炭黑及碳纳米管担载型Pt催化剂的制备与电催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲醇燃料电池由于结构简单、能量转化率高、适用范围广、无污染等优点,有望在许多应用领域替代化石能源,而备受重视。然而如何进一步提高Pt催化剂活性及利用率,开发高性能、低成本的催化剂,仍是甲醇燃料电池商业化中亟待解决的问题。本论文着重开展针对直接甲醇燃料电池阳极催化剂的优化制备、及其相关的载体材料的前期处理和功能化研究。主要内容如下:
     (1)对Vulcan XC-72炭黑载体材料进行有针对性的化学处理,改变其表面性能,以利于高分散、高活性Pt催化剂的制备。由于化学处理后的炭黑载体表面以氧化基团为主,难以有效吸附催化剂前驱体[PtCl_6]~(2-)离子,我们提出并实施了改变载体荷电性质的研究方案。结果表明,以氧化处理后的炭黑为载体所制备的Pt催化剂,其催化活性及稳定性明显提高。同时,通过对比实验发现,以经过不同程度氧化处理的炭黑为载体,所制备催化剂的催化性能有明显差别。氧化程度越高,催化剂催化活性越强。这不仅是因为氧化程度高的载体吸附[PtCl_6]~(2-)离子能力增强,导致Pt催化剂的分散性提高,同时也在一定程度上证实,这些氧化基团的存在对甲醇催化氧化有更好的促进作用。
     (2)利用多壁碳纳米管(MWCNTs)作Pt催化剂载体材料,首先对其进行电化学氧化处理,以增加碳管表面的亲水性和活性基团。然后采用先在氧化电位下聚集Pt(Ⅳ)络合物,再在酸性溶液中电化学还原的步骤,制备了分散性良好的Pt催化剂,并通过TEM、XRD等表面物理分析手段,对Pt催化剂微粒的粒径、分散状态及晶体结构等特点进行了表征。
     (3)使用具有富含羟、氨基结构特征的壳聚糖对多壁碳纳米管进行表面功能化,制备了壳聚糖包覆的多壁碳纳米管(c-MWCNTs)材料,并以此作载体通过浸渍法和溶胶法制备了Pt/c-MWCNTs催化剂。通过对比MWCNTs及c-MWCNTs作载体制备的催化剂的形貌及催化性能,结果发现用c-MWCNTs作载体制备的Pt催化剂,其分散性、催化活性等性能指标明显优于用未功能化的MWCNTs作载体的情况。同时对比两种不同方法制备的催化剂的形貌及催化活性,结果表明使用溶胶法制备的催化剂的分散性更好,催化活性更高。
As a promising alternative for fossil energy,direct methanol fuel cell(DMFC) has attracted much attention in the past decades due to its intrinsic advantages of structural simplicity,high energy conversion efficiency and non pollution,etc.However,how to enhance the catalytic activity and utilization efficiency of platinum catalyst and develop high-performance,low-cost catalysts are still the technological keys to the commercialization of DMFC.As a matter of fact,this thesis focuses on the pre-treatment and functionlization of different kinds of catalyst supporters,such as carbon black and carbon nanotube,as well as the optimum preparation and characterization of anode catalysts for DMFC.
     The main work of the thesis is summarized as follows:
     (1) In order to effectively prepare Pt catalysts with excellent performance of high dispersion and activity,the Vulcan XC-72 carbon black,which was employed as a catalyst supporter,has been chemically treated to purposefully modify its surface properties.Due to the fact that the oxidized groups existing in the carbon black,which was subjected to chemical pre-treatment,will play a dominant role,and lead to low efficient adsorption of catalyst precursor,[PtCl_6]~(2-) ions,we have therefore proposed a novel scheme to change the electrical property of carbon supporters.The results showed that the catalytic activity and stability of Pt catalyst supported on carbon black has been improved significantly if the carbon black was treated by an oxidation step.Meanwhile,it was found that the catalytic performances of the Pt catalysts supported on carbon black varied greatly with the extent of oxidation treatments for the carbon black support. Generally,the higher the oxidation treatment,the better the catalytic activity.The reason is that,on one hand,the highly oxidized support has a higher adsorption capacity to [PtCl_6]~(2-) ions,resulting in an ideal dispersion of Pt catalyst;On the other hand,it verified that the oxidation group in the carbon black support could to some extent promote the electrocatalytic oxidation process of methanol.
