbon anodes. J. Electroanal, Chem., 1990 (283), 271-285.
    [62] D. R. Rolison, P. L. Hagans, K. E. Swider and J. W. Long, Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts: The importance of mixed electron/proton conductivity. Langmuir 1999 (15), 774-779.
    [63] X. M. Ren, M. S. Wilson and S. Gottesfeld, High performance direct methanol polymer electrolyte fuel cells. J. Electrochem. Soc. 1996 (143),L12-L15.
    [64] A. S. Aric(?), P. L. Antonucci, E, Modica, V. Baglio, H. Kim and V. Antonucci, Effect of Pt-Ru alloy composition on high-temperature methanol electro-oxidation. Electrochim. Acta 2002 (47), 3723-3732.
    [65] P. J. Kulesza, M. Matczak, A. Wolkiewicz, B. Grzybowska, M. Galkowski, M. A. Malik and A. Wieckowski, Electrocatalytic properties of conducting polymer based composite film containing dispersed platinum microparticles towards oxidation of methanol. Electrochim. Acta 1999(44), 2131-2137.
    [66] D. L. Boxall, G A. Deluga, E. A. Kenik, W. D. King and C. M. Lukehart, Rapid synthesis
    
    of a Pt_1Ru_1/carbon nanocomposite using microwave irradiation: A DMFC anode catalyst of high relative performance. Chemistry of Materials, 2001 (13), 891-900.
    [67] T. J. Schmidt, M. Noeske, H. A. Gasteiger, R. J. Behm, P. Britz, W. Brijoux and H. Bonnemann, Electrocatalytic activity of PtRu alloy colloids for CO and CO/H_2 electrooxidation: Stripping voltammetry and rotating disk.measurements. Langmuir, 1997 (13) 2591-2595.
    [68] S. Lee, K.-W. Park, J.-H. Choi et al. Nanoparticle Synthesis and Electrocatalytic Activity of Pt Alloys for Direct Methanol Fuel Cells. J. Electrochem. Soc., 2002 (149), A1299-A1304.
    [69] A. S. Aric(?), G. Monforte, E. Modica, P. L. Antonucci and V. Antonucci, Investigation of unsupported Pt-Ru catalysts for high temperature methanol electro-oxidation. Electrochemistry Communications, 2002. (2) 466-70.
    [70] A. S. Aric(?), V. Antonucci, N. Giordano, Methanol oxidation on carbon-supported platinum-tin electrodes in sulfuric acid. J. Power Sources, 1994 (50), 295-309.
    [71] M. M. P. Janssen, J. Moolhuysen, Platinum-tin catalysts for methanol fuel cells prepared by a novel immersion technique, by electrocodepasition and by alloying. Electrochim Acta, 1976 (21) 861-868.
    [72] M. M. P. Janssen and J. Moolhuysen. Binary systems of platinum and a second metal as oxidation catalysts for methanol fuel cells, Electrochim Aeta, 1976 (21), 869-878.
    [73] M. Watanabe, Y. Furuuchi, S. Motoo, Electrocatalysis by ad-atoms: Part ⅩⅢ. Preparation of ad-electrodes with tin ad-atoms for methanol, formaldehyde and formic acid fuel cells. J. Electroanal. Chem., 1985 (191) 367-375.
    [74] K. Wang, H. A. Gasteiger, N. M. Markovic, and P. N. Ross, Jr., On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces. Electrochim Acta, 1996 (41) 2587-2593.
    [75] H. A. Gasteiger, N. Markovic, P. N. Ross Jr., Electrooxidation of CO and H_2/CO Mixtures on a Well-Characterized Pt_3Sn Electrode. J. Phys. Chem. 1995 (99), 8945-8949.
    [76] B. Bittins-Cattaneo and T. Iwasita, Electrocatalysis of methanol oxidation by adsorbed tin onplatinum. J. Electroanal. Chem. 1987 (238) 151-161.
    [77] A. N. Haner, P. N. Ross, Electrochemical oxidation of methanol on tin-modified platinum single-crystal surfaces. J. Phys. Chem. 1991 (95), 3740-3746.
    [78] 文纲要,张颖,杨正龙等.甲醇阳极电催化氧化剂的研究.电化学,1997,(4):73-78.
    [79] A. K. Shukla, A. S. Aric(?), K. M. El Khatib, H. Kim, P. L. Antonucci and V. Antonucci, An X-ray photoelectron spectroscopic study on the effect of Ru and Sn additions to platinised carbons. Applied Surface Science, 1999 (137), 20-29.
    [80] A. K. Shukla, M. K. Ravikumar, A. S. Aric(?), Methanol electrooxidation on carbon-supported Pt-WO_(-3-x) electrodes in sulfuric acid electrolyte. J. Appl. Electrochem., 1995 (25), 528-532.
    [81] J. Wang, H. Nakajiama, H. Kita, Metal electrodes bonded on solid polymer, electrolyte
    
    membrane (SPE)_VI. Methanol oxidation on molybdenum modified Pt-SPE electrodes. Electrochim Acta, 1990 (35), 323-328.
    [82] B. N. Grgur, G Zbuang, M. M. Marvovich et al, Electrooxidation of H_2/CO Mixtures on a Well-Characterized Pt75Mo25 Alloy Surface. J. Phys. Chem. B, 1997 (101), 3910-3913.
    [83] M. G(?)tz and H. Wendt, Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas. Electrochim. Acta, 1998 (43), 3637-3644.
    [84] P. K Shen, A. C. C.Tseung, Anodic Oxidation of Methanlo on Pt/WO3 in Acidic Media. J. Electrochem. Soc., 1994 (141), 3082-3090.
    [85] T. E. Shubina and M. T. M. Koper, Quantum-chemical calculations of CO. and OH interacting with bimetallic surfaces. Electrochim Acta, 2002 (47), 3621-3628.
    [86] P. V. Samant and J. B. Fernandes, Nickel-modified manganese oxide as an active electrocatalyst for oxidation of methanol in fuel cells. J. Power Sources, 1999 (79), 114-118.
    [87] M. C. Lefebvre, Z. G Qi and P. G Pickup, Electronically conducting proton exchange polymers as catalyst supports for proton exchange membrane fuel cells - Electrocatalysis of oxygen reduction, hydrogen oxidation, and methanol oxidation. J. Electrochem Soc., 1999 (146), 2054-2058.
    [88] K. Lasch, G. Hayn, L. Jorissen, J. Garche and O. Besenhardt, Mixed conducting catalyst support materials for the direct methanol fuel cell. J. Power Sources, 2002 (105), 305-310.
    [89] K. Y. Chen and A. C. C. Tseung, A preliminary study of room temperature direct ethyl formate fuel cells for consumer electronic applications. J. Electroanal. Chem. 451, 1-4 (1998).
    [90] R. X. Liu, H. Iddir, Q. B. Fan, G Y. Hou, A. L. Bo, K. L. Ley, E. S. Smotkin, Y. E. Sung,H. Kim, S. Thomas and. A. Wieckowski, Potential-dependent infrared absorption spectroscopy of adsorbed CO and X-ray photoelectron spectroscopy of arc-melted single-phase Pt, PtRu, PtOs, PtRuOs, and Ru electrodes. J. Phys. Chem. B, 2000 (104), 3518-3531.
    [91] K. W. Park, J. H. Choi, B. K Kwon, S. A. Lee, Y. E. Sung, H. Y. Ha, S. A. Hong, H. Kim and A. Wieckowski, Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J. Phys. Chem. B, 2002 (106), 1869-1877.
    [92] A. S. Aric(?), Poltarzewski Z, Kim H et al. Investigation of a carbon-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells. J. Power Sources, 1995 (55) 159-166.