     (2) Multi-wall carbon nanotubes(MWCNTs) were utilized as a supporter material to support the Pt catalyst.Firstly,the MWCNTs were electrochemically oxidized to enhance their surface hydrophilicity and active groups.Afterwards,the Pt catalysts with high dispersion on the surface of MWCNTs supporter were prepared by an initial oxidation step to deposit Pt(Ⅳ) complexes on the surface of MWCNTs and followed by a subsequent reduction in acid solution to form Pt particles.Moreover,the size, morphology and dispersion state of Pt catalyst supported on the MWCNTs have been characterized by means of transmission electron microscope(TEM) and X-ray diffraction (XRD) techniques.
     (3) Since there exist many-OH and -NH_2 groups in the chitosan molecule,it was used to modify MWCNTs for preparing chitosan-coated MWCNTs(denoted by c-MWCNTs). The c-MWCNTs were employed as support to prepare Pt/C-MWCNTs catalysts by impregnation and sol methods,respectively.By comparing the catalytic performances of Pt catalysts supported on MWCNTs and c-MWCNTs,respectively,it was found that the dispersion degree,catalytic activity and long term stability of Pt catalysts supported on c-MWCNTs showed significant advantages compared with that of Pt catalysts supported on MWCNTs.Moreover,the results demonstrated that the dispersion degree and catalytic activity of Pt catalysts prepared by sol method were better than that of Pt catalysts prepared by impregnation method.
引文
[1] Z.L. Zhan, S. A. Barnett, An octane-fueled olid oxide fuel cell [J]. Science, 2005,308(5723): 844-847.
    
    [2] M. Winter, R. J. Brodd, What are batteries, fuel cells, and supercapacitors? [J].Chemical Reviews, 2004, 104(10):4245-4269.
    [3] C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, J. M. Leger, Recent advances in the development of direct alcohol fuel cells (DAFC) [J]. Journal of Power Sources, 2002, 105(2): 283-296.
    [4] C. Lamy, S. Rousseau, E. M. Belgsir, C. Coutanceau, J. M. Leger, Recent progress in the direct ethanol fuel cell: development of new platinum-tin electrocatalysts [J].Electrochimica Acta, 2004, 49(22-23): 3901-3908.
    [5] F. Vigier, C. Coutanceau, A. Perrard, E. M. Belgsir, C. Lamy, Development of anode catalysts for a direct ethanol fuel cell [J]. Journal of Applied Electrochemistry, 2004,34(4): 439-446.
    [6] C. J. Song, M. Khanfar, P. G Pickup, Mo oxide modified catalysts for direct methanol, formaldehyde and formic acid fuel cells [J]. Journal of Applied Electrochemistry, 2006, 36(3): 339-345.
    [7] X. W. Yu, P. G Pickup, Recent advances in direct formic acid fuel cells (DFAFC) [J]. Journal of Power Sources, 2008, 182(1): 124-132.
    [8] S. Uhm, Y. Kwon, S. T. Chung, J. Lee, Highly effective anode structure in a direct formic acid fuel cell [J]. Electrochimica Acta, 2008, 53(16): 5162-5168.
    [9] C. Rice, S. Ha, R. I. Masel, A. Wieckowski, Catalysts for direct formic acid fuel cells [J]. Journal of Power Sources, 2003, 115(2): 229-235.
    [10] C. Rice, R. I. Ha, R. I. Masel, P. Waszczuk, A. Wieckowski, T. Barnard, Direct formic acid fuel cells [J]. Journal of Power Sources, 2002, 111(1): 83-89.
    
    [11] H. S. Kim, R. D. Morgan, B. Gurau, R. I. Masel, A miniature direct formic acid fuel cell battery [J]. Journal of Power Sources, 2009, 188(1): 118-121.
    
    [12] K. J. Jeong, C. A. Miesse, J. H. Choi, J. Lee, J. Han, Yoon SP, Fuel crossover in direct formic acid fuel cells [J]. Journal of Power Sources, 2007, 168(1): 119-125.
    [13]R.H.Yu,H.G.Choi,S.M.Cho,Performance of direct dimethyl ether fuel cells at low temperature[J].Electrochemistry Communications.2005,7(12):1385-1388.
    [14]J.H.Yoo,H.G.Choi,C.H.Chung,S.M.Cho,Fuel cells using dimethyl ether[J].Journal of Power Sources,2006,163(1):103-106.
    [15]Y.Tsutsumi,T.Sato,A.Yosizawa,Feasibility of fuel cell using dimethyl ether fuel [J].Advances of Alcohol Fuels In the World,1998,403-408.
    [16]J.T.Muller,P.M.Urban,W.F.Holderich,K.M Colbow,J.Zhang,D.P.Wilkinson,Electro-oxidation of dimethyl ether in a polymer-electrolyte-membrane fuel cell[J].Journal of the Electrochemical Society,2000,147(11):4058-4060.
    [17]衣宝廉,燃料电池.高效、环境友好的发电方式[M].化学工业出版社.2000.
    [18]L.Carrette,K.A.Friedrich,U.Stimming,Fuel cells:Principles,types,fuels,and applications[J].ChemPhysChem,2000,1(4):162-193.
    [19]汪国雄,孙公权,辛勤,衣宝廉,直接甲醇燃料电池[J].物理,2004,33(03):165-169.
    [20]H.N.Dinh,X.M.Ren,F.H.Garzon,P.Zelenay,S.Gottesfeld,Electrocatalysis in direct methanol fuel cells:in-situ probing of PtRu anode catalyst surfaces[J].Journal of Electroanalytical Chemistry,2000,491(1-2):222-233.
    [21]T.Oka,H.Mizuseki,Y.Kawazoe,CO oxidation process on pt-M(111) alloys(M=Ru,Sn):An ab initio study[J].Materials Transactions,2007,48(7):1907-1912.
    [22]J.H.Han,H.T.Liu.Real time measurements of methanol crossover in a DMFC [J].Journal of Power Sources,2007,164(1):166-173.
    [23]R.Z.Jiang,D.R.Chu.Comparative studies of methanol crossover and cell performance for a DMFC[J].Journal of the Electrochemical Society,2004,151(1):A69-A76.
    [24]Q.Z.Lai,G P.Yin,Z.B.Wang,C.Y.Du,P J.Zuo,X.Q.Cheng.Influence of Methanol Crossover on the Fuel Utilization of Passive Direct Methanol Fuel Cell [J].Fuel Cells,2008,8(6):399-403.
    [25]P.Agnolucci,Economics and market prospects of portable fuel cells.International [J].Journal of Hydrogen Energy,2007,32(17):4319-4328.
    [26] U. A. Icardi, S. Specchia, G. J. R. Fontana, G Saracco, V. Specchia, Compact direct methanol fuel cells for portable application [J]. Journal of Power Sources,2008, 176(2): 460-467.
    [27] Z. B. He, J. H. Chen, D. Y. Liu, H. H. Zhou, Y. F. Kuang, Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation [J]. Diamond and Related Materials, 2004, 13(10):1764-1770.
    [28] D. R. Rolison, P. L. Hagans, K. E. Swider, J. W. Long, Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts: The importance of mixed electron/proton conductivity [J]. Langmuir, 1999, 15(3): 774-779.
    [29] K. Sundmacher, T. Schultz, S. Zhou, K. Scott, M. Ginkel, E. D. Gilles. Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis [J].Chemical Engineering Science, 2001, 56(2): 333-341.
    [30] A. Lima, C. Coutanceau, J. M. Leger, C. Lamy, Investigation of ternary catalysts for methanol electrooxidation [J]. Journal of Applied Electrochemistry, 2001, 31(4):379-386.
    [31] V. Neburchilov, H. J. Wang, J. J. Zhang, Low Pt content Pt-Ru-Ir-Sn quaternary catalysts for anodic methanol oxidation in DMFC [J]. Electrochemistry Communications, 2007, 9(7): 1788-1792.
    [32] T. Oka, H. Mizuseki, Y. Kawazoe, Activation barriers of CO oxidation on Pt-M (M= Ru, Sn) alloys [J]. Journal of the Japan Institute of Metals, 2006, 70(6):495-499.
    [33] H. J. Kim, D. Y Kim, H. Han, Y. G Shul, PtRu/C-Au/TiO2 electrocatalyst for a direct methanol fuel cell [J]. Journal of Power Sources, 2006, 159(1): 484-490.
    [34] S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, K. Richau, Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells [J]. Journal of Membrane Science, 2002, 203(1-2): 215-225.