    [93] A. S. Aric(?), P. Creti, N. Giordano, V. Antonucci, P. L. Antonucci and A. Chuvilin, Chemical and morphological characterization of a direct methanol fuel cell based on a quaternary Pt-Ru-Sn-W/C anode. J. Appl. Electrochem. 1996 (26), 959-967.
    [94] B. Gurau, R. Viswanathan, R. X. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, E. Reddington, A. Sapienza, B. C. Chan, T. E. Mallouk and S. Sarangapani, Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation. J.Phys. Chem. B, 1998 (102), 9997-10003.
    
    
    [95] E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E. S. Smotkin and T. E. Mallouk Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. Science, 1998 (280) 1735-1737.
    [96] G. L. Che, B. B. Lakshmi, C. R. Martin and E. R. Fisher, Metal-nanocluster-filled Carbon Nanotubes: Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production. Langmuir, 1999 (15), 750-758.
    [97] C. A. Bessel, K. Laubernds, N. M. Rodriguez and R. T. K. Baker, Graphite nanofibers as an electrode for fuel cell applications. J. Phys. Chern B, 2001 (105), 1115-1118.
    [98] A. M. C. Luna, A novel electrocatalytic polyaniline electrode for methanol oxidation. J. Appl. Electrochem. 2000 (30). 1137-1142.
    [99] S. M. Golabi, A. Nozad, Electrocatalytic oxidation of methanol on electrodes modified by platinum microparticles dispersed into poly(o-phenylenediamine) film. J. Electroanal. Chem 2002 (521), 161-167.
    [100] H. Okamoto, G. Kawamura, A. Ishikawa et al, Characterization of Oxygen in WC Catalysts and its Role in Electrocatalytic Activity for Methanol Oxidation. J. Electrochem. Soc., 1987 (134), 1645-1658.
    [101] C. C. Hays, R. Manoharan, J. B. Goodenough, Methanol Oxidation and Hydrogen Reactions on NiZr in acid-solution. J. Power Sources, 1993 (45), 291-301.
    [102] J. H. White, A. F. Sammells, J. Electrochem. Sot., 1993 (140), 2167-2171.
    [103] V. Raghuveer and B. Viswanathan, Can La2-xSrxCuO4 be used as anodes for direct methanol fuel cells? Fuel, 2002 (81), 2191-2197.
    [104] M. S. Wilson, F. H. Garzon, K. E. Sickafus and S.Gottesfeld, J. Electrochem. Soc., 1993 (140),2872-2876.
    [105] T. R. Ralph and M.P. Hogarth, Catalysis for Low Temperature Fuel Cells- Part l: the cathode challenges. Platinum Metals Review, 2002 (46), 3-14.
    [106] Y. Takasu, T. Iwazaki, W. Sugimoto and Y. Murakami, Size effects of platinum particles on the electro-oxidation of methanol in an aqueous solution of HClO4. Electrochemistry Communications 2, 671-674 (2000).
    [107] F. Maillard, M. Martin, F. Gloaguen and J.-M. Leger, Oxygen electroreduction on carbon-supported platinum catalysts. Particle-size effect on the tolerance to methanol competition. Electrochim Acta, 2002 (47), 3431-3440.
    [108] J. A. Poirier, G. E. Stoner, Oxygen Reduction Behavior of Thin-Film Platinum and Platinum- Rhodium Electrocatalysts in Sulfuric Acid. J. Electrochem. Soc., 1995 (142),1127-1132.
    [109] F. A. Uribe and Jr. T. A. Zawodzinski, A study of polymer electrolyte fuel cell performance at high voltages. Dependence on cathode catalyst layer composition and on voltage conditioning. Electrochim. Acta, 2002 (47), 3799-3806.
    [110] S. Mukerjee, S. Srinvasan. Enhanced electrocatalysis of oxygen reduction on platinum
    
    alloys in proton exchange membrane fuel cells. J. Electroanal. Chem., 1993 (357), 201-224.