    
    [35] Y C. Kim, J. Y Jeong, J. Y Hwang, S. D. Kim, S. C. Yi, W. J. Kim, Incorporation of heteropoly acid, tungstophosphoric acid within MCM-41 via impregnation and direct synthesis methods for the fabrication of composite membrane of DMFC [J]. Journal of Membrane Science,2008,325(1):252-261.
    [36]Z.H.Zhou,W.J.Zhou,S.L.Wang,G.X.Wang,L.H.Jiang,H.Q.Li,et al.Preparation of highly active 40 wt.%Pt/C cathode electrocatalysts for DMFC via different routes[J].Catalysis Today,2004,93-95:523-528.
    [37]D.J.Guo,H.L.Li,High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles[J].Journal of Electroanalytical Chemistry,2004,573(1):197-202.
    [38]Y.Zhao,L.Z.Fan,H.Z.Zhong,Y.F.Li,S.H.Yang,Platinum nanoparticle clusters immobilized on multiwalled carbon nanotubes:Electrodeposition and enhanced electrocatalytic activity for methanol oxidation[J].Advanced Functional Materials,2007,17(9):1537-1541.
    [39]R.Chetty,W.Xia,S.Kundu,M Bron,T.Reinecke,W.Schuhmann,Effect of Reduction Temperature on the Preparation and Characterization of Pt-Ru Nanoparticles on Multiwalled Carbon Nanotubes[J].Langmuir,2009,25(6):3853-3860.
    [40]H.B.Suffredini,G.R.Salazar-Banda,L.A.Avaca.Carbon supported electrocatalysts prepared by the sol-gel method and their utilization for the oxidation of methanol in acid media[J].Journal of Sol-Gel Science and Technology,2009,49(2):131-136.
    [41]H B.Suffredini,V.Tricoli,L.A.Avaca,N.Vatistas,Sol-gel method to prepare active Pt-RuO2 coatings on carbon powder for methanol oxidation[J].Electrochemistry Communications,2004,6(10):1025-1028.
    [42]G X.Ma,Y.W.Tang,H.Yang,Y.M.Zhou,W.Xing,T.H.Lu,Electrocatalytic Activity of Pt/C Catalyst Prepared with Solid Phase Reaction Method for Ethanol Oxidation[J].Acta Physico-chimica Sinica,2003,19(11):1001-1004.
    [43]彭程,程璇,陈羚,张颖,范钦柏,DMFC中电催化剂的研究进展[J].电池,2004,34(2):123-125.
    [44]M.J.Croissant,T.Napporn,J.M.Leger,C.Lamy,Electrocatalytic oxidation of hydrogen at platinum-modified polyaniline electrodes[J].Electrochimica Acta, 1998,43(16-17):2447-2457.
    [45]L.Niu,Q.H.Li,F.H.Wei,S.X.Wu,P.P.Liu,X.L.Cao,Electrocatalytic behavior of Pt-moditied polyaniline electrode for methanol oxidation:Effect of Pt deposition modes[J].Journal of Electroanalytical Chemistry.2005,578(2):331-337.
    [46]D.J.Strike,N.F.De Rooij,M.Koudelka-Hep,M.Ulmann,J.Augustynski Electrocatalytic oxidation of methanol on platinum microparticles in polypyrrole [J].Journal of Applied Electrochemistry,1992,22(10):922-926.
    [47]K.Bouzek,K.M.Mangold,K.Juttner,Electrocatalytic activity of platinum modified polypyrrole films for the methanol oxidation reaction[J].Journal of Applied Electrochemistry,2001,31(5):501-507.
    [48]俞守耕,用于低温燃料电池的聚合物电解质膜[J].电源技术,2005,29(5):329-333.
    [49]史萌,邱新平,朱文涛,Nafion膜在直接甲醇燃料电池中的应用及改进[J].化学通报,2001,8:488-490.
    [50]Z.G.Shao,I.M.Hsing,Nation membrane coated with sulfonated poly,vinyl alcohol-Nafion film for direct methanol fuel cells[J].Electrochemical and Solid State Letters,2002,5(9):A185-A187.
    [51]K.D.Kreuer,On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells[J].Journal of Membrane Science,2001,185(1):29-39.
    [52]R.W.Reeve,P.A.Christensen,A.J.Dickinson,A.Hamnett,K.Scott,Methanol-tolerant oxygen reduction catalysts based on transition metal sulfides and their application to the study of methanol permeation[J].Electrochimica Acta,2000,45(25-26):4237-4250.
    [53]T.Yoshitake,Y.Shimakawa,S.Kuroshima,H.Kimura,T.Ichihashi,Y.Kubo,Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application[J].Physica B-condensed matter,2002,323(1-4):124-126.
    [54]王道宏,徐亦飞,张继炎,炭黑的物化性质及表征[J].化学工业与工程2002,19(1):76-82.
    [55]E.Auer,A.Freund,J.Pietsch,T.Tacke,Carbons as supports for industrial precious metal catalysts[J].Applied Catalysis a-General.1998,173(2):259-271.
    [56]赵波,韩文锋,霍超,刘化章,作为催化剂载体的活性炭[J].化学通报,2004,67:1-6.
    [57]Y.Z.Lu,Y.Xu,T.H.Lu,W.Xing,M.L.Zhang,Effect of pretreatment of black carbon on electrocatalytic activity of Pt/C catalyst for methanol oxidation[J].Acta Chimica Sinica,2007,65(16):1583-1587.
    [58]G.G.Park,T.H.Yang,Y.G.Yoon,W.Y Lee,C.S.Kim,Pore size effect of the DMFC catalyst supported on porous materials[J].International Journal of Hydrogen Energy,2003,28(6):645-650.
    [59]贾荣利,王成扬,王素梅,炭载体前处理对Pt/C催化剂Pt分散性的影响[J].电源技术,2005,129(12):801-804.
    [60]C.Coutanceau,S.Brimaud,C.Lamy,et al.Review of different methods for developing nanoelectrocatalysts for the oxidation of organic compounds[J].Electrochimica Acta,2008,53(23):6865-6880.
    [61]M.Baibarac,M.Lir-Cantu,J.Oro-Sole,N.Casan-Pastor,P.Gomez-Romero,Electrochemically functionalized carbon nanotubes and their application to rechargeable lithium batteries[J].Small,2006,2(8-9):1075-1082.
    [62]P.R.Marcoux,P.Hapiot,P.Batail,J.Pinson,Electrochemical functionalization of nanotube films:growth of aryl chains on single-walled carbon nanotubes[J].New Journal of Chemistry,2004,28(2):302-307.
    [63]Y.B.Wang,S.V.Malhotra,F.J.Owens,Z.Iqbal,Electrochemical nitration of single-wall carbon nanotubes[J].Chemical Physics Letters,2005,407(1-3):68-72.
    [64]E.Unger,A.Graham,F.Kreupl,M.Liebau,W.Hoenlein,Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification [J].Current Applied Physics,2002,2(2):107-111.
    [65]H.T.Fang,C.G Liu,L.Chang,L.Feng,L.Min,H.M.Cheng,Purification of single-wall carbon nanotubes by electrochemical oxidatio[J].Chemistry of Materials,2004,16(26):5744-5750.
    [66] X. R. Ye, L. H. Chen, C. Wang, J. F. Aubuchon, I. C. Chen, A. I. Gapin,Electrochemical modification of vertically aligned carbon nanotube arrays [J].Journal of Physical Chemistry B, 2006,110(26): 12938-12942.
    [67] J. H. Jiang, A. Kucernak. Mesoporous microspheres composed of PtRu alloy [J].Chemistry of Materials, 2004, 16(7): 1362-1367.
    
    [68] Y. H. Xu, X. Q. Lin, Selectively attaching Pt-nano-clusters to the open ends and defect sites on carbon nanotubes for electrochemical catalysis [J]. Electrochimica Acta, 2007, 52(16): 5140-5149.
    
    [69] J. P. Zhang A. Q. Wang, pH- and thermo-responsive dispersion of singlewalled carbon nanotubes modified with poly(Msopropylacrylamide-co-acrylic acid) [J].Journal of Colloid and Interface Science, 2009, 3(10): 1016-1021.
    [70] J. Chen, M. A. Hamon, H. Hu, Y. S. Chen, A. M. Rao, P. C. Eklund, Solution properties of single-walled carbon nanotubes [J]. Science, 1998, 282(5386):95-98.
    
    [71] V. Selvaraj, M. Alagar, Pt and Pt-Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation [J]. Electrochemistry Communications, 2007, 9(5):1145-1153.