    [111] T. Toda, H. Igarashii, H. Uehida et at., J. Electrochem. Soc., 1999 (146), 3750-3756.
    [112] J. E Drillet, A. Ee, J. Friedemann, R. Kotz, B. Schnyder and V. M. Schmidt, Oxygen reduction at Pt and Pt_(70)Ni_(30) in H_2SO_4/CH_3OH solution. Electroehim. Aeta, 2002 (47), 1983-1988.
    [113] M. Neergat, A. K. Shukla and K. S. Gandhi, Platinum-based alloys as oxygen-reduction catalysts for solid-polymer-electrolyte direct methanol fuel cells. J. Appl. Electrochem. 2001 (31), 373-378.
    [114] A. K. Shukla, M. Neergat, P. Beta, V. Jayaram and M. S. Hegde, An XPS study on binary and ternary alloys of transition metals with platinized carbon and its bearing upon oxygen electroreduction in direct methanol fuel cells. J. Electroanal. Chem. 2001 (504),111-119.
    [115] M. Min, J. Cho, K. Cho and H. Kim, Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim Acta, 2000 (45), 4211-4217.
    [116] T. Toda, H. Igarashi and M. Watanabe, Enhancement of the electrocatalytic O2 reduction on Pt-Fe alloys. J. Electroanal. Chem, 1999 (460), 258-262.
    [117] A. Freund, J. Lang, T. Lehmann and K. A. Starz, Improved Pt alloy catalysts for fuel cells. Catal. Today, 1996 (29), 279-283.
    [118] Z. D. Wei, F. Yin, L. L. Li, X. W. Wei and X. A. Liu, Study of Pt/C and Pt - Fe/C catalysts for oxygen reduction in the light of quantum chemistry. J. Electroanal. Chem. 2003 (541), 185-191.
    [119] E. Antolini, R. R. Passos and E. A. Ticianelli, Electrocatalysis of oxygen reduction on a carbon supported platinum-vanadium alloy in polymer electrolyte fuel cells. Electroehim. Aeta, 2002 (48), 263-270.
    [120] L. Xiong, A. M. Kannan and A. Manthiram, Pt-M (M = Fe, Co, Ni and Cu) electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells. Electrochemistry Communications, 2002 (4), 898-903.
    [121] G. Kokkinidis and D. Jannakoudakis, Oxygen reduction on Pt and Cu surfaces modified by underpotential adsorbates. J. Electroanal. Chem 1984 (162(1/2)), 163-173.
    [122] U. A. Paulus, A. Wokaun, G. G. Seherer, T. J. Schmidt, V. Stamenkovic, N. M. Markovic and J. P. N. Ross, Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochim. Aeta, 2002 (47),3787-2798.
    [123] G. Tamizhmani, G. A. Capuano, Improved electrocatalytic oxygen reduction performance of platinum ternary alloy-oxide in solide-polymer-electrolyte fuel cells. J. Electrochem. Soc., 1994 (141(4)). 968-974. '
    [124] G. Tamizhmani, J. P. Dodelet, G. Guay, et al. J. Electrochem. Soc., 1994 (141)41-45.
    [125] R. Jasinski, Nature,1964 (201) 1212-1213. ~
    
    
    [126] G. FaubertG LalandeR. C(?)t(?)D. GuayJ. P. DodeletL. T. Weng, P. Bertrand and G. D(?)n(?)s. Heat-treated iron and cobalt tetraphenylpohyins adsorbed on carbon black: physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells, Electrochim Acta, 1996 (41 ), 1689-1701.
    [127] R. Franke, D. Ohms, K. Wiesener, Investigation of the influence of thermal treatment on the properties of carbon materials modified by N_4-chelates for the reduction of oxygen in acidic media. J. Electroanal. Chem. 1989 (260) 63-67.
    [128] B. Bittins-Cattaneo, S. Wasmns, B. Lopez-Mishima, et aL J. Appl. Electrochem. 1993 (23)625-629.
    [129] R. G. Egdell, J. B. Goodenough, A. Hamnett, et al. J. Chem. Soc. Faraday Trans.Ⅰ1983(79)89-96.
    [130] R. Manoharan, J. B. Goodenough, Oxygen reduction on CrO_2 bonded to a proton-exchange membrane. Electrochim Acta, 1995 (40(3)), 303-307.
    [131] V. S. Bagotzky, N. A. Shumilova, E. Khrnshcheva, Electrochemical oxygen reduction on oxide catalysts. Electrochim.Acta,1976 (21(11)), 919-924.
    [132] N. Alonso Vante, H. Tributsch, Nature, 1986 (323)431.
    [133] N. Alonso-Vante, I. V. Malakhov, S. G Nikitenko, E. R. Savinova and D. L Kochubey, The structure analysis of the active centers of Ru-containing electrocatalysts for the oxygen reduction. An in site EXAFS study. Electrochim Acta 2002 (47), 3807-3814.
    [134] C. Fischer, N. Alonso Vante, S. Fiechter, et al. J. Appl. Electrochem., 1995 (24)1004-1009.
    [135] O. Solorza-Feria, K. Ellmer, M. Giersig and N. Alonso-Vante. Novel low-temperature synthesis of semiconducting transition metal chalcogenide electrocatalyst for multielectron charge transfer: molecular oxygen reduction, Eloctrochim. Acta 1994 (39), 1647-1653.
    [136] N. Alonso-Vante, H. Tributsch and O. Solorza-Feria, Kinetics studies of oxygen reduction in acid medium on novel semiconducting transition metal chalcogenides, Electrochim. Acta, 1995 (40(5)), 567-576.
    [137] F. Dassenoy, W. Vogel and N. Alonso-Vante, Structural Studies and Stability of Cluster-like RuxSey Electrocatalysts. J. Phys. Chem. B, 2002 (106), 12157-12160.
    [138] I. V. Malakhov, S. G Nikitenko, E. R. Savinova, D. I. Kochubey and N. Alonso-Vante, In Situ EXAFS Study To Probe Active Centers of Ru Chalcogenide Eiectrocatalysts During oxygen Reduction Reaction. J. Phys. Chem. B, 2002 (106), 1670-1676.
    [139] V. Trapp, P. Christensen and A. Hamnett, New catalysts for oxygen reduction based on transition-metal sulfides. Journal of the Chemical Society-Faraday Transactions, 1996 (92), 4311-4319.
    [140] A. Manzo-Robled, A.-C. Boocher, E. Pastor and N. Alonso-Vante, Electro-oxidation of Carbon-Monoxide and Methanol on Carbon-Supported PtSn Nanoparticles: a DEMC Study. Fuel Cells, 2002 (2), 109-116.
    
    
    [141] T. J. Schmidt, U. A. Paulus, H. A. Gasteiger, N. Alonso-Vante and R. J. Behm, Oxygen reduction on Ru _(1.92)Mo_(0.08)SeO4, Ru/carbon, and Pt/carbon in pure and methanol-containing electrolytes. J. Electrochem. Soc. 2000 (147), 2620-2624.
    [142] C. Yang, S. Srinivasan, A. S. Aric(?), E Creti, V. Baglio and V. Antonucci, Composite Nation/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature. Electrochem. Solid State Lett. 2001 (4), A31-A34.
    [143] K. T. Adjemain, S. Srinivasan, J. Benziger and A. B. Bocarsly, Investigation of PEMFC operation above 100℃ employing perfluorosulfonic acid silicon oxide composite membranes. J. Power Sources, 2002 (109), 356-364.
    [144] Q. H. Guo, P. N. Pintauro, H. Tang and S. O'Connor, Sulfonated and erosslinked polyphosphazene-based proton-exchange membranes. J. Memb. Sci. 1999 (154), 175-181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700