    
    [72] G. Wu, L. Li, J. H. Li, B. Q. Xu, Methanol electrooxidation on Pt particles dispersed into PANI/SWNT composite films [J]. Journal of Power Sources, 2006,155(2): 118-127.
    
    [73] Z. Z. Zhu, Z. Wang, H. L. Li, Functional multi-walled carbon nanotube/polyaniline composite films as supports of platinum for formic acid electrooxidation [J].Applied Surface Science, 2008, 254(10): 2934-2940.
    [1]彭程,程璇,陈羚,DMFC中电催化剂的研究进展[J].电池,2004,34(2):123-125.
    [2]Y.Z.Lu,Y.Xu,T.H.Lu,W.Xing,M.L.Zhang,Effect of Pretreatment of Black Carbon on Electrocatalytic Activity of Pt/C Catalyst for Methanol Oxidation[J].Acta Chimica Sinica,2007,65(16):1583-1587.
    [3]C.Coutanceau,S.Brimaud,C.Lamy,et al.Review of different methods for developing nanoelectrocatalysts for the oxidation of organic compounds[J].Electrochimica Acta,2008,53(23):6865-6880.
    [4]M.G.Deng,Z.A.Zhang,Y.D.Hu,B.H.Wang,B.C.Yang,Effect of Activation and Surface Modification on the Properties of Carbon Nanotubes Supercapacitors.[J].Acta Physico-chimica Sinica,2004,20(4):432-435.
    [5]Y.Z.Lu,Y.Xu,T.H.Lu,W.Xing,M.L.Zhang,Effect of pretreatment of black carbon on electrocatalytic activity of Pt/C catalyst for methanol oxidation[J].Acta Chimica Sinica,2007,65(16):1583-1587.
    [6]D.J.Riley,Electrochemistry in nanoparticle science[J].Current Opinion in Colloid & Interface Science,·2002,7(3-4):186-192.
    [7]C.de Haro,R.Mas,G.Abadal,J.Munoz,F.Perez-Murano,C.Dominguez,Electrochemical platinum coatings for improving performance of implantable microelectrode arrays[J].Biomaterials,2002,23(23):4515-4521.
    [8]L.Xu,F.L.Li,S.J.Dong,Electro-oxidation of a chloride complex of Platinum(Ⅱ)at a glassy carbon electrode[J].Journal of Electroanalytical Chemistry,1995,1995(383):133-137.
    [9]D.J.Guo,H.L.Li,High dispersion and electrocatalytic properties of palladium nanoparticles on single-walled carbon nanotubes[J].Journal of Colloid and Interface Science,2005,286(1):274-279.
    [10]D.J.Guo,H.L.Li,High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles[J].Journal of Electroanalytical Chemistry,2004,573(1):197-202.
    [11] M. C. Tsai, T. K. Yeh, C. H. Tsai, An improved electrodeposition technique for preparing platinum and platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation [J]. Electrochemistry Communications, 2006, 8(9): 1445-1452.
    [12] J. S. Ye, H. F Cui, Y. Wen, W. D. Zhang, G Q. Xu, F. S. Sheu, Electrodeposition of platinum nanoparticles on multi-walled carbon nanotubes for electrocatalytic oxidation of methanol [J]. Microchimica Acta, 2006, 152(3-4): 267-275.
    [13] E. S. Steigerwalt, G A. Deluga, C. M. Lukehart, Pt-Ru/carbon fiber nanocomposites: Synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search for exceptional performance [J]. Journal of Physical Chemistry B, 2002, 106(4): 760-766.
    [14] J. M. Planeix, N. Coustel, B. Coq, V. Brotons, P. S. Kumbhar,R. Dutartre,Application of carbon nanotubes as supports in heterogeneous catalysis [J].Journal of the American Chemical Society, 1994, 116(17): 7935-7936.
    [15] M. G. Zhang , A. Smith, W. Gorski, Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes [J]. Analytical Chemistry, 2004, 76(17): 5045-5050.
    [16] J. Li, Q. Liu, Y J. Liu, S. C. Liu, S. Z. Yao, DNA biosensor based on chitosan film doped with carbon nanotubes [J]. Analytical Biochemistry, 2005, 346(1):107-114.
    [17] Y. Y. Liu, J. Tang, X. Q. Chen, J. H. Xin, Decoration of carbon nanotubes with chitosan [J]. Carbon, 2005, 43(15): 3178-3180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700